Journal Articles
- 
 
Prompt learning with bounding box constraints for medical image segmentation. 
In IEEE Transactions on Biomedical Engineering (TBME), 2025.
Gaillochet, M.; Noori, M.; Dastani, S.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints. 
In Medical Image Analysis (MedIA), 2025.
Murugesan, B.; Adiga, S.; Liu, B.; Lombaert, H.; Ben Ayed, I. and Dolz, J. 
 
- 
 
GeoLS: an Intensity-based, Geodesic Soft Labeling for Image Segmentation. 
In Melba, 2024.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
Anatomically-aware Uncertainty for Semi-supervised Image Segmentation. 
In Medical Image Analysis (MedIA), 2023.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
[Highlight]
Active Learning for Medical Image Segmentation with Stochastic Batches. 
In Medical Image Analysis (MedIA), 2023.
Gaillochet, M.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Learning Joint Surface Reconstruction and Segmentation, from Brain Images to Cortical Surface Parcellation. 
In Medical Image Analysis (MedIA), 2023.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Source-free Domain Adaptation for Image Segmentation. 
In Medical Image Analysis (MedIA), 2022.
Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Attention-based Dynamic Subspace Learners for Medical Image Analysis. 
In IEEE Journal of Biomedical and Health Informatics (JBHI), 2022.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
Little W-Net: State-of-the-Art Retinal Vessel Segmentation with Minimalistic Models. 
In Nature Scientific Reports, 2022.
Galdran, A.; Anjos, A.; Dolz, J.; Chakor, H.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Manifold-aware Synthesis of High-resolution Diffusion from Structural Imaging. 
In Frontiers in Neuroimaging, 2022.
Anctil-Robitaille, B.; Théberge, A.; Jodoin, P-M.; Descoteaux, M.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning. 
In Computerized Medical Imaging and Graphics (CMIG), 2022.
Karami, M.; Lombaert, H. and Rivest-Henault, D. 
 
- 
 
Realistic Image Normalization for Multi-Domain Segmentation. 
In Medical Image Analysis (MedIA), 2021.
Delisle, P-L.; Anctil-Robitaille, B.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Constrained Domain Adaptation for Image Segmentation. 
In IEEE Transactions on Medical Imaging (TMI), 2021.
Bateson, M.; Dolz, J.; Kervadec, H.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
[Highlight]
Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis. 
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2020.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. 
In TVST, 2020.
Galdran, A.; Chelbi, J.; Dolz, J.; Lombaert, H.; Ben Ayed, I. and Chakor, H. 
 
- 
 
[Highlight]
Graph Convolutions on Spectral Embeddings for Cortical Surface Parcellation. 
In Medical Image Analysis (MedIA), 2019.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. 
In IEEE Transactions on Medical Imaging (TMI), 2018.
Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C. and Ben Ayed, I. 
 
- 
 
Spectral Shape Analysis of Human Torsos: Application to the Evaluation of Scoliosis Surgery Outcome. 
In IEEE Journal of Biomedical and Health Informatics (JBHI), 2017.
Ahmad, O.; Lombaert, H.; Parent, S.; Labelle, H.; Dansereau, J. and Cheriet, F. 
 
- 
 
Cortical Folding of the Preterm Brain: A Longitudinal Analysis of Extremely Preterm Born Neonates using Spectral Matching. 
In Brain and Behavior, 2016.
Orasanu, E.; Melbourne, A.; Cardoso, J.; Lombaert, H.; Robertson, N.; Kendall, G.; Marlow, N. and Ourselin, S. 
 
- 
 
Statistical Shape Analysis of Subcortical Structures using Spectral Matching. 
In Computerized Medical Imaging and Graphics (CMIG), 2016.
Shakeri, M.; Lombaert, H.; Datta, A.; Oser, N.; Letourneau-Guillon, L.; Vincent Lapiere, L.; Martin, F.; Malfait, D.; Tucholka, A.; Lippe, S. and Kadoury, S. 
 
- 
 
[Highlight]
Spectral Log-Demons - Diffeomorphic Image Registration with Very Large Deformations. 
In International Journal of Computer Vision (IJCV), 107 (3), 2014.
Lombaert, H.; Grady, L.; Pennec, X.; Ayache, N. and Cheriet, F. 
 
- 
 
FOCUSR: Feature Oriented Correspondence using Spectral Regularization - A Method for Precise Surface Matching. 
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 35 (9), 2013.
Lombaert, H.; Grady, L.; Polimeni, J. R. and Cheriet, F. 
 
