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HyperDense-Net: A hyper-densely connected
CNN for multi-modal image segmentation

Jose Dolz, Karthik Gopinath, Jing Yuan, Herve Lombaert, Christian Desrosiers, and Ismail Ben Ayed

Abstract—Recently, dense connections have attracted substantial attention in computer vision because they facilitate gradient flow
and implicit deep supervision during training. Particularly, DenseNet, which connects each layer to every other layer in a feed-forward
fashion, has shown impressive performances in natural image classification tasks. We propose HyperDenseNet, a 3D fully
convolutional neural network that extends the definition of dense connectivity to multi-modal segmentation problems. Each imaging
modality has a path, and dense connections occur not only between the pairs of layers within the same path, but also between those
across different paths. This contrasts with the existing multi-modal CNN approaches, in which modeling several modalities relies
entirely on a single joint layer (or level of abstraction) for fusion, typically either at the input or at the output of the network. Therefore,
the proposed network has total freedom to learn more complex combinations between the modalities, within and in-between all the

levels of abstraction, which increases significantly the learning representation. We report extensive evaluations over two different and
highly competitive multi-modal brain tissue segmentation challenges, iSEG 2017 and MRBrainS 2013, with the former focusing on
6-month infant data and the latter on adult images. HyperDenseNet yielded significant improvements over many state-of-the-art
segmentation networks, ranking at the top on both benchmarks. We further provide a comprehensive experimental analysis of features
re-use, which confirms the importance of hyper-dense connections in multi-modal representation learning. Our code is publicly
available.

Index Terms—Deep learning, brain MRI, segmentation, 3D CNN, multi-modal imaging
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1 INTRODUCTION

MULTI-MODAL imaging enables the combination of dif-
ferent anatomical and functional information. There-

fore, the joint analysis of multi-modal data has emerged
as a natural approach to medical image analysis. Its use is
becoming increasingly common for the study of a breadth
of diseases [1], being of primary importance in developing
comprehensive models of pathologies, as well as in increas-
ing the statistical power of current imaging biomarkers. In
multi-modal studies, images of the same target structures
are acquired with different techniques. This combination of
complementary information enables accurate visualization
and delineation of the structures of interest.

Integrating several modalities provides solutions that
overcome the limitations of independent imaging tech-
niques. For instance, magnetic resonance imaging (MRI)
depicts different tissue contrasts by varying the pulse se-
quences. On the one hand, MR-T1 (T1) yields a good image
contrast between the gray matter (GM) and white matter
(WM) tissues. On the other hand, MR-T2 weighted (T2w)
and proton density (PD) pulses are powerful in visualizing
tissue abnormalities, such as lesions. A special case of T2w
is the fluid attenuated inversion recovery (FLAIR) pulse
sequence. This modality enhances the image contrast of
white matter lesions (WMLs), such as multiple sclerosis
[2]. Considering multiple MRI modalities can recover low
tissue contrast, for example, between brain tissues (Fig. 1).
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This span of imaging possibilities has, therefore, led to an
outstanding progress in exploring and understanding brain
anatomy and brain-related disorders.

Fig. 1. Example of data from a training subject. Neonatal isointense
brain images from a mid-axial T1 slice (left), the corresponding T2 slice
(middle), and manual segmentation (right).

In general, the advances in multi-modal imaging have
increased the quality of diagnosis, treatment and follow-
up of various diseases. This comes, however, at the price
of an inherently large amount of data produced by multi-
modal studies, imposing a burden on disease assessments.
Visual inspections of such an enormous amount of medical
images are prohibitively time-consuming, prone to errors
and unsuitable for large-scale studies. Therefore, automatic
and reliable multi-modal segmentation algorithms are of
high interest to the clinical community.

1.1 Prior work
The rapidly increasing use of multi-modal data prompted
substantial research efforts in image segmentation algo-
rithms that account for multi-modal scenarios, in various
diseases or clinical studies. For example, PET-CT imaging
has been widely used for joint tumor segmentation [3]–[12].
Deformable, level-set models, which combine individual
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segmentations from PET and CT images, were used in some
of these approaches [3]. In addition, textural features from
CT images were extracted to distinguish cancerous tissue
types, incorporating PET to this information [4], [7]. These
methods have several limitations. In fact, independent seg-
mentations do not fully account for all the available multi-
modal information. The underlying assumptions oversim-
plify the complex relationships that may exist between dif-
ferent imaging modalities. For instance, finding the tumor
structure independently in PET and CT implicitly assumes
that tumor volume is identical in both modalities, which
is not the case. In fact, assuming simple correspondences
between anatomical and functional images may not be real-
istic. Furthermore, sub-optimal solutions to the individual
problems, due to optimization issues, along with heavy
computational loads, impeded significantly the use of these
approaches in practice.

The studies in [5], [8] stated the problem as a Markov
Random field (MRF) on a graph, which encodes the in-
formation from both modalities. The ensuing PET-CT co-
segmentation algorithms seek the tumor structures concur-
rently in both modalities. For these models, discrete graph-
cut optimization can achieve globally optimal solutions in
low-order polynomial time.

Multi-modal image segmentation in brain-related appli-
cations has also received a substantial research attention,
for instance, brain tumors [13]–[16], brain tissues of both
infant [17]–[27] and adult [28], [29], subcortical structures
[30], among other problems [31]–[33]. Atlas-propagation
approaches are commonly used in multi-modal scenarios
[34], [35]. These methods rely on registering one or multiple
atlases to the target image, followed by a propagation of
manuals labels. When several atlases are considered, labels
from individual atlases can be combined into a final segmen-
tation via a label fusion strategy [18], [20], [23]. When relying
solely on atlas fusion, the performance of such techniques
might be limited and prone to registration errors. Parametric
or deformable models [21] can be used to refine prior
estimates of tissue probability [24]. For example, the study in
[24] investigated a patch-driven method for neonatal brain
tissue segmentation, integrating the probability maps of a
subject-specific atlas into a level-set framework.

More recently, our community has witnessed a wide
adoption of deep learning techniques, particularly, convolu-
tional neural networks (CNNs), as an effective alternative to
traditional segmentation approaches. CNN architectures are
supervised models, trained end-to-end, to learn a hierarchy
of image features representing different levels of abstraction.
In contrast to conventional classifiers based on hand-crafted
features, CNNs can learn both the features and classifier
simultaneously, in a data-driven manner. They achieved
state-of-the-art performances in a broad range of medical
image segmentation problems [36], [37], including multi-
modal tasks [14]–[16], [25]–[27], [29], [32], [33], [38], [39].

