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Abstract. Very preterm birth coincides with a period of major devel-
opment in the brain, with striking changes in volume, cortex folding and
significant change at the microstructural level. Diffusion MRI is sensi-
tive to motion of water on the scale of microns, allowing us to investigate
some of these changes. Mapping of diffusion tensors is a challenging pro-
cess, and existing methods fail to account for the major changes that
take place between 30 and 40 weeks equivalent gestational age. In this
paper we introduce the spectral matching in the context of non-linear
registration of diffusion images. Spatial correspondences are defined with
respect to the main spectral modes of the images, which are global de-
scriptors of the tensor information. We apply tensor spectral matching
(TSM) in two different ways: by estimation of spatial correspondences
uniquely based on the spectral decomposition of diffusion tensor images,
and by combination of TSM with a standard diffusion tensor registration
algorithm (TSM-DTI-TK). We validate the proposed approaches on 20
adult controls, and we compare it to the state-of-art registration method.
We then apply these methods to longitudinal diffusion data acquired
from 6 extremely preterm-born infants scanned shortly after birth and
at term equivalent age. The experimental results combining TSM with
standard tensor registration outperform the state-of-art when applied to
both adult and preterm data. Having a reliable anatomical correspon-
dence in preterm infants allows us to quantify microstructural changes
and to work towards developing biomarkers of neurological impairment.

1 Introduction

The last 10 weeks of pregnancy represent a period of drastic changes in size,
appearance and connectivity of the fetal brain, when the cortex develops from
a lissencephalic state and increases dramatically in volume and surface area[l].
Premature birth implies that the these brain changes will take place under the
harsh conditions of the extrauterine environment and preterm birth is associ-
ated with increased rates of adverse neurological outcomes. Hence, there is wide
interest in investigating the effects of prematurity on brain development during
the preterm period[2].



Diffusion tensor magnetic resonance imaging (DT-MRI) is a water diffusion
imaging technique that provides insight into the white matter organisation of the
human brain[3]. DT-MRI may allow us to observe and quantify developmental
changes during the preterm period, providing additional information about the
microstructural change of white matter. Furthermore, water diffusion measures
could be correlated with the cortical changes that take place during this period,
since tension along axons in white matter is one of the hypotheses for cortical
folding[4]. In order to study the developmental changes in the white matter
during the preterm period, we need an accurate correspondence between the
longitudinal diffusion weighted images. This can be done by means of diffusion
tensor registration.

Several diffusion tensor image registration techniques have been proposed
based on different matching criteria, like optimising tensor reorientation in an an-
alytic manner through a derivative-based formulation[3] or through the matching
of their principal eigenvectors within a diffeomorphic registration framework|[5].
Spatial correspondence in standard non-linear registration algorithms is usually
defined in order to optimise the similarity between local image features. However,
when there are drastic anatomical changes such as during the preterm period, an
algorithm to cope with the very large spatial deformations is needed to provide
a reliable description of the underlying growth. For this purpose, we require a
registration algorithm accounting for global anatomical descriptors, as provided,
for example, by non-linear registration based on the matching of the Laplacian
eigenmodes associated with an image.

Spectral matching has been proposed in the context of volume as well as sur-
face registration[6, 7], and it has been already successfully applied to the challeng-
ing problem of registration of longitudinal cortical surfaces of preterm infants[8].
In spectral matching techniques, the spatial correspondences are defined with
respect to the main spectral modes of the images, which are isometry-invariant
descriptors of global geometric properties, hence accounting for large displace-
ments and usually robust to the local variability of the image features. Spectral
matching of tensor images is thus a promising approach when dealing with large
anatomical variations, like those occurring in early brain development.