- 
 
FQRNT Etudiant Etoile
Best Paper Award
Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population. 
In IEEE Transactions on Medical Imaging (TMI), 31 (7), 2012.
Lombaert, H.; Peyrat, J-M.; Croisille, P.; Rapacchi, S.; Fanton, L.; Cheriet, F.; Clarysse, P.; Magnin, I.; Delingette, H. and Ayache, N. 
 
Top-Conference Articles & More
 
Note: Top Conferences, such as MICCAI,IPMI or ICCV,ECCV, have lower acceptance rates than many top journals.
- 
 
Acceptance Rate: <30%
Oral Presentation
ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings. 
In IPMI, 2025.
Kubik, T.; Guibault, F.; Spanel, M. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
TRUST: Test-Time Refinement using Uncertainty-Guided SSM Traverses. 
In NeurIPS, 2025.
Dastani, S.; Bahri, A.; Hakim, G. A. V.; Yazdanpanah, M.; Noori, M.; Osowiechi, D.; Barbeau, S.; Ben Ayed, I.; Lombaert, H. and Desrosiers, C. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
Variational Visible Layers: A Practical Framework for Uncertainty Estimation. 
In MICCAI, 2025.
Abboud, Z.; Lombaert, H. and Kadoury, S. 
 
- 
 
Best Paper Award
Anatomically-Focused Patches for Lightweight and Explainable Knee OA Grading. 
In MICCAI ShapeMI, 2025.
Chang, T-E. and Lombaert, H. 
 
- 
 
Oral Presentation
Reinforcing the generalizability of spinal cord multiple sclerosis lesion segmentation models. 
In ECTRIMS, 2025.
Benveniste, P-L.; more, 45; Lombaert, H. and Cohen-Adad, J. 
 
- 
 
Investigations on the mitigation of 'noisy labels' for the automatic segmentation. 
In ECTRIMS, 2025.
Benveniste, P-L.; more, 45; Lombaert, H. and Cohen-Adad, J. 
 
- 
 
Acceptance Rate: <30%
Spectral State Space Model for Rotation-Invariant Visual Representation Learning. 
In CVPR, 2025.
Dastani, S.; Bahri, A.; Yazdanpanah, M.; Noori, M.; Osowiechi, D.; Vargas-Hakim, G. A.; Beizaee, F.; Cheraghalikhani, M.; Mondal, A. K.; Lombaert, H. and Desrosiers, C. 
 
- 
 
Acceptance Rate: <30%
Sparse Bayesian Networks: Efficient Uncertainty Quantification in Medical Image Analysis. 
In MICCAI, 2024.
Abboud, Z.; Lombaert, H. and Kadoury, S. 
 
- 
 
Sparse Partial Bayesian Networks: Efficient Uncertainty Quantification in Medical Image Analysis. 
In WIML@NeurIPS, 2024.
Abboud, Z.; Lombaert, H. and Kadoury, S. 
 
- 
 
Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision. 
In MICCAI MedAGI, 2024.
Gaillochet, M.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
Trust your neighbours: Penalty-based constraints for model calibration. 
In MICCAI, 2023.
Murugesan, B.; Adiga, S.; Liu, B.; Lombaert, H.; Ben Ayed, I. and Dolz, J. 
 
- 
 
Oral Presentation
GeoLS: Geodesic Label Smoothing for Image Segmentation. 
In MIDL, 2023.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
TAAL: Test-time Augmentation for Active Learning in Medical Image Segmentation. 
In MICCAI DALI, 2022.
Gaillochet, M.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
Leveraging Labeling Representations in Uncertainty-based Semi-supervised Segmentation. 
In MICCAI, 2022.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
Test-Time Adaptation with Shape Moments for Image Segmentation. 
In MICCAI, 2022.
Bateson, M.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
3D Shape Representation via Spectral Coordinates on Medial Manifolds. 
In CVPR, 2022.
Rezanejad, M.; Kohdadad, M.; Mahyar, H.; Lombaert, H.; Gruninger, M.; Walther, B. and Siddiqi, K. 
 
- 
 
Attention-based Dynamic Subspace Learners. 
In Medical Imaging with Deep Learning (MIDL), 2022.
Adiga, S.; Dolz, J. and Lombaert, H. 
 