1.1.1 Fusion of multi-modal CNN feature representations

Most of the existing multi-modal CNN segmentation tech-
niques followed an early-fusion strategy, which integrates the
multi-modality information from the original space of low-
level features [15], [25], [29], [33], [38], [39]. For instance,
in [25], MR-T1, T2 and fractional anisotropy (FA) images

are simply merged at the input of the network. However,
as argued in [40] in the context of multi-modal learning, it
is difficult to discover highly non-linear relationships be-
tween the low-level features of different modalities, more so
when such modalities have significantly different statistical
properties. In fact, early-fusion methods implicitly assumes
that the relationship between different modalities are simple
(e.g., linear). For instance, the early fusion in [25] learns
complementary information from T1, T2 and FA images.
However, the relationship between the original T1, T2 and
FA image data may be much more complex than comple-
mentarity, due to significantly different image acquisition
processes [26]. The work in [26] advocated late fusion of high-
level features as a way that accounts better for the complex
relationships between different modalities. They used an
independent convolutional network for each modality, and
fused the outputs of the different networks in higher-level
layers, showing better performance than early fusion in the
context infant brain segmentation. These results are in line
with a recent study in the machine learning community
[40], which investigated multimodal learning with deep
Boltzmann machines in the context of fusing data from color
images and text.

1.1.2 Dense connections in deep networks

Since the recent introduction of residual learning in [42],
shortcut connections from early to late layers have become
very popular in a breadth of computer vision problems
[43], [44]. Unlike traditional networks, shortcut connections
back-propagate gradients directly, thereby mitigating the
gradient-vanishing problem and allowing deeper networks.
Furthermore, they transform a whole network into a large
ensemble of shallower networks, yielding competitive per-
formances in various applications [29], [45]–[47]. DenseNet
[48] extended the concept of shortcut connections, with
the input of each layer corresponding to the outputs from
all previous layers. Such a dense network facilitates the
gradient flow and the learning of more complex patterns.
DenseNet yielded significant improvements in accuracy and
efficiency for natural image classification tasks [48]. How-
ever, the impact of dense connectivity in medical image seg-
mentation, particularly in multi-modal problems, remains
unexplored.

1.2 Contributions
We propose HyperDenseNet, a 3D fully convolutional neural
network that extends the definition of dense connectiv-
ity to multi-modal segmentation problems. Each imaging
modality has a path, and dense connections occur not only
between the pairs of layers within the same path, but also
between those across different paths; see the illustration in
Fig. 2. This contrasts with the existing multi-modal CNN
approaches, in which modeling several modalities relies
entirely on a single joint layer (or level of abstraction)
for fusion, typically either at the input (early fusion) or
at the output (late fusion) of the network. Therefore, the
proposed network has total freedom to learn more complex
combinations between the modalities, within and in-between

all the levels of abstractions, which increases significantly the
learning representation in comparison to early/late fusion.
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TABLE 1
A brief summary of existing methods for multi-modal medical image segmentation for some applications.

Work Modality Target Method

El Naqa et al., 2007 [3] PET-CT Lung and cervix cancer Multi-Level sets 2D/3D
Yu et al.,2009 [4] PET-CT Head and neck cancer Multi-Level sets 2D/3D
Han et al.,2011 [5] PET-CT Head and neck cancer Markov Random Field (MRF)
Bagci et al.,2012 [6] PET-CT Lung disease abnormalities Random Walker

Bagci et al.,2013 [9] PET-CT, PET-MRI,
PET-CT-MRI Several lesions Random Walker

Markel et al.,2013 [7] PET-CT Lung carcinoma Decision tree with KNN
Song et al.,2013 [8] PET-CT Lung tumor Markov Random Field (MRF)
Ju et al.,2015 [11] PET-CT Lung tumor Random walker + Graph Cuts
Cui et al.,2016 [12] PET-CT Lung tumor Random walker

Prastawa et al., 2005 [17] T1,T2 Infant brain tissue Multi-atlas
Weisenfeld et al., 2006 [18] T1,T2 Infant brain tissue Multi-atlas
Deoni et al., 2007 [30] T1,T2 Thalamic nuclei K-means clustering
Anbeek et al., 2008 [19] T2,IR Infant brain tissue KNN
Weisenfeld and Warfield, 2009 [20] T1,T2 Infant brain tissue Multi-atlas
Wang et al., 2011 [21] T1,T2,FA Infant brain tissue Multi-atlas + Level sets
Srhoj et al., 2012 [22] T1,T2 Infant brain tissue Multi-atlas + KNN
Wang et al., 2012 [23] T1,T2 Infant brain tissue Multi-atlas
Wang et al., 2014 [41] T1,T2,FA Infant brain tissue Multi-atlas + Level sets
Kamnitsas et al., 2015 [38] Flair, DWI, T1, T2 Brain lesion 3D FCNN + CRF
Zhang et al., 2015 [25] T1,T2,FA Infant brain tissue 2D CNN

Havaei et al., 2016 [14] T1,T1c,T2,FLAIR Multiple Sclerosis/Brain
tumor 2D CNN

Nie et al., 2016 [26] T1,T2,FA Infant brain tissue 2D FCNN
Chen et al., 2017 [29] T1,T1-IR,FLAIR Brain tissue 3D FCNN
Dolz et al., 2017 [27] T1,T2 Infant brain tissue 3D FCNN
Fidon et al., 2017 [16] T1,T1c,T2,FLAIR Brain tumor CNN

Kamnitsas et al., 2017 [15]
T1,T1c,T2,FLAIR

MPRAGE,FLAIR,T2,PD
Brain tumour/lesions 3D FCNN + CRF

Kamnitsas et al., 2017 [32] MPRAGE,FLAIR,T2,PD Traumatic brain injuries 3D FCNN(Adversarial Training)
Valverde et al., 2017 [33] T1, T2,FLAIR Multiple-sclerosis 3D FCNN

Furthermore, hyper-dense connections facilitate the learn-
ing as they improve gradient flow and impose implicit
deep supervision. We report extensive evaluations over two
different1 and highly competitive multi-modal brain tissue
segmentation challenges, iSEG 2017 and MRBrainS 2013.
HyperDenseNet yielded significant improvements over many
state-of-the-art segmentation networks, ranking at the top
on both benchmarks. We further provide a comprehensive
experimental analysis of features re-use, which confirms
the importance of hyper-dense connections in multi-modal
representation learning. Our code is publicly available2.

