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Figure 1. An overview of our main results. First row: (a) We begin with a 3D object and compute its medial surface. (b) The radius
associated with the medial surface is mapped to its boundary. (c) Boundary points that are associated with the same medial surface point are
coupled and shown with the same color. (d) Entries of the adjacency matrix are computed using the intersection volume of the associated
medial spheres to drive adjacency weights, for subsequent spectral analysis (see Section 3 for a detailed explanation). (e) The first non-
trivial eigenvector is mapped onto the original shape. Second row: The use of our medially driven spectral coordinates for segmentation
(f), object classification (g), and shape correspondence (h).

Abstract

In recent years there has been a resurgence of interest in
our community in the shape analysis of 3D objects repre-
sented by surface meshes, their voxelized interiors, or sur-
face point clouds. In part, this interest has been stimulated
by the increased availability of RGBD cameras, and by ap-
plications of computer vision to autonomous driving, med-
ical imaging, and robotics. In these settings, spectral co-
ordinates have shown promise for shape representation due
to their ability to incorporate both local and global shape
properties in a manner that is qualitatively invariant to iso-
metric transformations. Yet, surprisingly, such coordinates
have thus far typically considered only local surface posi-
tional or derivative information. In the present article, we
propose to equip spectral coordinates with medial (object
width) information, so as to enrich them. The key idea is

to couple surface points that share a medial ball, via the
weights of the adjacency matrix. We develop a spectral
feature using this idea, and the algorithms to compute it.
The incorporation of object width and medial coupling has
direct benefits, as illustrated by our experiments on object
classification, object part segmentation, and surface point
correspondence.

1. Introduction
Advances in manufacturing sensors that can perceive 3D

information, including RGBD cameras, are beginning to
revolutionize 3D perception using computer vision meth-
ods. In this context, 3D object shape analysis has received
much attention due to its relevance to a variety of appli-
cations in robotics, medical imaging, autonomous driving,
surveillance, and other domains. The technologies that are



being developed for these applications must grapple with
fundamental problems including 3D shape classification,
part segmentation, and shape matching.

The problem of finding correspondences between 3D
objects has a long history [4, 7, 19, 20, 30, 31, 40]. Mov-
ing beyond object matching, the segmentation of a 3D ob-
ject into its constituent parts is another classic computer
vision problem for which research is very much still ac-
tive [18, 21, 29, 32, 47, 54]. In addition to part segmenta-
tion, 3D shape classification remains a topic of active re-
search. On this front, deep learning methods, including
PointNet [37], PointNet++ [38], DeepSet [58], ShapeCon-
textNet [53], PointGrid [26], DynamicGCN [56], and Sam-
pleNet [24], have shown promise. As such models grow and
undergo further development, they also become more data-
hungry and require more resources in terms of computing
time. Deep neural network models are typically limited by
their design and they cannot easily learn features that are
not describable by the parts from which they are made. In
the context of 3D shape analysis, it is also important for a
neural network based model to be able to learn appropriate
latent features when the point cloud is sparse or has been
geometrically transformed [55].

To facilitate these tasks, a descriptive and versatile rep-
resentation for 3D object shape is key. To this end, in the
present article we propose a novel 3D object shape repre-
sentation method that computes spectral coordinates using
the associated 3D medial surface. Medial representations
have been used for 2D shape analysis in the literature for
decades [3, 33, 39, 44, 46, 52]. Applications of medial rep-
resentations also exist in 3D [43, 45], but challenges ex-
ist around computing them reliably and robustly. In ad-
dition, the computer vision community has shifted away
from the use of hand-crafted features to embrace the use
of deep learning based descriptors, learned from geometric
data. Taken together, these methods have allowed for better
performance in general, in most tasks that the models have
been curated for.

In the present article, we aim to equip present models
with an enriched representation of 3D object shape, one that
leverages the local width of the object to construct a spectral
feature at each of its boundary points. We make three main
contributions.

1. We develop a robust, and reliable implementation of
an algorithm for computing 3D medial surfaces based
on an average outward flux measure.