- 
 
Source-Free Domain Adaptation for Image Segmentation. 
In Medical Imaging with Deep Learning (MIDL), 2022.
Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
SegRecon: Learning Joint Brain Surface Reconstruction and Segmentation from Images. 
In MICCAI, 2021.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
Source-Relaxed Domain Adaptation for Image Segmentation. 
In MICCAI, 2020.
Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. 
In MICCAI, 2020.
Galdran, A.; Dolz, J.; Chakor, H.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Oral Presentation
Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis. 
In MICCAI-CDMRI, 2020.
Anctil-Robitaille, B.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Oral Presentation
Best Paper Runnerup
Graph Domain Adaptation for Alignment-Invariant Brain Surface Segmentation. 
In MICCAI-GRAIL, 2020.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Oral Presentation
Adversarial Normalization for Multi Domain Image Segmentation. 
In ISBI, 2020.
Delisle, P-L.; Anctil-Robitaille, B.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Oral Presentation
Spectral Graph Transformer Networks for Brain Surface Parcellation. 
In ISBI, 2020.
Gopinath, K.; He, R.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Acceptance Rate: <30%
Constrained Domain Adaptation for Segmentation. 
In MICCAI, 2019.
Bateson, M.; Kervadec, H.; Dolz, J.; Lombaert, H. and Ben Ayed, I. 
 
- 
 
Acceptance Rate: <30%
Oral Presentation
Adaptive Graph Convolution Pooling for Brain Surface Analysis. 
In IPMI, 2019.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Cortical Parcellation via Spectral Graph Convolutions. 
In MIDL, 2019.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Brain Tumor Segmentation using Topological Loss in Convolutional Networks. 
In MIDL, 2019.
Reddy, C.; Gopinath, K. and Lombaert, H. 
 
- 
 
HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. 
In MIDL, 2019.
Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C. and Ben Ayed, I. 
 
- 
 
Acceptance Rate: 21%
Oral Presentation
Graph Convolutions on Spectral Embeddings: Learning of Cortical Surface Data. 
In MED-NeurIPS/NIPS, 2018.
Gopinath, K.; Desrosiers, C. and Lombaert, H. 
 
- 
 
Spectral Learning of Surface Data: Ideas from Medical Imaging. 
In MED-NeurIPS/NIPS, 2017.
Lombaert, H.; Criminisi, A. and Ayache, N. 
 
- 
 
Acceptance Rate: <30%
Longitudinal Analysis of the Preterm Cortex using Multi-Modal Spectral Matching. 
In Medical Image Computing and Computer Assisted Intervention (MICCAI), 2016.
Orasanu, E.; Bazin, P-L.; Melbourne, A.; Lorenzi, M.; Lombaert, H.; Robertson, N.; Kendall, G.; Weiskopf, N.; Marlow, N. and Ourselin, S. 
 
- 
 
Oral Presentation
ISMRM Summa Cum Laude (Top 5%)
Mapping Longitudinal White Matter Changes in Extremely Preterm Born Infants. 
In International Society for Magnetic Resonance in Medicine (ISMRM), 2016.
Orasanu, E.; Melbourne, A.; Modat, M.; Lorenzi, M.; Lombaert, H.; Eaton-Rosen, Z.; Robertson, N.; Kendall, G.; Marlow, N. and Ourselin, S. 
 
- 
 
Oral Presentation
Deep Spectral-Based Shape Features for Alzheimer's Disease Classification. 
In MICCAI SESAMI, 2016.
Shakeri, M.; Lombaert, H.; Tripathi, S. and Kadoury, S. 
 
- 
 
Oral Presentation
Longitudinal Scoliotic Trunk Analysis via Spectral Representation and Statistical Analysis. 
In MICCAI SESAMI, 2016.
Ahmad, O.; Lombaert, H.; Parent, S.; Labelle, H.; Dansereau, J. and Cheriet, F. 
 
- 
 
Acceptance Rate: <30%
[Highlight]
[video]
Spectral Forests: Learning of Surface Data, Application to Cortical Parcellation. 
In Medical Image Computing and Computer Assisted Intervention (MICCAI), 2015.
Lombaert, H.; Criminisi, A. and Ayache, N. 
 
- 
 
Acceptance Rate: ~25%
[Highlight]
Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps. 
In Information Processing and Medical Imaging (IPMI), 2015.
Lombaert, H.; Arcaro, M. and Ayache, N. 
 