A preliminary conference version of this work appeared
at ISBI 2018 [49]. This journal version is a substantial
extension, including (1) a much broader, more informa-
tive/rigorous treatment of the subject in the general context
of multi-modal segmentation; and (2) comprehensive ex-
periments with additional baselines and publicly available
benchmarks, as well as a thorough investigation of the
practical usefulness and impact of hyper-dense connections.

1. iSEG 2017 focuses on 6-month infant data, whereas MRBrainS 2013
uses adult data. Therefore, there are significant differences between the
two benchmarks in term of image data characteristics, e.g, the voxel
spacing and number of available modalities.

2. https://www.github.com/josedolz/HyperDenseNet

2 METHODS AND MATERIALS
Convolutional neural networks (CNNs) are deep models
that can learn feature representations automatically from
the training data. They consist of multiple layers, each
processing the imaging data at a different level of abstrac-
tion, enabling segmentation algorithms to learn from large
datasets and discover complex patterns that can be further
employed for predicting unseen samples. The first attempts
to use CNNs in segmentation problems followed a sliding-
window strategy, where the regions defined by the window
are processed independently, which impedes segmentation
accuracy and computational efficiency. To overcome these
limitations, the network can be viewed as a single non-
linear convolution, which is trained end-to-end, a process
known as fully CNN (FCNN) [50]. The latter brings several
advantages over standard CNNs. It can handle images of ar-
bitrary sizes and avoid redundant convolution and pooling
operations, enabling computationally efficient learning.

2.1 The proposed Hyper-Dense network
The concept of “the deeper the better” is considered as a key
principle in deep learning [42]. Nevertheless, one obstacle
when dealing with deep architectures is the problem of van-
ishing/exploding gradients, which hampers convergence
during training. To address these limitations in very deep ar-
chitectures, the study in [48] investigated densely connected
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networks. DenseNets are built on the idea that adding direct
connections from any layer to all the subsequent layers
in a feed-forward manner makes training easier and more
accurate. This is motivated by three observations. First,
there is an implicit deep supervision thanks to the short
paths to all feature maps in the architecture. Second, direct
connections between all layers help improving the flow of
information and gradients throughout the entire network.
Third, dense connections have a regularizing effect, which
reduces the risk of over-fitting on tasks with smaller training
sets.

Inspired by the recent success of densely-connected net-
works in natural image classification tasks, as well as in
a few recent medical image segmentation works [51]–[53],
we propose HyperDenseNet, a hyper-dense architecture for
multi-modal image segmentation. We extend the concept of
dense connectivity to the multi-modal setting: Each imaging
modality has a path, and dense connections occur not only
between layers within the same path, but also between
layers across different paths; see Fig. 2 for an illustration.

Fig. 2. A section of the proposed HyperDenseNet in the case of two
image modalities. Each gray region represents a convolutional block.
Red arrows correspond to convolutions and black arrows indicate dense
connections between feature maps.

Let xl be the output of the l
th layer. In CNNs, this vector

is typically obtained from the output of the previous layer
xl�1 by a mapping Hl composed of a convolution followed
by a non-linear activation function:

xl = Hl(xl�1). (1)

A densely-connected network concatenates all feature out-
puts in a feed-forward manner:

xl = Hl([xl�1,xl�2, . . . ,x0]), (2)

where [...] denotes a concatenation operation.
Pushing this idea further, HyperDenseNet introduces a

more general connectivity definition, in which we link the
outputs from layers in different streams, each associated
with a different image modality. In the multi-modal setting,
our hyper-dense connectivity yields a much more powerful
feature representation than early/late fusion as the network
learns the complex relationships between the modalities
within and in-between all the levels of abstractions. For sim-
plicity, let us consider the scenario of two image modalities,
although extension to N modalities is straightforward. Let
x1
l and x2

l denotes the outputs of the l
th layer in streams 1

and 2, respectively. The output of the l
th layer in a stream s

can then be defined as follows:

xs
l = Hl([x

1
l�1,x

2
l�1,x

1
l�2,x

2
l�2, . . . ,x

1
0,x

2
0]). (3)

Figure 2 depicts a section of the proposed architecture,
where each gray region represents a convolutional block.
For simplicity, we assume that the red arrows indicate
convolution operations only, whereas the black arrows rep-
resent the direct connections between feature maps from dif-
ferent layers, within and in-between the different streams.
Thus, the input of each convolutional block (maps before
the red arrow) is the concatenation of the outputs (maps
after the red arrow) of all the preceding layers from both
paths.

2.2 Baselines
To investigate thoroughly the impact of hyper-dense con-
nections between different streams in multi-modal image
segmentation, we considered several baselines. First, we
extend the semi-dense architecture proposed in [27] to a
fully-dense one, by connecting the output of each convo-
lutional layer to all subsequent layers. In this network, we
follow an early-fusion strategy, in which MR-T1 and T2 are
integrated at the input of the CNN and processed jointly
along a single path (Fig. 8, left). The connectivity setting
followed by this model is explained in eq. 2. Second, instead
of merging both modalities at the input of the network, we
considered a late-fusion strategy, where each modality is
processed independently in different streams and learned
features are fused before the first fully connected layer (Fig.
1 right in supplemental materials). In this model, the dense
connections are included within each path, assuming the
connectivity definition described in Eq. 2 for each of the
streams.

2.3 Network architecture
To have a large receptive field, FCNNs typically use full im-
ages as input. The number of parameters is then limited via
pooling/unpooling layers. A problem with this approach
is the loss of resolution from repeated down-sampling op-
erations. In the proposed method, we follow the strategy
in [15], where sub-volumes are used as input, avoiding
pooling layers. While sub-volumes of size 27⇥27⇥27 are
considered for training, we used 35⇥35⇥35 sub-volumes
during inference, as in [15], [36]. This strategy offers two
considerable benefits. First, it reduces the memory require-
ments of our network, thereby removing the need for spatial
pooling. More importantly, it substantially increases the
number of training examples and, therefore, does not need
data augmentation.