In this work we introduce the spectral matching in the context of non-linear
registration of diffusion tensor images. We first extend the definition of the graph
Laplacian of an image to DTIs, to provide a novel representation of the global
geometrical properties of diffusion tensors via their spectral components. We
then introduce the tensor spectral matching (TSM) registration of DTI images,
to define spatial correspondences through the matching of the spectral com-
ponents associated to the graph Laplacian. Finally, we combine TSM and the
state-of-art algorithm for tensor registration, to provide a novel optimal regis-
tration framework (TSM-DTI-TK) accounting for both global and local tensor’s
properties.The experimental results show that TSM-DTI-TK outperforms stan-
dard registration approaches when applied to both adult data and the challeng-
ing problem of longitudinal registration of preterm infant data. The proposed
pipeline thus represents a promising tool to investigate brain development dur-



ing this crucial period, how it is affected by preterm birth and how it might
influence neurological outcome. Additionally this type of research might start to
illuminate the debate on the mechanical role of tissue growth on the observed
cortical folding pattern, information that is only measurable in foetal and neona-
tal cohorts of this type.

2 Tensor Spectral Matching

The tensor spectral matching algorithm is based on two main processing steps:
1) computation of the tensor spectral components associated with diffusion
weighted images, and 2) subsequent estimation of their spatial correspondences.
These steps are detailed in the following sections.

Tensor Spectral Components Let R be a diffusion tensor image associating
at each voxel = a tensor defined as a semi-positive definite symmetric 3-by-
3 matrix: R(z) € SPD(3). The estimation of the tensor spectral components
requires the construction of the general Laplacian matrix £ associated to the
diffusion weighted image R. Its size is N x N, where N is the number of voxels
in the image.

The graph Laplacian is computed as £ = D~1(D — W), where W is the
weighted adjacency matrix W, and D is the degree matrix. The adjacency
matrix W is the matrix representation of the weighted graph describing the
local image similarities. The nodes of the graph are the image voxels, while
the weights of edges represent their correspondences with respect to the neigh-
bouring locations. For each pair of neighbouring voxels x; and z;, x; # x;,
we estimate the entry W;; of the adjacency matrix depending on both their
Euclidean distance, and on the similarity of the associated tensor information
R(z;) and R(z;). This is quantified by the log-Euclidean distance of SPD ma-
trices: dist(R(x;), R(z;))r = ||log(R(z;)) — log(R(z;))||, where || - | is the Lo
norm [10] . The proposed similarity measure is therefore computed as:

Wy = exp (CHRELREILY 10, -y, m

where o is a measure of the image noise, and is here computed as the average
tensor distance in the graph: o = mean, ;(dist(R(z;), R(z;))).

The degree matrix D is the diagonal matrix whose entries D;; are the sum
of the weights of the graph edges associated to the voxels z;: Dy; =Y j Wi;.

The graph spectrum of the diffusion tensor image is finally given by the
eigen-decomposition of the general graph Laplacian £ = UAU ™!, and it is thus
identified by the eigenvalues A = (A\g, A1, ..., An), and by their associated tensor
spectral components U = (Uy,Uy,...,Uy). In particular, the tensor spectral
components Uy, ..., Uy represent the fundamental modes of vibrations of the
image, and respectively describe increasing complexity of its geometric features,
from coarse to fine scales.



Estimating Spatial Correspondences Between Spectral Components
Given reference and floating diffusion tensor images R and F, let UR, and UF be
the correspondent tensor spectral components obtained with the decomposition
detailed in the first part of this section. The spectral matching algorithm aims at
estimating the spatial correspondences between R and F by optimising the cor-
respondences between the spectral coordinates defined by the first & components
of UR, and U¥. In this work we follow the computational scheme introduced
in [7]. Briefly, the first k tensor spectral components are initially corrected for
their sign ambiguity and multiplicity. Then, by using the corrected components
as well as the fractional anisotropy map of each image and their coordinate

grid, we create the spectral representations R = (UlR, UR .., U,?,FAR) and

F= (Ulp, ur, ... U,f‘, FAF) of respectively reference and floating images.

