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A B S T R A C T

The performance of learning-based algorithms improves with the amount of labelled
data used for training. Yet, manually annotating data is particularly difficult for medical
image segmentation tasks because of the limited expert availability and intensive man-
ual effort required. To reduce manual labelling, active learning (AL) targets the most
informative samples from the unlabelled set to annotate and add to the labelled training
set. On the one hand, most active learning works have focused on the classification or
limited segmentation of natural images, despite active learning being highly desirable in
the difficult task of medical image segmentation. On the other hand, uncertainty-based
AL approaches notoriously offer sub-optimal batch-query strategies, while diversity-
based methods tend to be computationally expensive. Over and above methodologi-
cal hurdles, random sampling has proven an extremely difficult baseline to outperform
when varying learning and sampling conditions. This work aims to take advantage
of the diversity and speed offered by random sampling to improve the selection of
uncertainty-based AL methods for segmenting medical images. More specifically, we
propose to compute uncertainty at the level of batches instead of samples through an
original use of stochastic batches (SB) during sampling in AL. Stochastic batch query-
ing is a simple and effective add-on that can be used on top of any uncertainty-based
metric. Extensive experiments on two medical image segmentation datasets show that
our strategy consistently improves conventional uncertainty-based sampling methods.
Our method can hence act as a strong baseline for medical image segmentation. The
code is available on: https://github.com/Minimel/StochasticBatchAL.git.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Data annotation is fundamental to medical imaging. Notably,
the performance of segmentation algorithms depends on the
amount of annotated training data. The manual annotation of
pixel-level ground truth is therefore highly sought but remains
difficult to obtain due to two challenging problems. First, the
pixel-wise annotation of entire biological structures is a labo-
rious and expensive task that requires highly trained clinicians.

∗Corresponding author: email: melanie.gaillochet.1@ens.etsmtl.ca

Second, image acquisition grows faster than the experts’ abil-
ity to manually process the data, leaving large datasets mostly
unlabelled. Clinicians can realistically annotate only small sets
of images with a limited capacity to scale up. This constraint
creates a need for strategies that reduce the crucial but arduous
annotation efforts in medical imaging.

To maximize the performance of a model with reduced an-
notated data during training, two types of approaches can un-
leash the potential of unlabelled data: active learning and semi-
supervised learning. Active learning (AL) aims to identify the
best samples to annotate and use during training. Meanwhile,
semi-supervised learning seeks to improve the representation
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learned from data by exploiting unlabelled samples in addition
to the few labelled ones. However, this approach still leaves the
question of choosing which samples to use for the labelled set,
underlining the importance of active learning.

Images in the training set do not contribute equally to the per-
formance of learning-based algorithms (Settles, 2009). Given
a large unlabelled dataset, active learning overcomes labelled
data scarcity by incrementally identifying the most valuable
samples to be annotated and added to a training set (Budd et al.,
2021; Ren et al., 2021). Actively selecting which data to label
conceivably maximizes the performance of machine learning
models with a minimum amount of labelled data. AL strategies
also have the potential of accelerating training convergence and
improving robustness by targeting specific types of data points
(Nath et al., 2021).

Active learning methods can be divided into three broad cat-
egories: uncertainty-based sampling strategies, representative-
based sampling strategies and hybrid approaches (Settles, 2009;
Budd et al., 2021). Uncertainty-based methods assume that the
most valuable samples to annotate are the ones for which the
current model is least confident. These methods, which dif-
fer in ways of calculating uncertainty, are however susceptible
to target outlier samples or redundant information, particularly
when querying batches of samples. To avoid bias towards nar-
row locals in distributions, representative-based and hybrid ap-
proaches try to diversify the set of candidate samples. Ensuring
such diversity generally relies on learning a latent data represen-
tation, which requires estimating pairwise distances between all
samples or computing their marginal distribution. These strate-
gies consequently hardly scale satisfyingly to high dimensions.
Consequently, the majority of active learning approaches ap-
plied to computer vision focus on lower-dimensional tasks such
as classification, while AL approaches for segmentation tend
to focus on natural images with several thousands of annotated
images (Sinha et al., 2019; Huang et al., 2021; Kim et al., 2021;
Xie et al., 2022). Due to its high-dimensional nature, medi-
cal image segmentation remains an ongoing challenge in active
learning, despite the substantial need to minimize the high cost
of manual annotation from clinical expertise.

A limited yet increasing number of works acknowledges that
random sampling is, in practice, a painstakingly difficult base-
line to outperform in active learning (Kirsch et al., 2019; Mittal
et al., 2019; Nath et al., 2021; Munjal et al., 2022; Burmeister
et al., 2022). Indeed, the gains of AL strategies over random
sampling are often inconsistent across different experimental
setups. For example, varying the sampling budget can cancel
the improvements originally observed for such strategies (Ben-
gar et al., 2021; Munjal et al., 2022). Similarly, existing meth-
ods for AL tend to be sensitive to the model architecture, hyper-
parameters and regularization used during training (Mittal et al.,
2019; Munjal et al., 2022). These hurdles hinder AL advances
in medical image segmentation.

This paper intends to address the limitations of current AL
methods, notably their drawback of selecting batches solely
based on per-sample uncertainty, the computational cost of
ensuring diversity, and the significantly varying amounts of
robustness in performance across experimental setups. Our

work proposes to leverage the power of randomness during
uncertainty-based batch sampling to improve the overall seg-
mentation performance of AL models.

1.1. Contributions

We introduce the use of stochastic batch (SB) querying, a
simple and effective add-on to uncertainty-based AL strate-
gies, compatible with any uncertainty metric (see Fig.1). Our
stochastic batch sampling strategy proves advantageous by:

1. minimizing the problem of uncertainty-based strategies,
often susceptible to query samples with redundant infor-
mation;

2. allowing uncertainty-based AL strategies to benefit
from a larger diversity of samples in a simple and
computationally-efficient way; and

3. providing noticeably consistent gains across different ex-
perimental settings, as shown by our extensive ablation
studies.

2. Literature review

Active learning methods maximize the future model perfor-
mance by augmenting the current labelled training set with
the most informative unlabelled samples. AL approaches
mainly fall into uncertainty-based, representative-based or hy-
brid strategies, each described next.