The network parameters are optimized via the RMSprop
optimizer, using cross-entropy as cost function. Let ✓ de-
notes the network parameters (i.e., convolution weights,
biases and ai from the parametric rectifier units), and y

v
s

the label of voxel v in the s-th image segment. We optimize
the following:

J(✓) = � 1

S ·V

SX

s=1

VX

v=1

CX

c=1

�(yvs = c) · log p
v
c (xs), (4)
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TABLE 2
The layers used in our architectures and the corresponding values with

an input of size 27⇥27⇥27. In the case of multi-modal images, the
convolutional layers (conv x) are present in any network path. All the

convolutional layers have a stride of one pixel.

Conv. kernel # kernels Output Size Dropout

conv 1 3⇥3⇥3 25 25⇥25⇥25 No
conv 2 3⇥3⇥3 25 23⇥23⇥23 No
conv 3 3⇥3⇥3 25 21⇥21⇥21 No
conv 4 3⇥3⇥3 50 19⇥19⇥19 No
conv 5 3⇥3⇥3 50 17⇥17⇥17 No
conv 6 3⇥3⇥3 50 15⇥15⇥15 No
conv 7 3⇥3⇥3 75 13⇥13⇥13 No
conv 8 3⇥3⇥3 75 11⇥11⇥11 No
conv 9 3⇥3⇥3 75 9⇥9⇥9 No
fully conv 1 1⇥1⇥1 400 9⇥9⇥9 Yes
fully conv 2 1⇥1⇥1 200 9⇥9⇥9 Yes
fully conv 3 1⇥1⇥1 150 9⇥9⇥9 Yes
Classification 1⇥1⇥1 4 9⇥9⇥9 No

where p
v
c (xs) is the softmax output of the network for voxel

v and class c, when the input segment is xs.
To initialize the weights of the network, we adopted the

strategy proposed in [54], which yields fast convergence
for very deep architectures. In this strategy, a zero-mean
Gaussian distribution of standard deviation

p
2/nl is used

to initialize the weights in layer l, where nl denotes the
number of connections to the units in that layer. Momentum
was set to 0.6 and the initial learning rate to 0.001, being
reduced by a factor of 2 after every 5 epochs (starting from
epoch 10). The network was trained for 30 epochs, each
composed of 20 subepochs. At each subepoch, a total of 1000
samples were randomly selected from the training images
and processed in batches of size 5.

3 EXPERIMENTS AND RESULTS

The proposed HyperDenseNet architecture is evaluated on
two challenging multi-modal image segmentation tasks,
using publicly available data provided by two MICCAI
challenges: infant brain tissue segmentation, iSEG3, and
adult brain tissue segmentation, MRBrainS4. Quantitative
evaluations and comparisons with the state-of-the-art meth-
ods are reported for each of these applications. First, to
evaluate the impact of dense connectivity on performance,
we compared the proposed HyperDenseNet to the baselines
described in section 2.2 on infant brain tissue segmentation.
Then, our results, compiled by the iSEG challenge organiz-
ers on testing data, are compared to those from the other
competing teams. Second, to juxtapose the performance of
HyperDenseNet to other segmentation networks under the
same conditions, we provide a quantitative analysis of the
results of current state-of-the-art segmentation networks for
adult brain tissue segmentation. This includes comparison
to the participants the MRBrainS challenge. Finally, in sec-
tion 3.3, we report a comprehensive analysis of feature re-
use.

3. http://iseg2017.web.unc.edu
4. http://mrbrains13.isi.uu.nl

3.1 iSEG Challenge
The focus of this challenge was to compare (semi-) auto-
matic stat-of-the-art algorithms for the segmentation of 6-
month infant brain tissues in T1- and T2-weighted brain
MRI scans. This challenge was carried out in conjunction
with MICCAI 2017, with a total of 21 international teams
participating in the first round.

3.1.1 Evaluation

The MICCAI iSEG-2017 organizers used three metrics to
evaluate the accuracy of the competing methods: Dice Sim-
ilarity Coefficient (DSC) [55], Modified Hausdorff distance
(MHD), where the 95-th percentile of all Euclidean distances
is employed, and Average Surface Distance (ASD). The first
measures the degree of overlap between the segmentation
region and ground truth, whereas the other two evaluate
boundary distances.

3.1.2 Results

We report infant brain tissue segmentation results using
MR-T1w and MR-T2w images. Table 3 compares the perfor-
mance achieved by HyperDenseNet to those of the baselines
introduced in Section 2.2, for CSF, GM and WM brain tis-
sues. The first observation that we can make from these re-
sults is that the late fusion of the high-layer features of inde-
pendent paths did not provide a clear improvement over the
single-path version. While the dual-path baseline reported
better results for DC and ASD, processing both modalities
in a single path achieved a better performance for MHD.
HyperDenseNet outperformed both baselines, yielding better
DC and ASD accuracy values for all cases, and better MHD
values in two out of the three tissues. It achieved a lower
MHD for the GM and WM tissues. Considering standard
deviations, HyperDenseNet showed lower variances than the
baselines, in the GM and WM regions. The difference in
performance might be explained by the fact that our hyper-
dense connectivity allows the network to access any feature
map from almost any point in the architecture, both in depth
and in width, thanks to the use of multiple inter-connected
streams. This enable the network to freely learn features
from several image modalities, at any level of abstraction,
thereby identifying more complex patterns.

Figure 3 depicts a comparison of the training and valida-
tion accuracy between the baselines and HyperDenseNet. In
these figures, the mean DC for the three brain tissue is evalu-
ated on training (Top) and validation (Bottom) data after each
sub-epoch. One can see that, in both cases, HyperDenseNet

outperforms the baselines, achieving better results in lesser
epochs. This might be attributed to two factors. The first
is the high number of direct connections between different
layers, which facilitates back-propagation of the gradient to
shallow layers. The second is the freedom of the network to
explore more complex patterns thanks to the combination of
several image modalities at any level of abstraction.

Figure 4 depicts visual results for the subject used in
validation. It can be observed that HyperDenseNet recovers
thin regions better than the baselines, which can explain
the improvements observed in the distance-based metrics.
As confirmed in Table 3, this effect is most prominent in
the boundaries between the gray and white matter. Fur-
thermore, HyperDenseNet produces fewer false positives for
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TABLE 3
Performance measures provided by the iSEG Challenge organizers for

the analyzed methods. The best performance for each metric is
highlighted in bold.