- 
 
Brain Transfer for the Analysis of Cortical Data. 
In Society for Neuroscience (SfN), 2015.
Lombaert, H.; Arcaro, M.; Kastner, S. and Ayache, N. 
 
- 
 
Oral Presentation
Tensor Spectral Matching of Diffusion Weighted Images. 
In MICCAI SAMI, 2015.
Orasanu, E.; Melbourne, A.; Modat, M.; Lorenzi, M.; Lombaert, H.; Eaton-Rosen, Z.; Robertson, N.; Kendall, G.; Marlow, N. and Ourselin, S. 
 
- 
 
Oral Presentation
Myocardial Infarct Localization using Neighborhood Approximation Forests. 
In MICCAI STACOM, 2015.
Bleton, H.; Margeta, J.; Lombaert, H.; Delingette, H. and Ayache, N. 
 
- 
 
Oral Presentation
Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study. 
In Functional Imaging and Modeling of the Heart (FIMH), 2015.
Mollero, R.; Neumann, D.; Rohe, M-M.; Datar, M.; Lombaert, H.; Ayache, N.; Comaniciu, D.; Ecabert, O.; Chinali, M.; Rinelli, G.; Pennec, X.; Sermesant, M. and Mansi, T. 
 
- 
 
Oral Presentation
Classification of Alzheimer's Disease using Discriminant Manifolds of Hippocampus Shapes. 
In ICML Workshop in Medical Imaging (ICML-ML-Medim), 2015.
Shakeri, M.; Lombaert, H. and Kadoury, S. 
 
- 
 
Acceptance Rate: <30%
[Highlight]
Laplacian Forests: Semantic Image Segmentation by Guided Bagging. 
In Medical Computing and Computer Assisted Intervention (MICCAI), 2014.
Lombaert, H.; Zikic, D.; Criminisi, A. and Ayache, N. 
 
- 
 
Acceptance Rate: <30%
Multi-Atlas Spectral PatchMatch: Application to Cardiac Image Segmentation. 
In Medical Computing and Computer Assisted Intervention (MICCAI), 2014.
Shi, W.; Lombaert, H.; Bai, W.; Ledig, C.; Zhuang, X.; Simoes Monteiro de Marvao, A.; Dawes, T.; O'Regan, D. and Rueckert, D. 
 
- 
 
Oral Presentation
Prefrontal Cortical Folding of the Preterm Brain: A Longitudinal Analysis of Preterm-born Neonates. 
In MICCAI STIA, 2014.
Orasanu, E.; Melbourne, A.; Lombaert, H.; Cardoso, M. J.; Johnsen, S. F.; Kendall, G. S; Robertson, N. J; Marlow, N. and Ourselin, S. 
 
- 
 
Oral Presentation
Groupwise Shape Analysis of the Hippocampus using Spectral Matching. 
In SPIE Medical Imaging, 2014.
Shakeri, M.; Lombaert, H.; Lippe, S. and Kadoury, S. 
 
- 
 
Acceptance Rate: 32%
Joint Statistics on Cardiac Shape and Fiber Architecture. 
In Medical Computing and Computer Assisted Intervention (MICCAI), 2013.
Lombaert, H. and Peyrat, J-M. 
 
- 
 
Applying a 4D [11C]Raclopride Template to Automated Binding Potential Estimation in HRRT Brain PET. 
In Nuclear Science Symposium & Medical Imaging Conference (NSS/MIC), 2013.
Novosad, P.; Bieth, M.; Lombaert, H.; Siddiqi, K. and and Reader, A. 
 
- 
 
Acceptance Rate: 32%
Atlas Construction for Dynamic (4D) PET using Diffeomorphic Transformations. 
In Medical Image Computing and Computer Assisted Intervention (MICCAI), 2013.
Bieth, M.; Lombaert, H.; Reader, A. and Siddiqi, K. 
 
- 
 
Acceptance Rate: 32%
Cardiac Fiber Inpainting using Maurer-Cartan Forms. 
In Medical Image Computing and Computer Assisted Intervention (MICCAI), 2013.
Piuze, E.; Lombaert, H.; Sporring, J. and Siddiqi, K. 
 
- 
 
Acceptance Rate: ~25%
Oral Presentation
Erbsmann Prize
Best Paper Award
Diffeomorphic Spectral Matching of Cortical Surfaces. 
In Information Processing and Medical Imaging (IPMI), 2013.
Lombaert, H.; Sporring, J. and Siddiqi, K. 
 