2.1. Uncertainty-based AL methods

Uncertainty is one of the most prevalent criteria for sam-
pling in active learning. Uncertainty-based methods query sam-
ples for which the current model is least confident (Settles,
2009). AL strategies for deep learning-based models have ini-
tially applied traditional AL methods that identify difficult ex-
amples using simple heuristics. However, in practice, they still
hardly scale to high-dimensional data (Beluch et al., 2018) or
are not consistently effective for deep learning models that rely
on batch selection (Sener and Savarese, 2018; Ren et al., 2021).
Hence, subsequent work has combined traditional uncertainty
measures, such as the entropy of the output probabilities, with
measures of geometric uncertainty (Konyushkova et al., 2019)
or with the pseudo-labelling of samples with confident predic-
tions (Wang et al., 2017). Similarly, Gal et al. (2017) and Kirsch
et al. (2019) adapt existing heuristics to a Bayesian framework
through Monte Carlo dropout. More recently, Yoo and Kweon
(2019) developed a new uncertainty measure based on the pre-
dicted loss from the intermediate representations of the model.
Although widely popular, purely uncertainty-based strategies
relying on batch selection are susceptible to query samples with
redundant information. However, manually annotating similar
samples is a waste of annotation resources. Moreover, incorpo-
rating a set of similar samples to the labelled training set could
bias the model towards an area outside the true data distribu-
tion. These samples could hence hamper rather than improve
model generalization.
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Fig. 1: Stochastic batch AL for uncertainty-based sampling. Our sampling method combines the diversity of random sampling with the informativeness of
uncertainty-based sampling. Adding our stochastic batch paradigm enables the data uncertainty to be estimated in a broader batch-level selection rather than a
sample-level selection. After selecting a candidate set of unlabelled samples, the set is annotated and added to the existing labelled set. Finally, the segmentation
model is retrained.

2.2. Representative-based AL methods

As opposed to uncertainty-based approaches, representative-
based AL methods aim at diversifying the batch of candidate
samples to improve the future performance of the model (Set-
tles, 2009). One of the main representative-based approaches,
Core-set (Sener and Savarese, 2018), identifies the most diverse
and representative samples by minimizing the distance between
the latent representations of labelled and unlabelled images, as
given by the task model. Core-set aims for the model to per-
form as well with the candidate set as it would with the en-
tire dataset. While specifically designed to be applied to com-
plex models such as Convolutional Neural Networks (CNNs),
core-set selection does not scale well to high-dimensional data
since it requires computing the Euclidean distance between all
pairs of data samples. A later work, VAAL (Sinha et al., 2019),
learns a smooth latent-state representation of the input data via
a variational auto-encoder (VAE). VAAL then selects samples
different from the ones already labelled based on the learnt la-
tent representation. Since the VAE is task-agnostic, VAAL can,
however, easily query outlier data. In addition, it provides no
mechanism to avoid choosing overlapping samples and requires
careful tuning of its added modules.

2.3. Hybrid AL strategies

Against the limitations of uncertainty-based methods, hybrid
strategies try to find a balance between uncertainty and diver-
sity measures to identify the most informative samples (Settles,
2009). They usually combine existing approaches. An early
study proposed to adaptively choose the best AL strategies from
a candidate set of methods (Hsu and Lin, 2015). However, most

hybrid methods first compute model uncertainty before ensur-
ing sample diversity through a similarity metric. For instance,
Suggestive Annotation (Yang et al., 2017) applies core-set se-
lection on a subgroup of the most uncertain samples obtained
through bootstrapping. BADGE (Ash et al., 2020) uses gradi-
ent embeddings to account for uncertainty (uncertain samples
will have a gradient embedding with higher norm) and employs
Kmeans++ initialization on top of these embeddings to ensure
the diversity of selected samples. Nath et al. (2021) combine
prevailing mutual information and entropy measures to ensure
diversity and optimize training by duplicating difficult sam-
ples. Observing that uncertainty-based approaches fail to ex-
ploit the data distribution and representative-based approaches
are task-agnostic, Task-aware VAAL (Kim et al., 2021) incor-
porates the uncertainty measure proposed by the method Learn-
ing Loss (Yoo and Kweon, 2019) to VAAL’s (Sinha et al., 2019)
latent representation. While these studies rely on a two-step
approach, Sourati et al. (2019) directly solve an optimization
problem for batch-mode sampling, yielding a distribution of
candidate samples rather than specific examples. However, just
like representative-based AL strategies, most of these works are
difficult to scale due to their computational complexity (Ash
et al., 2020; Nath et al., 2021; Sourati et al., 2019; Yang et al.,
2017). Alternatively, they may require external modules, which
increase the range of parameters to tune and learn (Kim et al.,
2021).

2.4. AL for medical image segmentation

High-dimensional data remains a particularly challenging
problem in AL (Ren et al., 2021). Therefore, most studies
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on AL applied to computer vision primarily focus on low-
dimensional annotation tasks such as image classification (Gal
et al., 2017; Wang et al., 2017; Sener and Savarese, 2018;
Beluch et al., 2018; Sourati et al., 2019; Gao et al., 2020; Ash
et al., 2020; Zhang et al., 2022). Moreover, approaches tackling
pixel-wise annotations predominantly address the segmentation
of natural images (Sinha et al., 2019; Huang et al., 2021; Kim
et al., 2021; Xie et al., 2022).

Earlier work applying AL to medical image segmentation
has relied on geometric priors to query planes or supervoxels
of maximum uncertainty, without adopting deep learning-based
models (Top et al., 2011; Konyushkova et al., 2015, 2019). One
of the initial deep AL frameworks for this task, Suggestive An-
notation (Yang et al., 2017), uses bootstrapping to estimate sam-
ple uncertainty and a greedy cosine similarity measure to eval-
uate the similarity between the candidate set and the unlabelled
pool. Similarly, Li and Yin (2020) propose to select a candi-
date set with a high disagreement among the predictions of K
models and a minimal discrepancy between the labelled and un-
labelled sets. Instead of relying on multiple models, Ozdemir
et al. (2018) employ a Bayesian network with Monte Carlo
dropout to compute prediction variance, and adopt a Borda-
count-based sampling strategy to find the best-ranked candi-
dates in terms of uncertainty and representativeness. An exten-
sion of this approach instead computes the representativeness
with an infoVAE (Zhao et al., 2019) for a maximum-likelihood
sampling in the latent space (Ozdemir et al., 2021). Nath et al.
(2021) build a mutual information-based metric, computed be-
tween the labelled and unlabelled pools, to ensure the diver-
sity of the candidate set. However, these approaches tend to
be computationally expensive and challenging to scale to large
datasets. Instead of relying on a 2-step approach, Sourati et al.
(2018) propose a method based on the Fisher information to di-
rectly solve an optimization problem that outputs a distribution
to sample from. Alternative approaches have opted for mem-
bership query synthesis as an AL strategy, producing synthetic
samples for annotation. For instance, Mahapatra et al. (2018)
employ a conditional generative adversarial network (cGAN)
to generate realistic-looking chest X-ray images conditioned on
real images, and a Bayesian neural network to select which ones
would be most informative when used as training data. Other
approaches propose a sample selection strategy which also cov-
ers the initial labelled set (Smailagic et al., 2018; Nath et al.,
2022; Li et al., 2023). Recently, a comparative study of exist-
ing strategies for 3D medical image segmentation found that
random sampling and strided sampling served as particularly
strong baselines for this type of task (Burmeister et al., 2022).
The study also observed that representative-based strategies did
not perform well in early stages, which the authors attribute to
poor feature vectors generated by the model trained on very few
labelled samples.