DC MHD ASD

CSF

Single-Path Baseline 0.953 (0.007) 9.296 (0.942) 0.128 (0.016)
Dual-Path Baseline 0.953 (0.008) 9.354 (1.242) 0.128 (0.018)
HyperDenseNet 0.957 (0.007) 9.421 (1.392) 0.119 (0.017)

Gray Matter

Single-Path Baseline 0.916 (0.009) 7.131 (1.729) 0.346 (0.041)
Dual-Path Baseline 0.918 (0.008) 7.643 (1.698) 0.343 (0.041)
HyperDenseNet 0.920 (0.008) 5.752 (1.078) 0.329 (0.041)

White Matter

Single-Path Baseline 0.895 (0.015) 6.903 (1.140) 0.406 (0.051)
Dual-Path Baseline 0.896 (0.013) 7.434 (1.571) 0.397 (0.045)
HyperDenseNet 0.901 (0.014) 6.659 (0.932) 0.382 (0.047)

Fig. 3. Training (top) and validation (bottom) accuracy plots for the
proposed architecture and the baselines.

WM than the baseline, which tend to over-estimate the
segmentation in this region.

Fig. 4. Qualitative results of segmentation achieved by the baselines
and HyperDenseNet on the validation subject. The red squares indi-
cate some spots, where HyperDenseNet successfully reproduced the
ground-truth whereas the baselines failed.

Comparing these results to those of all the methods in
the first round of the iSEG Challenge (Table 4), one can see
that HyperDenseNet achieved a state-of-the-art accuracy for
this task. It obtained the best performance in 7 out of the
9 metrics. A noteworthy point is the general decrease in
performance, among all the methods, for the segmentation
of GM and WM, with lower DC and larger ASD values. This

suggests that the segmentation of these tissues is challeng-
ing due to the unclear boundaries between them.

3.2 MRBrainS Challenge
This MRBrainS challenge was carried out in conjunction
with MICCAI 2013, and a total of 47 international teams
have participated up to date. The focus is on adult brain
tissue segmentation in the context of aging, and three
modalities have been used for this purpose, MR-T1, MR-T1
Inversion Recovery (IR) and MR-FLAIR.

3.2.1 Evaluation

The organizers used three types of evaluation measures: a
spatial overlap measure (DC), a boundary distance measure
(MHD) and a volumetric measure (the percentage of abso-
lute volume difference).

3.2.2 Architectures for comparison

We start by comparing HyperDenseNet to the state-of-the-art
networks in medical image segmentation. The first architec-
ture is a 3D fully convolutional neural network with resid-
ual connections [56], which we denote FCN Res3D. Then,
U-Net [57] with residual connections in the encoder and
3D volumes as input, referred to as UNet3D, is evaluated.
Finally, DeepMedic [15], which has shown an outstanding
performance in brain lesion segmentation, is included in the
comparison. The implementation details are described in the
supplemental materials.

3.2.3 Results

We performed a leave-one-out-cross-validation (LOOCV)
on the training set to compare the proposed network to
the state-of-the-art architectures listed above, using four
subjects for training and one for validation. This process
was repeated for 3 different subjects, and an average was
computed. For this set of comparisons, we used all the three
modalities, MR-T1, MR-T1 IR and FLAIR, for all the com-
peting methods. In a second set of experiments, we assessed
the impact of integrating multiple imaging modalities on the
results of HyperDenseNet using all the possible combinations
of two modalities as input.

Table 5 reports the mean DSC and standard-deviation
values, with FCN Res3D exhibiting the lowest mean DSC,
a performance that might be explained by the transpose
convolutions in FCN Res3D, which may cause voxel mis-
classification within small regions. Furthermore, the down-
sampling and upsampling operations in FCN Res3D make
the feature maps in hidden layers sparser than the original
inputs, causing a loss of the image details. This limitation
is overcome by skip connections, which propagate informa-
tion at different levels of abstraction between the encoding
and decoding paths, as in UNet3D. This is reflected in the
results, where the latter clearly outperformed FCN Res3D

in all the metrics. DeepMedic obtained better results than its
competitors, yielding a performance close to the different
two-modality configurations of HyperDenseNet. The dual
multiscale path is an important feature of DeepMedic, which
gives the network a larger receptive field via two paths,
one for the input image and the other processing a low-
resolution version of the input. This, in addition to the
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TABLE 4
Results on the iSEG-2017 data for HyperDenseNet and the methods ranked in the top-5 at the first round of submissions (in alphabetical order).

The bold fonts highlight the best performances. For additional details, we refer the reader to the challenge’s website.

Method CSF GM WM

DSC MHD ASD DSC MHD ASD DSC MHD ASD

Bern IPMI 0.96 9.62 0.13 0.92 6.46 0.34 0.90 6.78 0.40
LIVIA(Ensemble) 0.96 9.13 0.12 0.92 6.06 0.34 0.90 7.45 0.41
MSL SKKU 0.96 9.07 0.12 0.92 5.98 0.33 0.90 6.44 0.39
nic vicorob 0.95 9.18 0.14 0.91 7.65 0.37 0.89 7.15 0.43
TU/e IMAG/e 0.95 9.43 0.15 0.90 6.86 0.38 0.89 6.91 0.43

HyperDenseNet (Ours) 0.96 9.42 0.12 0.92 5.75 0.33 0.90 6.66 0.38

TABLE 5
Comparison to several state-of-the-art 3D networks on the MRBrainS challenge.

Method Mean DSC (std dev)

CSF GM WM

FCN Res3D [58] (3-Modalities) 0.7685 (0.0161) 0.8163 (0.0222) 0.8607 (0.0178)
UNet3D [57] (3-Modalities) 0.8218 (0.0159) 0.8432 (0.0241) 0.8841 (0.0123)
DeepMedic [15] (3-Modalities) 0.8292 (0.0094) 0.8522 (0.0193) 0.8884 (0.0137)
HyperDenseNet (T1-FLAIR) 0.8259 (0.0133) 0.8620 (0.0260) 0.8982 (0.0138)
HyperDenseNet (T1 IR-FLAIR) 0.7991 (0.0181) 0.8226 (0.0255) 0.8654 (0.0087)
HyperDenseNet (T1-T1 IR) 0.8191 (0.0297) 0.8498 (0.0173) 0.8913 (0.0082)
HyperDenseNet (3-Modalities) 0.8485 (0.0078) 0.8663 (0.0247) 0.9016 (0.0109)

removal of pooling operations in DeepMedic, could explain
the increase in performance with respect to FCN Res3D and
UNet3D.