2. We introduce a novel approach to computing spectral
coordinates, exploiting the duality between the medial
surface and the boundary it represents. This approach
brings inferred local and global geometrical informa-
tion to the boundary and allows for an enriched spec-
tral representation of that boundary. In particular, sur-

face points that are bi-tangent to medial spheres that
have a common volume are coupled to capture local
object part symmetry.

3. We demonstrate that by using such spectral coordi-
nates that are associated with the medial surface, there
are performance benefits for popular 3D shape analy-
sis tasks, including finding correspondences between
surface points, 3D object part segmentation, and 3D
object shape classification.

Our article is organized as follows. In Section 2, we re-
view average outward medial surfaces and their computa-
tion. In Section 3, we introduce our novel medial spectral
coordinates. In Section 4 we develop a number of applica-
tions that take advantage of our these spectral coordinates.
Finally, we conclude with a summary of contributions and a
discussion of possible future research directions, in Section
5.

2. Medial Representation of 3D Shapes
Introduced by Harry Blum [5], medial axes or skeletons

have been used in the vision and computational geometry
literature for years [2, 12, 16, 27, 43, 44, 48]. Formally, the
medial axis is defined as the locus of centers of maximal
inscribed spheres within a watertight object. In 3D this lo-
cus can include both 3D curves and 3D medial manifolds,
that together comprise the 3D medial surface of an object.
A promise of this representation is that it captures the du-
ality between both boundary and interior object properties,
the latter by considering the radius associated with the in-
scribed sphere to capture local object width. In addition,
it is possible to reconstruct the original object from its me-
dial surface, so in this sense the representation is complete.
Unfortunately, in practice, computing a medial surface ro-
bustly turns out to be a challenging computational problem.
We focus here on the medial surface computation approach
of [42], which is based on a notion of average outward flux
(AOF), and which was later used for hippocampal shape
analysis [6] as well as other applications [43].

2.1. Average Outward Flux Medial Surfaces

To provide the intuition behind this algorithm consider
the object shown in Figure 2, together with a local por-
tion of its medial surface (light green) and the associated
boundary surface patches (purple). The medial surface is
homotopic to the original object and thus reflects its topol-
ogy while making local reflective symmetries explicit. Let
S represent the closed surface of a 3D object and DE(p)
be the Euclidean distance to the boundary of this object at
each point p in its interior. Now consider the gradient vec-
tor field q̇ of DE(p). Where there is just one closest point
b = (bx, by, bz) on the boundary, to a particular interior-
point a = (ax, ay, az), the gradient vector at a is computed
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Figure 2. A schematic of a portion of a medial surface together
with a selected maximal inscribed sphere, and the associated bi-
tangent points (b1, b2) where the sphere touches the boundary.
The medial surface patch is shown in light green and the asso-
ciated local boundary patches are in light purple. Each point p
on the medial manifold is associated with two distinct bi-tangent
points on the object’s surface, to which it is closest in the sense of
Euclidean distance (the figure is adapted from [6]).

as:
q̇(a) =

a− b

||a− b||
(1)

However, the gradient vector field is multi-valued at loca-
tions on the medial surface. Exploiting this property, a mea-
sure was proposed in [42], based on the outward flux of q̇
through a shrinking sphere averaged over the surface area
of that sphere:

AOF (p) =

∫
∂R

⟨q̇,N0⟩∂S
Area(∂R)

. (2)

Here ∂R represents the surface area of the shrinking sphere
and ∂S is the surface area element. N0 is the outward nor-
mal at each point on the sphere. Earlier work on medial
axis computations has shown that as the size of this sphere
shrinks to zero, this measure gives non-zero values on the
medial surface, but zero-values off the medial locus, and
hence provides an effective means for localizing medial sur-
face points [14, 42]. In the present article, we use a robust
implementation of this algorithm. Figure 3 illustrates the
sequence of steps for 3D medial surface generation.

2.2. Preserving object topology

Whereas in a continuous setting one can associate medial
surface points with locations where the AOF is non-zero, in
a discrete setting care has to be taken to ensure that the re-
sultant set of voxels is homotopic to the original object. We
follow past work [6], which rests on a definition of end-
points and simple points on a digital 3D lattice:

1. A simple point is a point that cannot be removed with-
out changing the topology of the object. Its removal
will either disconnect the object or create a hole or a
cavity.