3. Methods

Given a labelled setDL = {(x( j), y( j))}Nj=1, with data x ∈ RH×W

and segmentation mask y ∈ RC×H×W (H and W are respectively
the image height and width, and C is the number of classes), we

train a fully-supervised segmentation model fθ(·) parameterized
by θ with labelled samples fromDL.

After training the model fθ with DL (corresponding to one
training cycle), we select B samples from the unlabelled set
DU = {x( j)

u }
M
j=1. These samples are annotated by an oracle be-

fore being added to the labelled training set DL. The new la-
belled and unlabelled sets are updated such that |DL| = N + B
and |DU | = M − B. This iterative process is repeated until the
total annotation budget is exhausted.

Our AL method addresses the problem of uncertainty-based
strategies, generally prone to query samples with redundant in-
formation, in a simple and computationally-efficient way. It
builds upon our use of stochastic batches and operates in two
stages to ensure a guided sampling diversity, summarized in
Fig. 1. First, we generate a pool of Q batches, each contain-
ing B samples chosen uniformly at random fromDU :

Batch(i) = {x(i1)
u , x

(i2)
u , ..., x

(iB)
u } ∼ Uni f orm(Du, B) (1)

For each generated batch, an uncertainty score is assigned
to each unlabelled sample it contains, according to the current
model fθ̂ and the chosen uncertainty metric (Uncert):

∀k = 1, ..., B : ux(ik )
u

score = Uncert ( fθ̂, x
(ik)
u ). (2)

The mean uscore is computed across each generated batch:

uBatch(i)

score =
1
B

B∑
k=1

ux(ik )
u

score. (3)

The batch with the highest mean score yields the set of anno-
tation candidates Xcandidate, such that:

Xcandidate ← argmax
Batch(i)

(
uBatch(i)

score

)
. (4)

The algorithm for our stochastic batch selection strategy is
presented in Alg. 1.

Algorithm 1 Uncertainty-based sampling with Stochastic
Batches

InputDu, Q, B
1: for xu ∈ Du do
2: uscore ← Uncert( fθ̂, xu)
3: end for
4: for i← 1 to Q do
5: Batch(i) = {x(1)

u , ..., x
(B)
u } ← Uni f orm(Du, B)

6: uBatch(i)

score ←Mean uscore over all samples in Batch(i)

7: end for
8: Xcandidate ← argmaxBatch(i)

(
uBatch(i)

score

)
Return Xcandidate

4. Experiments

We assess the benefits of our proposed stochastic batches on
a medical image segmentation task. Our evaluation compares
the performance with and without stochastic batches of models
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trained with different uncertainty-based AL strategies. These
strategies include Entropy-based sampling (Shannon, 1948),
Dropout-based sampling (Gal and Ghahramani, 2016), Test-
time augmentation (TTA)-based sampling (Gaillochet et al.,
2022) and sampling based on Learning Loss (Yoo and Kweon,
2019), defined in more details in Sec. 4.3.2. We start by evalu-
ating the gains of our stochastic batch sampling on two medical
image datasets. We then assess the robustness of our method
to the training and sampling procedure through a series of ab-
lation studies on the initial labelled set size, training hyper-
parameters, sampling budget and stochastic pool size.

4.1. Datasets

We validate our method on two complementary datasets with
different types of challenges: 1) the Prostate MR Image Seg-
mentation (PROMISE) 2012 challenge (Litjens et al., 2014), for
prostate segmentation, with varying degrees of pixel intensity
distributions (as pictured in Fig. 6), and 2) the Medical Segmen-
tation Decathlon (Antonelli et al., 2022) for the segmentation
of anterior and posterior hippocampus, with varying degrees of
anatomical shapes.

The PROMISE12 dataset contains MRI data from 50 pa-
tients, both healthy (or with benign diseases) and pathological
(with prostate cancer). Each volume is converted to 2D images
by slicing along the short axis. Images are then resampled to
1.0 mm isotropic resolution and resized to 128 × 128 pixels.

Similarly, the Medical Segmentation Decathlon contains hip-
pocampus data from 260 patients. The MRI volumes are con-
verted to 2D images, which are resized to 50 × 50 pixels while
kept to the original 1.0 mm isotropic resolution. The pixel in-
tensity of both datasets is normalized based on the 1% and 99%
percentiles for each scan.

We test our model on 10 patient volumes from the prostate
dataset and 50 from the hippocampus dataset, all selected uni-
formly at random. This yields 248 and 1757 test images, re-
spectively. Our validation uses 109 prostate images compos-
ing 5 volumes, and 350 hippocampus images composing 10
volumes. Since active learning aims to minimize the amount
of labelled data, we only use this validation set for hyper-
parameter search purposes. Our ablation studies show that our
method remains advantageous under different hyper-parameter
settings. Our training set, labelled and unlabelled, comprises
1020 prostate images from 35 patients and 7163 hippocampus
images from 200 patients.

4.2. Evaluation metrics

We evaluate our method on test volumes (3D) and individual
images from these volumes (2D). We use both pixel overlap-
based metrics and distance-based metrics.

In terms of overlap-based metrics, we use the well-known
Dice similarity coefficient (DSC), which ranges from 0% (zero
overlap) to 100% (perfect overlap):

DSC(X,Y) =
2|X ∩ Y |
|X| + |Y |

(5)

In our results, we report the DSC averaged over all non-
background channels.

The Hausdorff distance (HD) measures the quality of the
segmentation by computing the maximum shortest distance be-
tween a point from the prediction contour and a point from the
target contour. Since the Hausdorff distance tends to be sensi-
tive to outliers, we use a more robust variant which considers
the 95th percentile instead of the true maximum (HD95). Given
d(x,Y) the minimum distance from the boundary pixel x to the
region Y , we get:

HD95(X,Y) = max
{
95th

x∈X d(x,Y), 95th
y∈Y d(X, y)

}
(6)

4.3. Implementation details

Medical annotations for image segmentation are typically
performed on all slices of a given image volume (Ozdemir et al.,
2021). However, to optimize the limited annotation resources,
we conduct slice-based active learning and select individual im-
ages for annotation after every cycle. We start each experiment
by training our model with 10 labelled images, randomly sam-
pled from the unlabelled set before annotation. Setting the bud-
get to B = 10, we use our AL strategy to select 10 new sam-
ples from the unlabelled set, annotate them and add them to the
existing labelled set. This process corresponds to the first AL
cycle, which we repeat for a fixed number of cycles. Similarly
to the experimental setting of previous studies, we retrain the
model from scratch after each AL cycle to evaluate model per-
formance in a consistent way (Budd et al., 2021).

Random processes such as model initialization or data shuf-
fling are seeded. We repeat each experimental setup with 5 dif-
ferent seeds and report the mean and standard deviation of these
runs as our result. Experiments were run on NVIDIA V100 and
A6000 GPUs, with CUDA 10.2 and CUDA 12.0, respectively.
We implement the methods using Python 3.8.10 with the Py-
Torch framework.