The two-modality versions of HyperDenseNet yielded
competitive performances, although there is a significant
variability between the three configurations. Notice that
using MR-T1 and FLAIR already places HyperDenseNet first
for two DSC measures (GM and WM), and second for
the remaining measure (CSF), even though the competing
methods used all three modalities. HyperDenseNet with three
modalities yielded significantly better segmentations, ob-
taining the highest mean DSC values for all three tissues.
These results confirm the importance of handling image
modalities in separate paths with dense connections within
and in-between the paths, facilitating the flow of informa-
tion.

The MRBrainS challenge organizers compiled the results
and a ranking of 47 international teams5. In Table 6, we
report the results of the top-10 methods, with HyperDenseNet

ranked first. This performance confirms, again, the impor-
tance of hyper-dense connections for multi-modal segmen-
tation

A typical example of the obtained segmentation result
is depicted in Fig. 5. In these images, red arrows indicate
regions where the two-modality versions of HyperDenseNet

fail in comparison to the three-modality version. Most of
the errors of these networks occur at the boundaries be-
tween the GM and WM, which makes sense given the
very weak contrast between these tissues; see the images
in Fig. 1, for example. We can observe how HyperDenseNet

with three modalities can handle thin regions better than

5. http://mrbrains13.isi.uu.nl/results.php

its two-modality versions. This example demonstrates how
the integration of correlated information can overcome the
limitations or weaknesses of single modalities.

Fig. 5. A typical example of the segmentations achieved by the proposed
HyperDenseNet in a validation subject (Subject 1 in the training set) for
2 and 3 modalities. The red arrows indicate some of the differences
between the segmentations. For instance, one can see here that Hyper-

DenseNet with three modalities can handle thin regions better than its
two-modality versions.

3.3 Analysis of features re-use
Dense connectivity enables each network layer to access
feature maps from all its preceding layers, strengthening
feature propagation and encouraging feature re-use. To
investigate the degree of usability of features in a trained
network, we performed additional experiments. For each
convolutional layer, we computed the average L1-norm of
its filter weights assigned to the connections to the previous
layers from any stream. This serves as a surrogate for the
dependency of a given layer on its preceding layers. We
normalized the values between 0 and 1 to facilitate visual-
ization. Fig. 6 depicts the weights of HyperDense-Net trained
with two modalities, for both iSEG and MRBrainS chal-
lenges. As the MRBrainS data set contains three modalities,
we have three different two-modality configurations. Fig 7
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TABLE 6
Results of the MICCAI MRBrainS challenge of different methods (DC, HD (mm) and AVD). Only the top-10 methods are included in this table.

More details on the results of 47 international teams can be found in the MRBrainS Challenge Website.

Method GM WM CSF Sum
DSC HD AVD DSC HD AVD DSC HD AVD

HyperDenseNet (ours) 0.8633 1.34 6.19 0.8946 1.78 6.03 0.8342 2.26 7.31 48
VoxResNet [29] + Auto-context 0.8615 1.44 6.60 0.8946 1.93 6.05 0.8425 2.19 7.69 54
VoxResNet [29] 0.8612 1.47 6.42 0.8939 1.93 5.84 0.8396 2.28 7.44 56
MSL-SKKU 0.8606 1.52 6.60 0.8900 2.11 5.54 0.8376 2.32 6.77 61
LRDE 0.8603 1.44 6.05 0.8929 1.86 5.83 0.8244 2.28 9.03 61
MDGRU 0.8540 1.54 6.09 0.8898 2.02 7.69 0.8413 2.17 7.44 80
PyraMiD-LSTM2 0.8489 1.67 6.35 0.8853 2.07 5.93 0.8305 2.30 7.17 83
3D-UNet [57] 0.8544 1.58 6.60 0.8886 1.95 6.47 0.8347 2.22 8.63 84
IDSIA [59] 0.8482 1.70 6.77 0.8833 2.08 7.05 0.8372 2.14 7.09 100
STH [60] 0.8477 1.71 6.02 0.8845 2.34 7.67 0.8277 2.31 6.73 112

depicts the average weights for the case of three modalities.
A dark square in these plots indicates that the target layer
(on x-axis) makes a strong use of the features produced by
the source layer (on y-axis).

An important observation that one can make from both
figures is that, in most cases, all layers spread the im-
portance of the connections over many previous layers,
not only within the same path, but also from the other
streams. This indicates that features extracted by shallower
layers are directly used by deeper layers from both paths,
which confirms the usefulness of hyper-dense connections
in facilitating information flow and in learning complex
relationships between the modalities within different levels
of abstractions.

Looking into the details of each particular application,
we can observe that, for HyperDenseNet trained on iSEG
(top row of Fig 6), immediate previous layers have typically
higher impact on the connections from both paths. Further-
more, the connections having access to the MR-T2 features
typically have the strongest values, which may indicate that
MR-T2 is more discriminative than T1 in this particular
situation. We can also observe some regions with high
(>0.5) feature re-usability patterns from shallow to deep
layers. The same behaviour is observed for HyperDenseNet

trained on two modalities from the MRBrainS challenge,
where immediate previous layers have a high impact on
the connections within and in-between the paths. The re-
use of low-level features by deeper layers is more evident
than in the previous case. For example, in HyperDenseNet

trained with T1-IR and FLAIR, the deep layers in the T1-
IR path make a strong use of the features extracted in
shallower layers in the same path, as well as in the path
that processed the FLAIR modality. This strong re-use of
the features extracted early in the network from both paths
occurred across all the configurations. The same pattern
is observed when using three modalities (Fig 7), with a
strong re-use of shallow features from the last layers in
the network. This reflects the importance of allowing the
deepest layers in the network to access to the early-extracted
features. Additionally, it demonstrates that learning how
and where to fuse information from multiple sources is a
better strategy than combining image modalities in early or
late stages.