Algorithm 1 Medial Surface Generation Procedure

procedure AVERAGE OUTWARD FLUX COMPUTATION
Compute the Euclidean Distance Function DE(p)
Compute the gradient vector field ∇DE

Compute the average outward flux of ∇DE using 2
procedure AOF TOPOLOGY PRESERVING THINNING

Heap → H , Threshold → τ
for each point p on the boundary of the object do

if p is simple then
insert point p into H with key value AOF (p)

while H is not empty do
p = HeapExtractMax(H)
if p is simple then

if p is end point and AOF (p) > τ then
Label p as a medial surface point

else
Remove p

for all neighbors q of p do
if if q is simple then inset point q into H

2. Consider a plane that passes through a point p such
that its intersection with the 3D object results in an
open curve. If this curve ends at p, then p is an end-
point of that 3D curve. Additional examples of end-
points include when p is on the rim or corner of a 3D
surface.

On a 3D digital lattice we can classify both simple points
and endpoints by considering the 26 neighborhoods of a
particular voxel (the cubic lattice of 3× 3× 3). We imple-
ment these two notions of simple points and endpoints ac-
cording to the characterization of [36], which is based upon
different sets of neighbors that share either a point, an edge,
or a face with the considered voxel. Algorithm 1 describes
the resultant medial surface generation method, which com-
bines the AOF measure with a topology preserving thinning
approach, using the above characterization of simple points
and endpoints. Figure 3 provides several examples for a va-
riety of 3D objects. At the end of this process the surface
of each 3D object S can be represented by a set of skeletal
points where:

S =

n⋃
i=1

psk
i =

n⋃
i=1

(xi, yi, zi, ri, λi). (3)

Here the triplet (xi, yi, zi) represents the location of the
surface point pi, ri is the radius of the maximal inscribed
sphere touching the object at pi, and λi is the average out-
ward flux value at the medial surface point at the center of
that sphere. As shown in [43] the AOF value also reveals
the object angle, and thus provides additional useful object
and symmetry information. In the next subsection, we will
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Figure 3. Using the divergence theorem, medial axis voxels can be identified by considering the behavior of the average outward flux
(AOF) of the gradient of the Euclidean distance function to the boundary of a 3D object, through a shrinking sphere [43]. In particular, the
limiting AOF value of all points not located on the skeleton is equal to zero. Starting with the boundary of a 3D object (a), we first compute
the distance map to the boundary (b), and then compute the 3D AOF map (c) from this distance. Finally, by retaining the non-zero AOF
voxels, we obtain the 3D medial axis transform (d). Since at each medial voxel the maximal inscribed sphere (Fig. 2) touches the boundary
at least at two distinct points, it is possible to reconstruct the boundary purely from the medial locus.

demonstrate that this representation can be used for object
reconstruction.

2.3. Boundary Reconstruction Using Medial Points

Perhaps the most obvious criterion for the suitability of
an object shape representation method is whether it can be
used to reconstruct the original object. This criterion, along-
side other criteria such as completeness, hierarchy, invari-
ance, stability, and similarity has been used to judge shape
representation choices. Whereas medial representations sat-
isfy several of these criteria [43], algorithms implemented
on a discrete lattice may not allow for faithful object recon-
struction. Here, for purposes of reconstruction, we compare
the AOF skeletonization process against a modern center-
line extraction method [6] which has an open source imple-
mentation in Itk (https://bit.ly/3rZPY57). Since
the medial surface consists of the locus of maximally in-
scribed spheres, the original object can be reconstructed
by considering the envelope of the maximally inscribed
spheres at all the medial surface points. A quantitative com-
parison via a mean intersection over union (mIoU) measure
with original objects is shown in Table 1, over the entire
datasets of ModelNet10 [51] and COSEG [50]. For all ob-
ject categories in each dataset the medial surface based re-
constructions are more complete than those obtained using
medial curves.