4.3.1. Training
State-of-the-art methods in medical image segmentation have

often adopted UNet-based architectures (Ronneberger et al.,
2015). Accordingly, we use a standard 4-layer UNet as a proxy
for widely used architectures in our segmentation model, with
dropout (p = 0.5), batch normalization and a leaky ReLU acti-
vation function. Employing such a model also focuses the eval-
uation on the improvement due to our stochastic batch strategy
instead of measuring the performance of a backbone. However,
without loss of generality, the use of alternative segmentation
models could also be envisioned for our AL approach.

The model is trained for 75 epochs in all experiments, each
iterating over 250 batches (training samples can appear in sev-
eral batches), with a batch size of 4. Training is hence carried
out for a fixed 75 × 250 = 18, 750 steps in all experiments, en-
suring a fairer comparison of model performance between AL
cycles.

We optimize a supervised CE loss with the Adam optimizer
(Kingma and Ba, 2015). We apply a gradual warmup with a co-
sine annealing scheduler (Loshchilov and Hutter, 2017; Goyal
et al., 2018) to control the learning rate. During training, we
use data augmentations on the input, with parameters d and ϵ,
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where d is the degree of rotation in 2D, and ϵ models Gaussian
noise.

When not testing for their impact, we keep the training hyper-
parameters fixed. We fix the initial learning rate LR = 10−6 with
optimizer weight decay set to 10−4. The scheduler increments
the learning rate by a factor 200 during the first 10 epochs. For
augmentations, we set d ∼ U(−10, 10) and ϵ ∼ N(0, 0.01).

Since active learning aims to minimize the amount of labelled
data needed to train the model, we minimize the use of the val-
idation set and avoid its use to select the final model. Our fi-
nal model is instead the model obtained after the last training
epoch.

4.3.2. Active learning sampling
Baselines. We compare our stochastic batches strategy with
random sampling (RS), Core-set (Sener and Savarese, 2018),
and four purely uncertainty-based methods:

• Entropy-based uncertainty (Shannon, 1948), which com-
putes the entropy on the predicted output probabilities:

Uncert ( fθ̂, x
(ik)
u ) = −

∑
i

p(yi|x(ik)
u , θ̂) log p(yi|x(ik)

u , θ̂);

• Dropout-based uncertainty (Gal and Ghahramani, 2016),
using the divergence of K predictions obtained by multiple
inferences with dropout d:

Uncert ( fθ̂, x
(ik)
u ) = Div

(
fθ̂,d1

(x(ik)
u ), ..., fθ̂,dK

(x(ik)
u )
)
;

• Test-time Augmentation (TTA)-based uncertainty (Gaillo-
chet et al., 2022), which measures the divergence of pre-
dictions obtained for K transformations Γ to the input:

Uncert ( fθ̂, x
(ik)
u ) = Div

(
Γ−1

1 [ fθ̂(Γ1(x(ik)
u ))], ..., Γ−1

K [ fθ̂(ΓK(x(ik)
u ))]
)
;

• Learning Loss uncertainty (Yoo and Kweon, 2019), which
trains an external module Lθ̃ to predict the target losses
from a feature set h extracted from the hidden layers of fθ̂:

Uncert ( fθ̂, Lθ̃, x
(ik)
u ) = Lθ̃(h(x(ik)

u )).

These purely uncertainty-based methods query batches made
of the most uncertain samples according to a sample-level un-
certainty measure.

Similarly to Gaillochet et al. (2022), as our divergence mea-
sure for Dropout-based and TTA-based sampling, we use a stan-
dard Jensen–Shannon divergence (JSD) on the output probabil-
ity maps obtained from K = 8 inferences. For TTA, augmen-
tations Γ include Gaussian noise ϵ ∼ N(0, 0.01) and rotation.
To simulate more realistic transformations in medical data, we
replace the 90 degrees rotations in Gaillochet et al. (2022) with
rotations of angle d ∼ U(−10, 10) degrees. The training pa-
rameters used for the approach based on Learning Loss (Yoo
and Kweon, 2019) were obtained by grid search on 10 labelled
samples. We kept these parameters fixed in all our experiments.

Stochastic batches. We generate the pool of stochastic batches
by iteratively sampling B unlabelled images uniformly at ran-
dom and without replacement. In other words, we divide the un-
labelled samples into Q pools of B samples. Hence the stochas-
tic pool has size Q = floor

(
|DU |/B), and it reduces in size with

the number of AL cycles.

5. Results

5.1. AL performance on the Prostate and Hippocampus
datasets

We validate our proposed stochastic batch sampling strategy
by looking at the AL performance over 5 different initial la-
belled sets chosen uniformly at random from the training set.
Tab. 1 shows the average results over all AL cycles for both
Prostate and Hippocampus data. Note that the standard devi-
ations given in the table tend to be large because they are av-
eraged over multiple initial labelled sets, initialization seeds
and AL cycles. For all methods and metrics except for TTA
on Prostate with the 95% Hausdorff distance metric, stochas-
tic batch sampling constantly provides improved performance
over its purely uncertainty-based counterpart, both in terms of
overlap-based and distance-based metric.

Fig. 2: Overall AL performance on the Prostate dataset. Our best stochastic
batch sampling method (full-blue) outperforms all other methods, including
Core-set and random sampling (RS).

Fig. 3: Overall AL performance on the Hippocampus dataset. Our best
stochastic batch sampling method (full-blue) outperforms all other methods,
including Core-set and random sampling (RS).

We also observe that stochastic batch sampling outper-
forms both random sampling and Core-set (Sener and Savarese,
2018), a diversity-based AL approach. This is corroborated by



Mélanie Gaillochet et al. /Medical Image Analysis (2023) 7

Table 1: Overall improvements with Stochastic Batches over varying initial labelled samples. Mean model performance over all AL cycles. We show the mean
(std) Dice score (DSC, higher is better) and 95% Hausdorff distance (HD95, lower is better) over 3D test volumes and 2D test images. The results are averaged over
5 initial labelled sets chosen uniformly at random and 6 AL cycles (we omit results with the initial labelled set as they are similar across all methods). A * indicates
the statistical significance of the result with a p-value < 0.05 given a paired permutation test.