Fig. 6. The average of the L1-norm of the filters from HyperDenseNet

trained on the iSEG (top) and MRBrainS (from 2nd to 4th rows) chal-
lenges with two modalities. The color at each location encodes the
average L1 norm of the weights connecting a convolutional-layer source
to a convolutional-layer target. These values were normalized between
0 and 1 by accounting for all the values within each layer.

4 DISCUSSION

We presented a novel densely connected network, Hyper-

DenseNet, which makes efficient use of multiple imaging
modalities in the context of segmentation. In our model,
each imaging modality has a path, and dense connections
occur not only between the pairs of layers within the same
path, but also between those across different paths.

We presented extensive experiments on two challenging
public brain segmentation benchmarks, one focusing on 6-
month infant data and the other on adult images, with
significant differences in the image characteristics between
the two benchmarks. HyperDenseNet yielded state-of-the-
art performances on both. Considering several baselines,
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Fig. 7. The average of the L1-norm of the filters from HyperDenseNet

trained on the MRBrainS challenge with three modalities (MR-T1, FLAIR
and MR-T1 IR). The color at each location encodes the average
L1 norm of the weights connecting a convolutional-layer source to a
convolutional-layer target. These values were normalized between 0 and
1 by accounting for all the values within each layer.

we showed experimentally the positive impact of hyper-
dense connections between different streams in multi-modal
segmentation. It is worth mentioning that the architecture
and hyper-parameters were unchanged through the exper-
iments of both challenges, showing the flexibility of the
proposed model in brain related problems. We anticipate
that our model has a much larger applicability scope, going
beyond brain tissue regions, in a breadth of other multi-
modal volumetric medical image segmentation problems.

The accuracy improvements that HyperDenseNet brings
might be explained by several factors. First, the network has
total freedom to learn complex combinations between the
modalities, within and in-between all the levels of abstrac-
tion, which increases significantly the learning representa-
tion. Second, it implicitly imposes deep supervision from
the loss function that individual layers receive via the dense
connections. The benefits of such deep supervision have
been observed previously in the different context of deeply-
supervised nets [61], which impose explicit layer-wise su-
pervision by associating a classifier to each of the hidden
layers. Finally, hyper-dense connections facilitate gradient
flow, allowing feature re-use throughout the network, as
evidenced by our experimental analysis. In fact, shallow
layers typically operate at a fine-grained scale, to extract
low-level features, while deeper layers extract coarse-scale
information so as to infer the global context. Both scales
are important, but occur at different levels in the network.
Including dense connections alleviates this problem by fa-
cilitating the information flow between the different scales.

We evaluated the impact of the number of modalities on
the performance and found that, even with less modalities,
HyperDenseNet yields competitive performances in com-
parison to several state-of-the-art segmentation networks
under the same conditions. An important finding in this
experiment was that DeepMedic outperformed two versions

of HyperDenseNet, when the latter is trained with only two
modalities instead of three: T1-T1 IR and T1 IR-FLAIR.
In fact, DeepMedic explicitly uses multi-scale information,
incorporating larger receptive fields via two paths, one for
the input image and the other processing a low-resolution
version of the input. This suggests that integrating hyper-
dense connections with explicit multi-scale information and
larger receptive fields might further improve the network
performance. Indeed, Huang et al. [62] investigated the use
of dense connections in a multi-scale branch network, Multi-

Scale Dense Net (MSDN), for image classification, showing
that the multi-scale version outperforms its predecessor
DenseNet.

Our experimental analysis of feature re-use revealed
a strong information flow between the deep and shallow
layers, particularly at the high levels of abstraction, an
observation aligned with the findings in [48]. This indicates
that the early-layer features are directly used by the deep
layers. Our feature re-use study has an important benefit: it
may allow us to remove useless connections, keeping only
those having a strong information flow. This will ideally
generate a computationally efficient model, without affect-
ing performance.

5 CONCLUSION

This study investigated a hyper-densely connected 3D fully
CNN, HyperDenseNet, with applications to brain tissue seg-
mentation in multi-modal MRI. Our model leverages dense
connectivity beyond recent works, exploiting the concept in
multi-modal problems. Dense connections occur not only
within each single-modality stream, but also across the
streams, which increases significantly the learning repre-
sentation in multi-modal problems: The network has to-
tal freedom to explore complex combinations between the
different modalities, within and in-between all the levels
of abstraction. We reported comprehensive evaluations and
comparisons using the benchmarks of two highly compet-
itive challenges, iSEG-2017 for 6-month infant brain seg-
mentation and MRBrainS for adult data, showing state-of-
the-art performances of HyperDenseNet on both. The ex-
periments presented in this work provided new insights
on the inclusion of short-cut connections in deep neural
networks for segmentating medical images, particularly
in multi-modal scenarios. HyperDenseNet demonstrated its
potential to tackle multi-modal volumetric medical image
segmentation problems.
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[34] S. González-Villà, A. Oliver, S. Valverde, L. Wang, R. Zwiggelaar,
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Supplemental Materials
Dataset iSEG:
The images were acquired at the UNC-Chapel Hill on

a Siemens head-only 3T scanner with a circular polarized
head coil, and were randomly chosen from the pilot study
of the Baby Connectome Project (BCP)6. During scan, in-
fants were asleep, unsedated and fitted with ear protection,
with the head secured in a vacuum-fixation device. T1-
weighted images were acquired with 144 sagittal slices
using the following parameters: TR/TE = 1900/4.38 ms,
flip angle = 7� and resolution = 1⇥1⇥1 mm3. Likewise,
T2-weighted images were obtained with 64 axial slices,
TR/TE = 7380/119 ms, flip angle = 150� and resolution
=1.25⇥1.25⇥1.95 mm3. T2 images were linearly aligned
onto their corresponding T1 images. All the images were
resampled into an isotropic 1⇥1⇥1 mm3 resolution. Stan-
dard image pre-processing steps were then applied using
in-house tools, including skull stripping, intensity inhomo-
geneity correction, and removal of the cerebellum and brain
stem. For this application, 9 subjects were employed for
training and 1 for validation.