3. Spectral Coordinates using Medial Mani-
folds

We now propose to use the medial manifold to equip
the object’s surface with a new spectral signature, one that
explicitly considers local object width. Whereas spectral
approaches have been popular for shape correspondence
[9, 10, 20, 31] and spectral methods have also been success-
fully used in combination with graph convolution to learn

COSEG ModelNet10
Model Ours Curve Model Ours Curve

Candelabra 96.99 73.25 Table 99.68 88.84
Chairs 96.38 81.64 Bathtub 93.25 86.57
Fourleg 90.33 73.24 Bed 95.31 73.39
Goblets 90.68 82.24 Chair 96.10 86.08
Guitars 93.19 76.80 Desk 97.78 81.80
Lamps 95.30 68.19 Dresser 94.23 91.81
Vases 96.54 70.99 Monitor 90.90 73.60
Irons 94.07 80.71 Night stand 92.66 83.10

Tele-aliens 98.19 76.62 Sofa 91.53 81.52
Chairs (L) 97.18 80.26 Toilet 91.05 83.29

Mean 94.89 76.39 Mean 94.25 83.00
Table 1. The mean Intersection-Over-Union (mIoU) reconstruc-
tion measures, for the two datasets of COSEG and ModelNet10,
comparing the use of flux driven centrelines (https://bit.
ly/3rZPY57) and AOF medial surfaces [42].

features from point sets and meshes [15,49,57], the explicit
consideration of object width and the associated symmetry
properties and coupling of surface points which share a me-
dial ball is new.

Let the object’s surface S be represented by its set of
boundary points {b1,b2, . . . ,bn}. We voxelize the ob-
ject and compute the medial surface using Algorithm 1 in
Section 2. Let the set of resulting medial surface voxels
be {psk

1 ,psk
2 , . . . ,psk

m }. For each medial surface point psk
j

there is a direct relationship between the object angle θ (2)
and the AOF value at it (as discussed in [43]). Using this
relationship, for each psk

j , we generate a set of candidate
boundary points by rotation of unit tangent vectors by θ, fol-
lowed by scaling by the medial radius, in planes that contain
the medial surface normal. Of these candidates, we retain
those that are within a distance of 1 voxel to the object’s
surface. We refer to the set of such candidate boundary



Figure 4. Qualitative results showing correspondences obtained using our medial spectral coordinates across different poses of the same
models in the TOSCA [8] dataset.

points as SRec. Then, for each vertex on the original ob-
ject’s surface, we apply a k-nearest neighbor search with
k = 1, to find the closest corresponding boundary point in
SRec. In this fashion, each boundary vertex point bi is asso-
ciated with a unique medial surface point psk

j and is given a
unique medial radius value. Now, assuming that the bound-
ary is tessellated so that the boundary points are the vertices
(or set of nodes) in a connected graph, eigenmaps of these
nodes are computed as follows. We first compute an adja-
cency matrix (as shown in Figure 3 (d)) where a particular
metric is used to compute the adjacency weights in the ma-
trix W , as follows. Consider two boundary points (nodes)
bi and bj . Let these boundary points be associated with
skeletal points pi and pj , respectively. Now, let the maxi-
mal inscribed sphere at skeletal point pi be given by ρ(psk

i ).
We consider the degree of overlap between the inscribed
spheres touching the object’s surface at bi,bj to construct
the adjacency weight between the associated nodes

wij =
C(i, j)

ρ(psk
i )

, (4)

where C(i, j) is the volume of the intersection between the
spheres ρ(psk

i ) and ρ(psk
j ). We then construct the general

Laplacian operator as L = D−W , where W is the weighted
adjacency matrix of the graph with affinity weights (see
[17]), and the degree matrix, D, is a diagonal matrix, where
Dii = Σjwij . We then compute the eigenvectors of the
Laplacian matrix:

LEλi
= λiEλi

, i = 1, . . . , n. (5)

Here, since matrix W is not symmetric (leading to a pos-
sibility of imaginary numbers numerically), we create two
symmetric matrices W sym and Dsym as follows. W sym

has entries given by

wsym
ij = C(i, j), (6)

and Dsym which is a diagonal matrix, with entries dsymii =
ρ(psk

i ). Now, by using the Arnoldi method of ARPACK
[28], we can obtain eigenvectors of the following equation:

W symEλi
= λiD

symEλi
, i = 1, . . . , n (7)

where the obtained eigenvalues are real and non-negative.
Now that we have our eigenvectors, we can obtain spectral
coordinates by mapping the coordinates from the boundary
of the 3D shape. For each boundary point bi element (e.g.
x, y, z or its corresponding sphere radius value r from the
medial surface), we can compute the mapped information
on the ith basis eigenvectors as:

mi = biD
symEλi . (8)

Referring back to the Dirichlet energy equation introduced
by Bronstein et al. [10] that measures change over the
boundary S , we can introduce our spectral coordinates as
follows:

SC(S) =
( n⋃

i=1

λi

k∑
j=1

(m2
ij)

)
. (9)
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Figure 5. Correspondence accuracy on the TOSCA dataset [8]
for different methods. The methods we have compared include
PMF [23], SGMDS [1], FM [35], BIM [22], Mobius Voting [30],
Conformal [22], and the use of our new MedialSpectral signature.

We are careful to always remove the trivial eigenvalue of
0 (the smallest eigenvalue) from our set of spectral coordi-
nates.

4. Applications

We now evaluate the use of our medial spectral coordi-
nates for three popular applications in 3D shape analysis:
a) finding correspondence between surface points, b) 3D
object part segmentation of 3D objects and c) 3D object
classification. For each case, we demonstrate that the ex-
plicit use of local object width, as reflected in the medial
radius, and the coupling of surface points that share a com-
mon medial sphere, provides direct benefits and improved
performance.

4.1. Shape Correspondence

To obtain correspondences between surface points on
two distinct objects, one needs a matching algorithm that
matches one against the other. In the present setting, we
have spectral coordinates alongside eigenvalues that are ob-
tained from a Laplacian operator. When spectra are com-
puted, two situations are possible that make the direct com-
parison of spectral coordinates challenging. First, eigenvec-
tor computation may generate a sign ambiguity. Second, it
is possible that when eigenvectors are being computed for
the same data but for two different shapes, they might be
computed in opposite orders due to the fact that the order-
ing of the lowest eigenvector may change. [31] suggests a
method for mitigating the effects of this flipping problem
by favoring three factors: 1) pairs of eigenvectors that are
most likely to match based on the similarity between their
eigenvalues 2) histograms 3) the spatial distributions of their
spectral coordinate value. We use these techniques to re-

order and align spectra during the correspondence finding
process. The process of reordering is sped up by down-
sampling all eigenvectors. After reordering and aligning the
spectra, two points that are closest in the embedded repre-
sentations can be treated as corresponding points across the
two objects. This is achieved by using the Coherent Point
Drift (CPD) method [34]. We test our correspondence find-
ing algorithm on the TOSCA dataset [8], which includes
a total of 80 objects, including four limb animals such as
cats and dogs, female and male figures. We compare our
methods against several other existing methods and report
the results in Figure 5. The results show the advantages of
using medially driven spectral coordinates when compared
to the best conformal model that we could find. We also
achieve results that are comparable to those produced by the
state of the art deep neural network based models, such as
PMF [23]. We show qualitative results of correspondences
obtained on four different models from the TOSCA dataset
in Figure 4.

4.2. Part Segmentation

We now show that the addition of medially driven spec-
tral coordinates can be beneficial to the task of part seg-
mentation. To achieve this aim, we propose the follow-
ing task to carry out unsupervised 3D shape decomposi-
tion. We collect all the spectral coordinates computed and
add them as additional features to the boundary representa-
tion bi = (xi, yi, zi, ri). We then use the high-dimensional
data spectral clustering of [11] to cluster all object models
within a category together. The algorithm of [11] provides a
spectral clustering approach based on subspace randomiza-
tion and graph fusion for high-dimensional data, which en-
ables us to carry out both segmentation and co-segmentation
tasks for a single shape or family of shape models (co-
segmentation). To examine whether these added features
to the original shape help with the segmentation task, we
tested our off-the-shelf method on the Princeton Segmenta-
tion Benchmark [13]. We report our results in Table 2 and
show typical qualitative part segmentation results in Figure
6.