Prostate Anterior Hippocampus Posterior Hippocampus

3D DSC 2D DSC 3D HD95 3D DSC 2D DSC 3D HD95 3D DSC 2D DSC 3D HD95

RS 68.83 67.94 7.032 77.42 75.45 4.09 76.43 70.02 4.51
(±15.99) (±8.28) (±3.734) (±1.67) (±1.13) (±0.47) (±0.80) (±1.62) (±0.70)

Core-set 68.84 65.87 7.64 78.83 73.14 4.45 75.32 66.45 4.52
(Sener and Savarese, 2018) (±17.37) (±7.31) (±2.73) (±3.25) (±1.20) (±0.46) (±5.46) (±1.29) (±0.53)

Entropy
w/o SB 67.01 66.88 7.026 78.22 75.03 3.79 74.68 65.70 5.10

(±16.68) (±8.62) (±4.271) (±1.90) (±0.97) (±0.23) (±1.60) (±1.66) (±1.10)

(Shannon, 1948) Ours 71.27* 68.99* 6.689* 79.25* 75.84 3.72 76.23* 69.01* 3.85*
(±17.39) (±9.03) (±3.143) (±0.86) (±0.86) (±0.15) (±0.87) (±1.97) (±0.31)

Dropout w/o SB
67.69 67.07 6.964 78.22 74.29 4.04 74.45 66.78 4.77

(±17.16) (±9.51) (±4.952) (±1.28) (±1.10) (±0.33) (±1.20) (±2.06) (±1.19)

(Gal and Ghahramani, 2016)
Ours

72.59* 69.64* 6.583* 79.28* 76.36* 3.73 76.27* 68.94* 3.88*
(±14.96) (±8.05) (±3.177) (±0.83) (±0.69) (±0.10) (±0.85) (±1.15) (±0.39)

TTA w/o SB
64.07 65.85 6.918* 77.31 73.66 4.10 73.84 64.94 5.07

(±21.13) (±10.25) (±4.794) (±3.24) (±1.08) (±0.54) (±2.01) (±0.59) (±0.93)

(Gaillochet et al., 2022)
Ours

69.71* 68.00* 7.188 78.86* 75.25 4.07 76.44* 67.08* 4.43*
(±17.59) (±9.02) (±3.173) (±0.94) (±1.41) (±0.31) (±0.90) (±1.01) (±0.40)

Learning Loss w/o SB
53.88 60.22 9.139 62.54 69.70 5.94 61.57 62.82 5.87

(±21.51) (±10.36) (±6.439) (±1.38) (±0.92) (±0.59) (±2.83) (±1.14) (±0.12)

(Yoo and Kweon, 2019)
Ours

65.29* 65.72* 7.816* 72.09* 74.32* 4.51* 71.23* 67.75* 5.16
(±17.72) (±8.94) (±4.384) (±2.73) (±0.85) (±0.60) (±1.29) (±1.21) (±0.63)

Fig. 2 and Fig. 3, which show that Dropout with our stochastic
batches outperforms all other baseline methods in terms of 3D
dice score, in almost all AL cycles. In addition, Tab. 2 gives the
average time required by each strategy to provide a candidate
set for annotation from the Hippocampus dataset. We see that
using stochastic batches does not increase the sampling time
of uncertainty-based methods. Furthermore, sampling with our
proposed method is always much faster than with Core-set.

When looking at each dataset in more detail, the pairwise
results on the Prostate dataset, shown in Fig. 4, validate the ef-
fectiveness of our method against different initial labelled sets.
Averaged over 25 experiments with varying initial labelled sets
and initialization seeds, our stochastic batch querying (blue, full
lines) improves the model’s performance of purely uncertainty-
based strategies (orange, dashed lines). For all considered
AL strategies, selecting the most uncertain batch of samples
rather than the most uncertain individual samples improves the
model’s overall performance. The 3D dice score is always
boosted, either over the score obtained by random sampling
(grey, dotted) or to a level similar to that of a random sampling if
the score were originally much lower, such as in the case of the
Learning Loss. Indeed, Learning Loss has noticeably lower per-
formance compared to Entropy, Dropout and TTA-based sam-
pling. The Learning Loss approach involves backpropagating
the gradient through both the task model and loss module dur-

ing training. Both are updated simultaneously, which means
that training the loss module affects the training of the task
model and vice versa. For comparability reasons and following
most works in AL, we tuned the hyper-parameters such that the
best validation performance was obtained on the first AL cycle
(with the initial labelled set). We believe this could explain the
poorer performance of Learning Loss with an increasing num-
ber of labelled samples. Similar observations can be made from
Hippocampus data, as shown in Fig. 5.

We also visually investigate the benefits of using our stochas-
tic batches with an uncertainty-based sample selection. In
Fig. 6, we show two sets of candidate samples from the Prostate
dataset identified by Entropy-based sampling, with and with-
out our stochastic batches. The first two columns show sam-
ples selected by identifying the most uncertain randomly gen-
erated batch. The last two columns depict the most certain
queried samples based on the individual entropy of their pre-
dicted output probabilities. While the samples from the first
two columns seem more diverse, with more variety in the can-
didate set, the third column contains nearly identical samples.
Indeed, tracking the first four images of the column to their cor-
responding 3D volume shows that the slices were taken from
the MRI volume of the same patient. This confirms our claim
that purely uncertainty-based strategies are likely to select very
similar samples and that our stochastic batch sampling reduces
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(a) Improvements for Entropy
(Shannon, 1948)

(b) Improvements for Dropout
(Gal and Ghahramani, 2016)

(c) Improvements for TTA
(Gaillochet et al., 2022)

(d) Improvements for Learning Loss
(Yoo and Kweon, 2019)

Fig. 4: Individual improvements with Stochastic Batches on the Prostate dataset. Active learning results in terms of 3D test dice score and corresponding 95%
confidence interval. The results are averaged over 5 different initial labelled sets and 5 initialization seeds. Depicted are the results for sampling based on a) Entropy,
b) Dropout, c) Test-time augmentation and d) Learning Loss). The active learning selection is shown with (blue, full) and without (orange, dashed) stochastic
batches, and random sampling is plotted in dotted grey. Stochastic batches improve the model performance of purely uncertainty-based AL strategies, regardless of
the initial labelled set, repeatedly outperforming random sampling.

(a) Improvements for Entropy
(Shannon, 1948)

(b) Improvements for Dropout
(Gal and Ghahramani, 2016)

(c) Improvements for TTA
(Gaillochet et al., 2022)

(d) Improvements for Learning Loss
(Yoo and Kweon, 2019)

Fig. 5: Individual improvements with Stochastic Batches on the Hippocampus dataset. Active learning results on the Hippocampus dataset in terms of 3D test
dice score and corresponding 95% confidence interval. The results are averaged over 5 different initial labelled sets. Depicted are the results for sampling based on
a) Entropy, b) Dropout, c) Test-time augmentation and d) Learning Loss. Sampling with Stochastic batches (blue, full) improves the model performance of purely
uncertainty-based AL strategies (orange, dashed), regardless of the initial labelled set, boosting it above random sampling (grey, dotted) in the majority of cases.

the probability of querying samples with highly overlapping in-
formation.

Finally, we examine the impact of our selection strategy on
the segmentation of test data. In Fig. 7, we see that the model
trained on images selected via our stochastic batch sampling
method outputs better anterior and posterior hippocampus seg-
mentations. By the fourth cycle, the segmentation reaches a
mean DSC (over both classes) of 81.15%, compared to the
68.03% obtained via a purely Entropy-based sampling.