Tensor Spectral Matching (TSM): DTI registration through spectral
matching Inspired by the classical spectral matching of medical images [11], we
propose here the tensor spectral matching (TSM) of DTIs in order to establish
spatial correspondences uniquely based on the spectral properties of diffusion
tensors. Thus, we estimate the spatial transformation ¢(z) by optimising the
similarity between the spectral representations R and F. The transformation
is finally estimated with a nearest-neighbours search, by including a local reg-
ularisation term based on the minimisation of the harmonic energy associated
to the transformation. In what follows, the optimal parameter for the trade-off
between similarities of the spectral representations and transformation regular-
ity has been estimated by cross-validation. The experiments of Section 3 were
repeated for several regularisation parameters and we selected the minimal one
which guaranteed, for all the pair-wise registration performed, positive Jacobian
determinant values.

Combining global spectral features with local tensor information: TSM-
DTI-TK TSM optimizes the correspondences based on global spectral infor-
mation only. Therefore it does not account for local tensor properties, such as
the local tensor orientation. On the contrary, standard tensor registration meth-
ods (such as DTI-TK [3]), optimise the local tensor similarity while explicitly
account for tensor alignment. However they are usually not sensitive enough in
order to model large displacements. We propose here a novel registration frame-
work, TSM-DTI-TK, to account for both global spectral features and local tensor
information. The proposed approach is based on defining the initial global tensor
correspondences via TSM registration. The resulting deformation is then used
to initialise DTI-TK in order to optimise the tensor matching with respect to
the local tensor properties.



3 Validation of Tensor Spectral Matching on Adult Data

The tensor spectral matching (TSM) and TSM-DTI-TK were compared to the
DTI-TK! tensor non-linear registration method[3], which is considered to be the
the state-of-art registration method for diffusion tensors [9]. The registration
parameters used for DTI-TK were the default ones proposed by the developers.
The comparison was based on the group-wise registration of diffusion weighted
images to a common anatomical template. The registration quality was measured
by quantitative and qualitative assessment of the similarity between the FA maps
computed from the resampled and template tensor images. Furthermore, we look
at overall differences between the alignment of the principal directions of the
tensors of the resampled diffusion tensor images and of the template.

Experimental Data and Image Processing. Data was collected from 20
adolescents on a Philips Achieva 3T MRI machine. Diffusion-weighted data was
acquired across four b-values at b = {0,300, 700,2000}mm?/s at TE=70ms
(2.5x2.5x3.0mm). Tensor maps were created by using a non-linear least square
fit to the diffusion data. The reference atlas chosen for this experiment is the
freely-available one provided in the DTI-TK toolbox.

All the 20 subjects’ diffusion images were initially linearly registered to the
atlas by accounting for the tensor orientation[3]. The linearly aligned images were
subsequently non-linearly registered to the atlas with TSM, DTI-TK and TSM-
DTI-TK, and resampled in the atlas space with respect to the tensor orientation
using Finite Strain [12]. Fractional anisotropy maps of the resulting diffusion
tensor images were finally estimated from the resampled tensors.

Results. Figure 1 shows the average FA maps obtained when using TSM, DTI-
TK and TSM-DTI-TK. We note that the images look very similar after all three
methods, indicating that the alignment performed by the different algorithms
leads to visually similar anisotropy properties of the resulting resampled diffusion
tensors. Figure 2 shows the mean absolute difference in FA and angle between the
principal directions of the template and resampled tensors for all three methods
in the entire brain. It can be observed that although TSM provides a very good
global registration, it underperforms DTI-TK when it comes to tensor alignment
and reorientation. However, TSM-DTI-TK outperforms both methods, likely due
to the optimisation of the log-Euclidean similarity measure between tensors as
it is more sensitive to FA than the principal directions. To this initial anisotropy
optimisation of TSM by minimising the log-Euclidean tensor similarity, DTI-TK
explicitly optimises the rotation as a refinement step, providing a better result.

! http://www.nitrc.org/projects/dtitk
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Fig. 1: Visual comparison of TSM, DTI-TK and TSM-DTI-TK when registering adult
data. When using TSM, global features look sharper

TSM DTI-TK TSM -DTI-TK TSM DTI-TK TSM-DTI-TK

Mean difference Mean difference
in FA in angle [rad]

Fig. 2: Boxplots of mean absolute differences in FA and angle between the principal
directions of the original template tensors and resampled tensors on the adult data.