Dataset MRBrainS:
20 subjects with a mean age of 71 ± 4 years (10 male, 10

female) were selected from an ongoing cohort study of older
(65 � 80 years of age), functionally-independent individu-
als without a history of invalidating stroke or other brain
diseases [63]. To test the robustness of the segmentation
algorithms in the context of aging-related pathology, the
subjects were selected to have varying degrees of atrophy
and white-matter lesions, and the scans with major artifacts
were excluded. The following sequences were acquired and
used for the evaluation framework: 3D T1 (TR: 7.9 ms, TE:
4.5 ms), T1-IR (TR: 4416 ms, TE: 15 ms, and TI: 400 ms)
and T2- FLAIR (TR: 11000 ms, TE: 125 ms, and TI: 2800
ms). The sequences were aligned by rigid registration using
Elastix [64], along with a bias correction performed using
SPM8 [65]. After the registration, the voxel size within all
the provided sequences (T1, T1 IR, and T2 FLAIR) was
0.96⇥0.96⇥3.00 mm3. Five subjects that were representative
for the overall data (2 male, 3 female and varying degrees of
atrophy and white-matter lesions) were selected for training.
The remaining fifteen subjects were provided as testing
data. While ground truth was provided for the 5 train-
ing subjects, manual segmentations were unknown for the
testing data set. The following structures were segmented
and were available for training: (a) cortical gray matter, (b)
basal ganglia, (c) white matter, (d) white matter lesions, (e)
peripheral cerebrospinal fluid, (f) lateral ventricles, (g) cere-
bellum and (h) brainstem. These structures can be merged
into gray matter (a-b), white matter (c-d), and cerebrospinal
fluid (e-f). The cerebellum and brainstem were excluded
from the evaluation.

Dice similarity coefficient (DSC):
Let Vref and Vauto be, respectively, the reference and

automatic segmentations of a given tissue class and for a
given subject. The DSC for this subject can be defined as:

DSC
�
Vref , Vauto

�
=

2 | Vref \ Vauto |
| Vref | + | Vauto | (5)

6. http://babyconnectomeproject.org

DSC values are within a [0, 1] range, 1 indicating perfect
overlap and 0 corresponding to a total mismatch.

Modified Hausdorff distance (MHD):
Let Pref and Pauto denote the sets of voxels within the

reference and automatic segmentation boundary, respec-
tively. MHD is given by:

MHD
�
Pref , Pauto

�
= max

n
max
q2Pref

d(q, Pauto), max
q2Pauto

d(q, Pref)

o
,

(6)
where d(q, P ) is the point-to-set distance defined by:

d(q, P ) = minp2P kq � pk, with k.k denoting the Euclidean
distance. Low MHD values indicate high boundary similar-
ity.

Average surface distance (ASD):
Using the same notation as the Hausdorff distance

above, the ASD corresponds to:

ASD
�
Pref , Pauto

�
=

1

|Pref |
X

p2Pref

d(p, Pauto), (7)

where |.| denotes the cardinality of a set. In distance-based
metrics, smaller values indicate higher proximity between
two point sets and, thus, a better segmentation.

5.0.0.1 Absolute Volume Differences:

AVD
�
Vref , Vauto

�
=

| Vref � Vauto |
Vref

· 100 (8)

where Vauto and Vref are the volume of the segmentation
result and reference, respectively. These measures were used
to evaluate the following brain structures in each of the
fifteen test datasets: GM, WM, CSF, brain (GM + WM), and
intracranial volume (GM + WM + CSF). The brainstem and
cerebellum are excluded from the evaluation.

Implementation:
We extended our 3D FCNN architecture proposed in

[36], which is based on Theano. The source code of this
architecture is publicly available7. Training and testing was
performed on a server equipped with a NVIDIA Tesla P100
GPU with 16 GB of RAM memory. Training HyperDenseNet

took around 70 min per epoch, and around 35 hours in total
for the two-modality version. With three image modalities,
training each epoch took nearly 3 hours. Inference on a
whole 3D MR scan took on average from 70-80 to 250-270
seconds, for the two- and three-modality versions, respec-
tively.

FCN Res3D: The architecture of FCN Res3D consists on
5 convolutional blocks with residual units on the encoder
path, with 16, 64, 128, 256 and 512 kernels. The decoding
path contains 4 convolutional upsampling blocks, each com-
posed of 4 kernels, one per class. At each residual block,
batch normalization and a Leaky ReLU with a leakage
value of 0.1 are employed before the convolution. Instead
of including max-pooling operations to re-size the images,
stride values of 2 ⇥ 2 ⇥ 2 are used in layers 2, 3 and 4.
Volume size at the input of the network is 64 ⇥ 64 ⇥ 24. The
implementation of this network is provided in [58] 8.

UNet3D: Although quite similar to FCN Res3D, UNet3D

presents some differences, particularly in the decoding path.
It contains 9 convolutional blocks in total, 4 in the encoding
and 5 in the decoding path. The number of kernels in the

7. https://github.com/josedolz/SemiDenseNet
8. https://github.com/DLTK/DLTK
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Single Dense Path Dual Dense Path

Fig. 8. Section of baseline architectures: single-path dense (left) and dual-path dense (right). While in the first case both modalities are concatenated
at the input of the network, each modality is analyzed independently in the second architecture, and features fused at the end of the streams. Each
gray region represents a convolutional block. Red arrows correspond to convolutions and black arrows indicate dense connections between feature
maps. Dense connections are propagated through the entire network.

encoding path are 32, 64, 128 and 256, with strides of 2
⇥ 2 ⇥ 2 at layers 2, 3 and 4. In the decoding path, the
number of kernels are 256, 128, 64, 32 and 4, from the
first to the last layer. Furthermore, skip connections are
added at the convolutional blocks of the same scale between
the encoding and decoding paths. As in FCN Res3D, batch
normalization and a Leaky ReLU with a leakage value of 0.1
are employed before the convolution at each block. Volume
size at the input of the network is also 64 ⇥ 64 ⇥ 24. The
implementation is provided in [58].

DeepMedic: We used the default architecture of
DeepMedic in our experiments. This architecture includes
two paths with 8 convolutional blocks: 30, 30, 40, 40, 40,
40, 50, 50 kernels of size 3⇥3⇥3. At the end of both paths,
two fully connected convolutional layers with 150 1⇥1⇥1
filters each are added, before the last classification layer.
The second path is used with a low-resolution version of the
input at the first path, for a larger receptive field. The input
patch size is 27⇥27⇥27 and 35⇥35⇥35 for training and
segmentation, respectively. The official code 9 is employed
to evaluate this architecture.

9. https://github.com/Kamnitsask/deepmedic
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