5.2. Ablation experiments on the Prostate dataset

To evaluate the robustness of our method to different exper-
imental settings, we perform a series of ablation studies on the
Prostate dataset, evaluating the impact of the initial labelled set
size, training hyper-parameters, sampling budget and stochastic
pool size.

5.2.1. Impact of initial labelled set size
For our first ablation study, we validate the performance of

models trained on initial labelled sets of varying sizes. For each
given initial labelled set size, the experiment is repeated with 5
initialization seeds controlling the initial labelled samples used,
the model initialization and the training updates. Table 3 gives
the average model performance over 6 AL cycles. We ob-
serve that our stochastic batch selection strategy improves upon
purely uncertainty-based selection also when we vary the initial
number of labelled samples.

5.2.2. Impact of training hyper-parameters
Active Learning methods typically tune hyper-parameters us-

ing an initial labelled set, maintaining these settings through-
out all AL cycles. However, these parameters might be sub-
optimal for subsequent training cycles as more labelled data be-
comes available. We hence explore the robustness of stochastic
batches to different yet realistic training hyperparameters. We

Table 2: Sampling time. Mean sampling time computed over all AL cycles, for the Hippocampus dataset.

RS Core-set
Entropy Dropout TTA Learning Loss

w/o SB Ours w/o SB Ours w/o SB Ours w/o SB Ours

Time (min.) 0.00 0.71 0.12 0.11 0.58 0.58 0.37 0.37 0.16 0.18
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select five hyperparameter sets, each optimized for labelled set
sizes of 10, 50, 100, 150, and 200. These sets included diverse
augmentation parameters, scheduling parameters and loss func-
tion weights.

Results in Fig. 8 reveal that our stochastic batch sampling no-
ticeably improves the performance of purely uncertainty-based
sampling, particularly in the first 3 or 4 AL cycles. In addi-
tion, the spread of 3D dice scores tends to be narrower with our
method than with a purely uncertainty-based sampling, show-
ing that our strategy tends to be more stable.

The benefit of using our stochastic batches is most evident
in the average dice scores over all AL cycles for both test im-
ages and volumes, as given in Tab. 4. Test-Time Augmenta-
tion (TTA) generally performs better with stochastic batches,
although the results are not statistically significant for distance-
based metrics. This could be due to the fact that we vary
the training and regularization hyper-parameters while keeping
data augmentation parameters fixed for sampling.

5.2.3. Impact of sampling budget
We also investigate the robustness of stochastic batches to

the sampling budget. Keeping the initial labelled set and train-
ing hyper-parameters fixed, we run experiments with 5 different
sampling budgets, which we keep constant across cycles. In this
experiment, since we vary B, images are allowed to be resam-
pled when generating the stochastic batches, and we keep the
number of generated batches to a fixed Q = 100.

The results shown in Fig. 9 reveal that stochastic batches have
a more consistent impact on model performance as the budget
size increases. With a high budget B = 15, the use of stochas-
tic batches constantly improves purely uncertainty-based meth-
ods. An improvement is also visible for lower budgets, such
as B = 5, particularly for the Entropy, Dropout and TTA-based
sampling.

However, with very low budgets, batch uncertainty is highly
influenced by the uncertainty of each individual sample, po-
tentially reducing the benefits of diversity offered by stochastic

Table 3: Overall improvements with Stochastic Batches for initial labelled sets of different sizes. Mean model performance on the Prostate data over all AL
cycles for initial sets of different sizes. We show the mean (std) Dice score (higher is better) over 3D test volumes (3D DSC). The results are averaged over 6 AL
cycles (we omit results for the first AL cycle since all strategies share the same initial set). A * indicates the statistical significance of the result with a p-value < 0.05
given a paired permutation test.

RS

Entropy Dropout TTA Learning Loss
(Shannon, 1948) (Gal and Ghahramani, 2016) (Gaillochet et al., 2022) (Yoo and Kweon, 2019)

w/o SB Ours w/o SB Ours w/o SB Ours w/o SB Ours

5 initial samples 71.22 65.18 72.36* 61.69 71.45* 64.16 67.67 55.06 66.85*
(±15.09) (±14.43) (±16.19) (±18.15) (±15.41) (±16.43) (±16.70) (±21.90) (±19.30)

10 initial samples 71.08 66.21 73.78* 65.09 73.30* 70.23 73.01 48.51 60.73*
(±11.70) (±13.79) (±10.73) (±15.63) (±14.95) (±12.35) (±12.24) (±9.83) (±9.10)

15 initial samples 75.21 0.7319 74.21 72.90 76.81* 72.00 71.53 58.19 72.84*
(±7.27) (±7.54) (±7.85) (±6.96) (±8.34) (±10.86) (±8.84) (±12.09) (±10.32)

20 initial samples 76.00 76.13 80.24* 77.47 79.81* 74.59 78.04 69.81 75.51*
(±7.19) (±5.55) (±4.19) (±6.38) (±05.54) (±10.15) (±7.89) (±6.74) (±6.14)

25 initial samples 77.07 77.73 79.71* 77.44 81.08* 76.81 78.32 73.61 77.65*
(±4.39) (±3.79) (±4.37) (±4.31) (±5.20) (±9.03) (±5.88) (±5.27) (±5.52)

Table 4: Overall improvements with Stochastic Batches over varying training hyper-parameters. Mean model performance on Prostate data over all AL cycles
(omitting training with the initial labelled set). We show the mean (std) Dice score (DSC, higher is better) and 95% Hausdorff (HD95, lower is better) distance over
3D test volumes and individual 2D test images. The results are averaged over 7 AL cycles and 5 training hyper-parameter sets. * indicates the statistical significance
of the result with a p-value < 0.05 given a paired permutation test.

RS

Entropy Dropout TTA Learning Loss
(Shannon, 1948) (Gal and Ghahramani, 2016) (Gaillochet et al., 2022) (Yoo and Kweon, 2019)

w/o SB Ours w/o SB Ours w/o SB Ours w/o SB Ours

3D DSC (↑ best)
75.57 75.13 78.44* 76.49 78.59* 77.33 78.67* 69.53 76.25*

(±6.48) (±6.95) (±6.02) (±7.65) (±6.09) (±6.92) (±5.53) (±8.43) (±6.68)

2D DSC (↑ best)
68.29 68.90 71.04* 69.62 71.08* 70.46 71.31* 64.27 69.16*

(±6.79) (±7.34) (±6.51) (±6.70) (±6.79) (±7.05) (±5.71) (±7.23) (±6.80)

3D HD95 (↓ best)
7.58 7.87 6.83* 6.72 6.74 6.32 6.13 8.78 7.85*

(±3.86) (±4.28) (±3.31) (±2.75) (±3.29) (±2.87) (±2.82) (±4.22) (±3.68)
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(a) Ours (b) w/o Stochastic Batches

Fig. 6: Candidate batches from the Prostate dataset. The samples were se-
lected by Entropy-based AL sampling with (first two columns) and without (last
two columns) stochastic batches. While the candidate batch obtained via purely
uncertainty-based sampling contains similar samples, selection with stochastic
batches reduces the number of redundancies.