4 Application of TSM-DTI-TK to Longitudinal
Preterm-Born Infant Data

In this section we show that the TSM-DTI-TK can be successfully applied for
the analysis of developmental changes in the white matter of preterm infants
and that it outperforms TSM and DTI-TK for this particular problem.

Experimental Data and Image Processing. We acquired T1-weighted and
diffusion-weighted images for six preterm-born infants (Mean Gestational Age
at Birth (GAB) of 26.2 £ 0.9 weeks) on a Philips Achieva 3T MRI machine. The
infants were imaged at first shortly after birth, at average gestational age (GA)
of 31.441.1 weeks and then at around equivalent term at average GA of 42.8+2.8
weeks. T1-weighted data was acquired at a resolution of 0.82mm x 0.82mm x
0.5mm at TR/TE =17/4.6ms, acquisition duration 462s. The diffusion weighted
data had a resolution of 1.75mm x 1.75mm X 2mm. We acquired six volumes
at b = mm?/s, 16 directions at b = 750mm? /s and 32 at b = 2000mm?/s with
TR/TE =9s/60ms.

We initially aligned and scaled our images using an affine transformation as
described in Section 3, so that both TSM and DTI-TK have the same starting
point. We then used TSM and DTI-TK to register the term scan to the preterm
space for each individual infant, as well as the proposed framework TSM-DTIT-
TK.

Preterm Term TSM-
Reference Floating DTI-TK

Fig. 3: Visual comparison of the resampled FA maps in the same preterm-born infant
longitudinally after registration using the TSM-DTI-TK framework

Results Figure 3 (a) and (b) show an example of the diffusion images of the
same infant at preterm and term equivalent and its registration, from term to
preterm, by using the TSM-DTI-TK (c). As shown by Figure 4: DTI-TK does
not modify much the affine transformation; TSM improves the alignment and
the FA difference is decreased, although the orientation is not improved; TSM-
DTI-TK improves the tensor orientation dramatically. While DTI-TK cannot
cope with the large deformations that are taking place even when using different



parameters, TSM is able to capture this development. TSM-DTI-TK improves
matching of shape, anisotropy and tensor orientation.
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Fig. 4: Boxplots of mean absolute differences in FA in white matter and angle orienta-
tion in the white matter for the preterm infant data (all subjects)

5 Discussion

In this work we proposed a novel registration framework for diffusion weighted
images (TSM-DTI-TK) based on the spectral decomposition of the diffusion
tensors images and the state-of-the-art algorithm for tensor registration. When
applied alone, TSM was found to be comparable globally to DTI-TK, the state-
of-art registration method, on adult data, however it underperforms DTI-TK
when it comes to tensor alignment and reorientation, which is expected since
DTI-TK minimises the angle between tensors as part of its optimisation pro-
cess. Tensor orientation in the spectral matching is conceptually difficult but
could be added using an iterative strategy. Thus, combining TSM with DTI-TK
(TSM-DTI-TK) provides a novel optimal registration framework accounting for
both global and local tensor’s properties, improving the DTI-TK alone result.
Moreover, TSM-DTI-TK outperformed DTI-TK alone when applied to longi-
tudinal diffusion data from preterm-born infants. The favourable preliminary
results on the preterm cohort were enabled by the proposed global represen-
tation of tensor features obtained through the spectral decomposition strategy
introduced in this paper.

The proposed registration framework represents a very promising tool for the
study of large morphological changes in the white matter of infants, a problem
which, to the best of our knowledge, has not been addressed before. In the future,
this registration technique will allow us to quantify the changes in diffusion



parameters over the preterm period on a voxel-wise basis. We will investigate
correlations with white matter development and changes occurring in the cortex
over the same timeframe, which may elucidate relationships between the cortical
surface folding and the establishment of cortico-cortical connections. Medical
image computing techniques of this type are fundamental to establish, in wvivo,
what leads to the developmental differences seen between preterm children and
their term-born peers.
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