Our results show that in several of these object cate-
gories, there is a boost in performance when we use spectral
coordinates that use medial surface information over the use
of raw data (with the spectral clustering algorithm). These
results are reflected in the second (SpectralMedial) and third
(Spectral) columns of Table 2. We also observe that the use
of spectral coordinates outperforms several of the other ex-
isting approaches including the deep model-based approach
of [25]. Finally, the mean performance and the rand index
measure of our approach is the best overall on the entire
Princeton dataset [13].
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Figure 6. Qualitative part segmentation results obtained using medially driven spectral signatures on the Princeton segmentation benchmark
(see text for details).

Model SpectralMedial Spectral MV-RNN [25] Shu [41] WcSeg RandCuts ShapeDiam NormCuts CoreExtra RandWalks FitPrim KMeans

Human 0.0557 0.1240 0.106 0.116 0.128 0.131 0.179 0.152 0.225 0.219 0.153 0.163
Cup 0.1413 0.1262 0.100 0.096 0.171 0.219 0.358 0.244 0.307 0.358 0.413 0.459

Glasses 0.0802 0.1304 0.066 0.173 0.173 0.101 0.204 0.141 0.301 0.311 0.235 0.188
Airplane 0.0728 0.0891 0.085 0.150 0.089 0.122 0.092 0.186 0.256 0.248 0.166 0.211

Ant 0.0279 0.0900 0.021 0.001 0.021 0.025 0.022 0.047 0.065 0.068 0.086 0.131
Chair 0.0483 0.0518 0.051 0.040 0.103 0.184 0.111 0.088 0.187 0.156 0.212 0.213

Octopus 0.0255 0.0835 0.022 0.036 0.029 0.063 0.045 0.061 0.051 0.067 0.101 0.101
Table 0.0630 0.1158 0.072 0.040 0.091 0.383 0.184 0.093 0.244 0.131 0.181 0.369
Teddy 0.0521 0.1105 0.035 0.024 0.056 0.045 0.057 0.121 0.114 0.128 0.132 0.182
Hand 0.0670 0.1443 0.076 0.135 0.116 0.090 0.202 0.155 0.155 0.189 0.202 0.154
Plier 0.0970 0.1433 0.054 0.151 0.087 0.109 0.375 0.183 0.093 0.230 0.169 0.263
Fish 0.1030 0.2339 0.146 0.288 0.203 0.297 0.248 0.394 0.273 0.388 0.424 0.413
Bird 0.0049 0.0850 0.059 0.171 0.101 0.107 0.115 0.184 0.124 0.250 0.196 0.190

Armadillo 0.0178 0.1265 0.060 0.073 0.081 0.092 0.090 0.116 0.141 0.115 0.091 0.117
Bust 0.1081 0.1729 0.162 0.275 0.266 0.232 0.298 0.316 0.315 0.298 0.300 0.334
Mech 0.1018 0.1133 0.121 0.073 0.182 0.277 0.238 0.159 0.387 0.211 0.306 0.425

Bearing 0.0660 0.1516 0.080 0.056 0.122 0.124 0.119 0.183 0.398 0.246 0.188 0.280
Vase 0.0772 0.1504 0.106 0.212 0.161 0.133 0.239 0.236 0.226 0.246 0.257 0.387

FourLeg 0.0921 0.1772 0.135 0.140 0.152 0.174 0.161 0.208 0.191 0.218 0.185 0.193
Average 0.0696 0.1273 0.082 0.118 0.123 0.153 0.176 0.172 0.211 0.215 0.210 0.251

Table 2. The Rand Index (error) segmentation scores, for object categories in the Princeton segmentation benchmark, comparing across
different methods. In this table, a lower number indicates better performance. The use of medially drive spectral coordinates (column
two) consistently outperforms the use of spectral coordinates without the medial (radius) component (column three). The approach is also
competitive against many other approaches for several of the object categories.