Ours:
(PH /AH)

89.26 / 56.20 87.72 / 65.33 93.06 / 69.23

w/o SB:
(PH /AH)

71.13 / 66.18 80.87 / 55.78 82.14 / 53.91

(a) Data & Target (b) 2nd cycle (c) 3rd cycle (d) 4th cycle

Fig. 7: Segmentation of a Hippocampus test sample across AL cycles. The
2D dice score (DSC) is given for each predicted segmentation, both for the
posterior hippocampus (PH, yellow) and the anterior hippocampus (AH, blue).
At every AL cycle, the model trained on labelled samples selected with our
stochastic batches (top row) predicts segmentations closer to the target mask
(leftmost) compared to its purely Entropy-based counterpart (bottom row).

batches. The selection is dominated by uncertainty, and if the
measure for uncertainty is not representative of the true uncer-
tainty of the model, then uninformative samples could be se-
lected and consequently bias the model.

(a) Improvements for Entropy (Shannon, 1948)

(b) Improvements for Dropout (Gal and Ghahramani, 2016)

(c) Improvements for TTA (Gaillochet et al., 2022)

(d) Improvements for Learning loss (Yoo and Kweon, 2019)

Fig. 8: Improvements with Stochastic Batches over varying hyper-
parameters. Box plot of active learning results on Prostate data in terms of
3D test dice score, given over 5 training hyper-parameters sets and 5 initial-
ization seeds. Depicted are the results for sampling based on a) Entropy, b)
Dropout, c) Test-time augmentation and d) Learning loss. The AL selection
is shown with (blue) and without (orange) stochastic batches. Our stochastic
batches improve the model performance of purely uncertainty-based AL strate-
gies and boost performance, even with variations in hyper-parameters.

5.2.4. Impact of sampling stochastic pool size
In our last ablation study, we evaluate the influence of the

number of batches in the stochastic pool on the model perfor-
mance, fixing the initial labelled set, training hyper-parameters
and sampling budget. Instead of generating Q = floor(|Du |/B)
batches, we artificially vary Q. Accordingly, we allow re-
sampling so samples can appear in multiple generated batches.
The results for our experiments on Entropy-based and Dropout-
based sampling are given in Fig. 10. Applying the biggest
pool size does not necessarily yield the best performance. On
the contrary, the model performs best when the most uncertain
batch is selected from a pool containing 10 or 100 different
batches. Increasing the pool of choices by 10 or 100 does not
lead to significant improvements and can lead to worse perfor-
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(a) Improvements with low budget (B = 5)

(b) Improvements with mid budget (B = 10)

(c) Improvements with high budget (B = 15)

Fig. 9: Improvements with Stochastic Batches given different budget sizes.
Model performance in terms of 3D dice score on test volumes given ac-
tive learning selection with (solid) and without (dashed) stochastic batches on
Prostate data. The results are given for sampling budgets a) B = 5, b) B = 10
and c) B= 15. Depicted are the results for sampling based on Entropy (green)
and Dropout (red), TTA (yellow) and Learning Loss (brown). Using stochas-
tic batches during sampling improves the model performance at both low and
higher budgets.

mances.

6. Discussion

Overall, our results demonstrate that using stochastic batches
during uncertainty-based sampling is an efficient strategy to
ensure diversity among the selected batch of samples. Fur-
thermore, we experimentally observe that the benefit of using
stochastic batches is robust to changes in the initial labelled
set, initialization of the model and training hyper-parameters,
as well as to variations in the sampling budget.

As illustrated in Fig. 6, the redundancy of queried samples
constitutes one of the main drawbacks of uncertainty-based AL
strategies. Their queried samples may indeed convey highly

(a) Stochastic batches for Entropy (Shannon, 1948)

(b) Stochastic batches for Dropout (Gal and Ghahramani, 2016)

Fig. 10: Impact of pool size of Stochastic Batches. Model performance in
terms of 3D dice score on test volumes from Prostate data given stochastic
batch pools of different sizes. The error bars (black) corresponds to the 95%
confidence interval over 5 experiments with different seed initialization. De-
picted are the results 2 popular uncertainty-based AL methods: Entropy-based
sampling (10a) and Dropout-based sampling (10b). A medium pool size be-
tween 10 to 100 yields some of the most advantageous performances.

similar information. Hence, the annotation effort on these sam-
ples will be suboptimal. If, on the contrary, the most uncer-
tain batches rather than the most uncertain samples are queried,
the added diversity within our stochastic batches mitigates the
overlap of information and redundancy between samples. Our
stochastic scheme adds diversity to the uncertainty-based sam-
pling in AL in a fast, computationally-efficient way, as shown
by Tab. 2. Our quantitative results demonstrate the advantages
of adding such a stochastic scheme in AL in terms of added
segmentation accuracy in a low-labelled set regime and reduced
number of required training samples.

Previous AL works have observed that the initial labelled
pool can significantly impact the training and final performance
of AL models (Chen et al., 2022). Nevertheless, a robust AL
method should still perform well regardless of this initial la-
belled set. The results obtained in our experiment with varying
initial labelled sets (Sec. 5.1 and Sec. 5.2.1) reveal that the per-
formance boost from our stochastic batch sampling strategy is
robust to changes in both the initial labelled set and model ini-
tialization. On average, selecting the most uncertain batches
across AL cycles yields better results than selecting the most
uncertain samples. Similarly, Sec. 5.2.2 shows that the im-
provements yielded by stochastic AL batches are also robust to
changes in the training and regularization parameters. Hence,
our method can maintain efficiency despite changes in the learn-
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ing environment. These results suggest that using stochastic
batches during AL for uncertainty-based sampling can be a re-
liable and robust AL approach.

Our stochastic batch querying strategy for uncertainty-based
AL operates as a balance between a fully random and a purely
uncertainty-based selection. While we set Q = floor

(
|DU |/B), the

stochastic pool size Q can also be directly modified to control
the amount of randomness desired in the AL selection. With
the smallest pool size (Q = 1), our stochastic batch selection
is equivalent to random sampling since the single suggested
batch will automatically have the highest uncertainty score in
the pool. With the biggest pool size (Q → ∞), all possible
combinations of samples are available in the pool, and select-
ing the most uncertain batch of samples is equivalent to select-
ing the top uncertain samples. In other words, the approach
becomes a purely uncertainty-based AL strategy with a larger
pool size. As shown in Sec. 5.2.4, the benefits of our stochas-
tic batches are apparent in between those extreme Q values,
when the sampling strategy combines the informativeness of
uncertainty-based sampling with the diversity provided by ran-
dom sampling. Active learning is an expensive framework to
experiment with, given that AL cycles are iterative and that
procedures should be repeated to reduce as much as possible
the influence of initialization. In this work, we ran multiple
experiments with different settings (size and type of initial la-
belled set, training hyper-parameters, stochastic pool size, sam-
pling budget) to test how stable our method was. However, we
acknowledge that our experiments do not cover all ranges of
possible setups.