- 
 
Atlases of Cardiac Fiber Differential Structure. 
In Functional Imaging and Modeling of the Heart (FIMH), 2013.
Piuze, E.; Lombaert, H.; Sporring, J.; Strijkers, G.; Bakermans, A. and Siddiqi, K. 
 
- 
 
Oral Presentation
Best Paper Award
Groupwise Spectral Log-Demons Framework for Atlas Construction. 
In MICCAI Workshop on Medical Computer Vision (MICCAI MCV), 2012.
Lombaert, H.; Grady, L.; Pennec, X.; Peyrat, J-M.; Ayache, N. and Cheriet, F. 
 
- 
 
Acceptance Rate: 25%
Spectral Demons - Image Registration via Global Spectral Correspondence. 
In European Conference in Computer Vision (ECCV), 2012.
Lombaert, H.; Grady, L.; Pennec, X.; Ayache, N. and Cheriet, F. 
 
- 
 
Simultaneous Image Denoising and Registration using Graph Cuts. 
In Information Science, Signal Processing and Applications (ISSPA), 2012.
Lombaert, H. and Cheriet, F. 
 
- 
 
Oral Presentation
Variability of the Human Cardiac Laminar Structure. 
In MICCAI STACOM, 2011.
Lombaert, H.; Peyrat, J-M.; Fanton, L.; Cheriet, F.; Delingette, H.; Ayache, N.; Clarysse, P.; Magnin, I. and Croisille, P. 
 
- 
 
Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts. 
In MICCAI STACOM, 2011.
Lombaert, H.; Peyrat, J-M.; Fanton, L.; Cheriet, F.; Delingette, H.; Ayache, N.; Clarysse, P.; Magnin, I. and Croisille, P. 
 
- 
 
Acceptance Rate: 28%
Fast Brain Matching with Spectral Correspondence. 
In Information Processing and Medical Imaging (IPMI), 2011.
Lombaert, H.; Grady, L.; Polimeni, J. R. and Cheriet, F. 
 
- 
 
Oral Presentation
Best Paper Award
Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI. 
In Functional Imaging and Modeling of the Heart (FIMH), 2011.
Lombaert, H.; Peyrat, J-M.; Croisille, P.; Rapacchi, S.; Fanton, L.; Clarysse, P.; Delingette, H. and Ayache, N. 
 
- 
 
Oral Presentation
Human Statistical Atlas of Cardiac Fiber Architecture from DT-MRI. 
In International Society for Magnetic Resonance in Medicine (ISMRM), 2011.
Lombaert, H.; Peyrat, J-M.; Rapacchi, S.; Fanton, L.; Delingette, H.; Ayache, N. and Croisille, P. 
 
- 
 
Fast 4D segmentation of large datasets using graph cuts. 
In SPIE Medical Imaging, 2011.
Lombaert, H.; Sun, Y. and Cheriet, F. 
 
- 
 
Geodesic Thin Plate Splines for Image Segmentation. 
In IEEE International Conference on Pattern Recognition (ICPR), 2010.
Lombaert, H. and Cheriet, F. 
 
- 
 
Spatio-Temporal Segmentation of the Heartin 4D MRI Images using Graph Cuts with Motion Cues. 
In Intenational Symposium in Biomedical Imaging (ISBI), 2010.
Lombaert, H. and Cheriet, F. 
 
- 
 
Acceptance Rate: 44%
Oral Presentation
Landmark-based Non-rigid Registration via Graph Cuts. 
In International Conference on Image Analysis and Recognition (ICIAR), 2007.
Lombaert, H.; Sun, Y. and Cheriet, F. 
 
- 
 
Acceptance Rate: 19%
A Multilevel Banded Graph Cuts Method for Fast Image Segmentation. 
In IEEE International Conference in Computer Vision (ICCV), 2005.
Lombaert, H.; Sun, Y.; Grady, L. and Xu, C. 
 
Theses
- 
 
Canada's Gov General Gold Medal
Learning with Uncertainty in Medical Image Segmentation. 
Ph.D. Thesis, Ecole de Technologie Superieure, 2024.
Adiga, S. 
 
- 
 
Domain Adaptation with Missing Data. 
Ph.D. Thesis, Ecole de Technologie Superieure, 2023.
Bateson, M. 
 
- 
 
Best Thesis Award
Canada's Gov General Gold Medal
Geometrical Learning of Brain Surface Data. 
Ph.D. Thesis, Ecole de Technologie Superieure, 2021.
Gopinath, K. 
 