M
N

et
10 bathtub bed chair desk dresser monitor night stand sofa table toilet

Vanila 83.87 92.85 94.73 77.77 83.87 96.48 84.02 91.70 80.78 95.87
Ours 85.71 94.28 92.85 82.80 85.54 96.51 84.33 96.44 83.40 97.02

M
N

et
40

airplane bathtub bed bench bookshelf bottle bowl car chair cone
Vanila 100.00 79.86 93.88 74.93 92.81 93.98 100.00 97.77 95.83 100.00
Ours 100.00 83.50 98.19 76.38 96.57 94.67 100.00 98.58 98.88 100.00

cup curtain desk door dresser flower pot glass box guitar keyboard lamp
Vanila 69.85 89.83 78.94 94.89 64.90 29.89 93.93 100.00 100.00 89.85
Ours 73.95 92.46 81.39 99.29 66.83 32.20 98.71 100.00 100.00 90.93

laptop mantel monitor night stand person piano plant radio range hood sink
Vanila 100.00 95.90 94.86 82.41 84.93 88.63 72.85 69.81 90.99 79.93
Ours 100.00 98.87 98.30 84.37 88.03 92.77 73.09 70.41 95.77 83.19

sofa stairs stool table tent toilet tv stand vase wardrobe xbox
Vanila 95.87 84.94 89.95 87.86 94.88 98.88 86.87 78.79 59.93 69.91
Ours 97.13 86.97 90.60 89.31 96.26 100.00 87.74 80.50 60.59 74.32

Table 3. The difference in object classification accuracy when using vanilla features and our medial spectral features with the PointNet
model [37], using the ModelNet10 and ModelNet40 datasets [51].

4.3. Object Classification

The last set of experiments we present in this paper re-
late to the problem of object classification. For this task,
we examine whether the inclusion of medial spectral coor-
dinates leads to an improvement in the performance of a
vanilla neural network model. To achieve this goal, we car-
ried out the following classification task. Inspired by the
idea presented in [55], we created a new feature vector for
each point in a 3D point cloud as a Geometry Similarity
Connection, capturing the local behavior of each point in
the eigenvector space. First, we find the k nearest neighbors
to each point in the eigenvector space. Then, we add the
mean and standard deviation of those k points to the x,y,z
coordinates of the considered point. Finally, we add these
additional features to the point’s features, creating a vector
of 9 features for each point in the point cloud. We tested
the added features on the popular PointNet model [37]. The
added features result in an improvement in the overall accu-
racy of the model from 88.76% to 90.41% on ModelNet-10
and from 86.23% to 88.26% on ModelNet-40. We present
a detailed account of the results for each category for this
experiment in Table 3.

5. Conclusion
We have proposed a novel spectral coordinate for 3D

shape analysis applications, one that includes the local ob-
ject width associated with the medial surface radius func-
tion. To our knowledge, this is the first attempt to include
medial width in a spectral feature, and our experiments
demonstrate the considerable benefits of doing this. Our
model ties surface points on a 3D object to their associated
medial surface points and uses the duality between the me-

dial surface of an object and its boundary to extract spectral
coordinates with explicit consideration of local object width
and object part symmetry. We have introduced a novel way
to compute the adjacency weights between boundary nodes,
based on the volume of intersection of their associated in-
scribed spheres. The use of this medially driven spectral
coordinate leads to improved correspondences when com-
pared against the use of conformal methods. When applied
to 3D part segmentation the use of the medial surface to
group together points on the boundary that are not neces-
sarily close to one another in geodesic terms, but are tied
to each other geometrically in terms of local object symme-
try, has advantages. Finally, our object classification exper-
iments using the medial spectral coordinates in addition to
the raw data demonstrate that a vanilla deep neural network
model can benefit from the incorporation of these additional
spectral features.

We intend to release all our implementations on GitHub,
to allow our results to be reproduced. In future work, we
aim to examine whether it is possible to compute medial
spectral coordinates implicitly, via a deep neural network
model. We also hope to examine the potential of medial
spectral coordinates for graph neural network models. Our
method suffers from a potential limitation, which is that the
complexity of the skeletonization algorithm is a linear func-
tion of the number of voxels. Hence, voxelization could im-
pose a computational burden when compared to some alter-
nate methods [45]. However, in practice, refined voxeliza-
tion at increased computatiional cost does provide greater
robustness to boundary perturbations.

Acknowledgments: We are grateful to the University of
Toronto and NSERC for research support.
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