7. Conclusion

Active learning is particularly relevant in medical image seg-
mentation since manual labelling is highly time-consuming and
expensive. This paper addresses three main limitations of AL
strategies: the relatively limited literature on AL work for
medical image segmentation compared to classification tasks,
the tendency of uncertainty-based batch sampling strategies to
select very similar samples and the computational burden of
diversity-based methods. Instead of employing sample-level
uncertainty for candidate selection, we suggest a batch-level ap-
proach where uncertainty is computed over randomly generated
batches of samples. Using stochastic batches with uncertainty-
based sampling is a simple, computational-inexpensive ap-
proach to improve the AL candidate selection and, hence, the
final model performance. Our method is flexible and easily
adaptable to any uncertainty-based AL strategy. In addition,
our extensive experiments show that adding stochastic batches
improves purely uncertainty-based methods consistently across
different experimental setups. Hence, stochastic batching could
bring a more reliable advantage over other representative-based
works, which have shown significantly varying amounts of ro-
bustness in performance (Munjal et al., 2022). Our method
could therefore act as a strong baseline to better use the limited
annotation time of clinical experts when segmenting medical
images.
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Mittal, S., Tatarchenko, M., Çiçek, O., Brox, T., 2019. Parting with Illusions
about Deep Active Learning. arXiv:1912.05361 .

Munjal, P., Hayat, N., Hayat, M., Sourati, J., Khan, S., 2022. Towards Ro-
bust and Reproducible Active Learning Using Neural Networks, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Nath, V., Yang, D., Landman, B.A., Xu, D., Roth, H.R., 2021. Diminishing
Uncertainty Within the Training Pool: Active Learning for Medical Image
Segmentation. IEEE Transactions on Medical Imaging 40, 2534–2547.

Nath, V., Yang, D., Roth, H.R., Xu, D., 2022. Warm Start Active Learning with
Proxy Labels and Selection via Semi-supervised Fine-Tuning, in: Medical
Image Computing and Computer Assisted Intervention (MICCAI).

Ozdemir, F., Peng, Z., Fuernstahl, P., Tanner, C., Goksel, O., 2021. Active
learning for segmentation based on Bayesian sample queries. Knowledge-
Based Systems 214, 106531.

Ozdemir, F., Peng, Z., Tanner, C., Fuernstahl, P., Goksel, O., 2018. Active
Learning for Segmentation by Optimizing Content Information for Maximal
Entropy, in: Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support.

Ren, P., Xiao, Y., Chang, X., Huang, P.Y., Li, Z., Gupta, B.B., Chen, X., Wang,
X., 2021. A Survey of Deep Active Learning. ACM Computing Surveys 54,
180:1–180:40.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks
for Biomedical Image Segmentation, in: Medical Image Computing and
Computer-Assisted Intervention (MICCAI).

Sener, O., Savarese, S., 2018. Active Learning for Convolutional Neural Net-
works: A Core-Set Approach, in: International Conference on Learning
Representations (ICLR).

Settles, B., 2009. Active Learning Literature Survey. Technical Report. Uni-
versity of Wisconsin-Madison Department of Computer Sciences.

Shannon, C.E., 1948. A Mathematical Theory of Communication. Bell System
Technical Journal 27, 379–423.

Sinha, S., Ebrahimi, S., Darrell, T., 2019. Variational Adversarial Active Learn-
ing, in: IEEE International Conference on Computer Vision (ICCV).

Smailagic, A., Costa, P., Young Noh, H., Walawalkar, D., Khandelwal, K.,
Galdran, A., Mirshekari, M., Fagert, J., Xu, S., Zhang, P., Campilho, A.,
2018. MedAL: Accurate and Robust Deep Active Learning for Medical Im-
age Analysis, in: 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 481–488.

Sourati, J., Gholipour, A., Dy, J.G., Kurugol, S., Warfield, S.K., 2018. Ac-
tive Deep Learning with Fisher Information for Patch-Wise Semantic Seg-
mentation, in: Stoyanov, D., Taylor, Z., Carneiro, G., Syeda-Mahmood, T.,
Martel, A., Maier-Hein, L., Tavares, J.M.R., Bradley, A., Papa, J.P., Bela-
giannis, V., Nascimento, J.C., Lu, Z., Conjeti, S., Moradi, M., Greenspan,
H., Madabhushi, A. (Eds.), Deep Learning in Medical Image Analysis and

Multimodal Learning for Clinical Decision Support (DLMIA). Springer In-
ternational Publishing. volume 11045, pp. 83–91.

Sourati, J., Gholipour, A., Dy, J.G., Tomas-Fernandez, X., Kurugol, S.,
Warfield, S.K., 2019. Intelligent Labeling Based on Fisher Information for
Medical Image Segmentation Using Deep Learning. IEEE Transactions on
Medical Imaging 38, 2642–2653.

Top, A., Hamarneh, G., Abugharbieh, R., 2011. Active Learning for Interac-
tive 3D Image Segmentation, in: Medical Image Computing and Computer-
Assisted Intervention (MICCAI).

Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L., 2017. Cost-Effective Active
Learning for Deep Image Classification. IEEE Transactions on Circuits and
Systems for Video Technology 27, 2591–2600.

Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., 2022. Towards Fewer An-
notations: Active Learning via Region Impurity and Prediction Uncertainty
for Domain Adaptive Semantic Segmentation, in: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z., 2017. Suggestive Anno-
tation: A Deep Active Learning Framework for Biomedical Image Segmen-
tation, in: Medical Image Computing and Computer-Assisted Intervention
(MICCAI).

Yoo, D., Kweon, I.S., 2019. Learning Loss for Active Learning, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Zhang, W., Zhu, L., Hallinan, J., Zhang, S., Makmur, A., Cai, Q., Ooi,
B.C., 2022. BoostMIS: Boosting Medical Image Semi-Supervised Learn-
ing With Adaptive Pseudo Labeling and Informative Active Annotation,
in: IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

Zhao, S., Song, J., Ermon, S., 2019. InfoVAE: Balancing Learning and Infer-
ence in Variational Autoencoders. Proceedings of the AAAI Conference on
Artificial Intelligence 33, 5885–5892. Number: 01.


	Introduction
	Contributions

	Literature review
	Uncertainty-based AL methods
	Representative-based AL methods
	Hybrid AL strategies
	AL for medical image segmentation

	Methods
	Experiments
	Datasets
	Evaluation metrics
	Implementation details
	Training
	Active learning sampling


	Results
	AL performance on the Prostate and Hippocampus blackdatasets
	Ablation experiments on the Prostate blackdataset
	Impact of initial labelled set size
	Impact of training hyper-parameters
	Impact of sampling budget
	Impact of sampling stochastic pool size


	Discussion
	Conclusion