- 
 
Best Thesis Award
Manifold-aware Synthesis of High-resolution Diffusion from Structural Imaging. 
Master's Thesis, Ecole de Technologie Superieure, 2021.
Anctil-Robitaille, B. 
 
- 
 
Realistic Image Normalization for Multi-Domain Segmentation. 
Master's Thesis, Ecole de Technologie Superieure, 2021.
Delisle, P-L. 
 
- 
 
Best Thesis Award
(Computer Engineering)
Atlas Construction for Measuring the Variability of Complex Anatomical Structures. 
Ph.D. Thesis, Ecole Polytechnique, 2012.
Lombaert, H. 
 
- 
 
Fusion of Multimodal Cardiac Image Sequences. 
Thesis Proposal, Ecole Polytechnique, 2007.
Lombaert, H. 
 
Patents
- 
Fast 4D Segmentation of Large Datasets Using Graph Cuts. 
US Patent No 8131075, Application No 11/927,777, Filled Oct. 30, 2007, Issued Mar. 6, 2012.
Sun, Y.; Lombaert, H. J. and Cheriet, F. 
 
- 
Methods and Systems for Fast Automatic Brain Matching via Spectral Correspondence. 
US Patent No 8965077, Application No 13/107,002, Filled May 13, 2011, Published Dec. 1, 2011, Ussed Feb. 24, 2015.
Grady, L.; Lombaert, H. J.; Polimeni, J. R. and Cheriet, F. 
 
- 
Method and apparatus for interactive 4-dimensional (4D) virtual endoscopy. 
US Patent No 8007437, Application No 11/874,975, Filled Oct. 19, 2007, Issued Aug. 30, 2011.
Lombaert, H. J.; Sauer, F.; Sun, Y. and Xu, C. 
 
- 
Intuitive User Interface for Endoscopic View Visualization. 
US Patent No 7889227, Application No 11/227,807, Filled Sep. 15, 2005, Issued Feb. 15, 2011.
Rahn, N.; Xu, C.; Sun, Y.; Baker, S.; John, M. and Lombaert, H. 
 
- 
Multilevel Image Segmentation. 
US Patent No 8913830, Application No 11/313,102, Filled Dec. 20, 2005, Published Jul. 20, 2006, Issued Dec. 16 2014.
Sun, Y.; Lombaert, H.; Grady, L. and Xu, C. 
 
- 
Multilevel Image Segmentation. 
Chinese Provisional Application.
Sun, Y.; Lombaert, H.; Grady, L. and Xu, C. 
 
Books
- 
 
Proceedings of Medical Imaging with Deep Learning: MIDL 2020. 
PMLR, 2020.
(Equal Contributors),; Arbel, T.; Ben Ayed, I.; de Bruijne, M.; Descoteaux, M.; Lombaert, H. and Pal, C. 
 
- 
 
Compendium of Medical Imaging with Deep Learning: MIDL 2020, Short Paper Tracks. 
arXiv Compendium, 2020.
(Equal Contributors),; Arbel, T.; Ben Ayed, I.; de Bruijne, M.; Descoteaux, M.; Lombaert, H. and Pal, C. 
 
- 
 
Proceedings of the MICCAI Workshop on Shape in Medical Imaging. 
Springer, Lecture Notes on Computer Science, volume 12474, 2020.
(Equal Contributors),; Reuter, M.; Wachinger, C.; Lombaert, H.; Paniagua, B.; Goksel, O. and Rekik, I. 
 
- 
 
Proceedings of the MICCAI Workshop on Shape in Medical Imaging. 
Springer, Lecture Notes on Computer Science, volume 11167, 2018.
(Equal Contributors),; Reuter, M.; Wachinger, C.; Lombaert, H.; Paniagua, B.; Luthi, M. and Egger, B. 
 
- 
 
Proceedings of the First MICCAI Workshop on Spectral and Shape Analysis in Medical Imaging. 
Springer, Lecture Notes on Computer Science, volume 10126, 2016.
(Equal Contributors),; Reuter, M.; Wachinger, C. and Lombaert, H. 
 
- 
 
Proceedings of the First ICML Workshop on Machine Learning Meets Medical Imaging. 
Springer, Lecture Notes on Computer Science, volume 9487, 2015.
(Equal Contributors),; Bhatia, K. and Lombaert, H.