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Abstract

Ensuring reliable confidence scores from deep networks is of pivotal importance
in critical decision-making systems, notably in the medical domain. While recent
literature on calibrating deep segmentation networks has led to significant progress,
their uncertainty is usually modeled by leveraging the information of individual
pixels, which disregards the local structure of the object of interest. In particular,
only the recent Spatially Varying Label Smoothing (SVLS) approach addresses this
issue by softening the pixel label assignments with a discrete spatial Gaussian ker-
nel. In this work, we first present a constrained optimization perspective of SVLS
and demonstrate that it enforces an implicit constraint on soft class proportions of
surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism
to balance the contribution of the constraint with the primary objective, potentially
hindering the optimization process. Based on these observations, we propose a
principled and simple solution based on equality constraints on the logit values,
which enables to control explicitly both the enforced constraint and the weight of
the penalty, offering more flexibility. Comprehensive experiments on a variety of
well-known segmentation benchmarks demonstrate the superior performance of
the proposed approach.

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success in important areas of various
domains, such as computer vision, machine learning and natural language processing. Nevertheless,
there exists growing evidence that suggests that these models are poorly calibrated, leading to
overconfident predictions that may assign high confidence to incorrect predictions [5, 6]]. This
represents a major problem, as inaccurate uncertainty estimates can have severe consequences in
safety-critical applications such as medical diagnosis. The underlying cause of network miscalibration
is hypothesized to be the high capacity of these models, which makes them susceptible to overfitting
on the negative log-likelihood loss that is conventionally used during training [6].

In light of the significance of this issue, there has been a surge in popularity for quantifying the
predictive uncertainty in modern DNNs. A simple approach involves a post-processing step that
modifies the softmax probability predictions of an already trained network [4, |6l 23| 24]. Despite
its efficiency, this family of approaches presents important limitations, which include i) a dataset-
dependency on the value of the transformation parameters and ii) a large degradation observed under
distributional drifts [20]. A more principled solution integrates a term that penalizes confident output
distributions into the learning objective, which explicitly maximizes the Shannon entropy of the
model predictions during training [21]. Furthermore, findings from recent works on calibration
[L6l [17] have demonstrated that popular classification losses, such as Label Smoothing (LS) [22]
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and Focal Loss (FL) [10], have a favorable effect on model calibration, as they implicitly integrate
an entropy maximization objective. Following these works, [11 18] presented a unified view of
state-of-the-art calibration approaches [21} 22| [10] showing that these strategies can be viewed as
approximations of a linear penalty imposing equality constraints on logit distances. The associated
equality constraint results in gradients that continually push towards a non-informative solution,
potentially hindering the ability to achieve the optimal balance between discriminative performance
and model calibration. To alleviate this limitation, [[11} 18] proposed a simple and flexible alternative
based on inequality constraints, which imposes a controllable margin on logit distances. Despite the
progress brought by these methods, none of them explicitly considers pixel relationships, which is
fundamental in the context of image segmentation.

Indeed, the nature of structured predictions in segmentation, involves pixel-wise classification based
on spatial dependencies, which limits the effectiveness of these strategies to yield performances
similar to those observed in classification tasks. In particular, this potentially suboptimal performance
can be attributed to the uniform (or near-to-uniform) distribution enforced on the softmax/logits
distributions, which disregards the spatial context information. To address this important issue,
Spatially Varying Label Smoothing (SVLS) [[7] introduces a soft labeling approach that captures
the structural uncertainty required in semantic segmentation. In practice, smoothing the hard-label
assignment is achieved through a Gaussian kernel applied across the one-hot encoded ground truth,
which results in soft class probabilities based on neighboring pixels. Nevertheless, while the reasoning
behind this smoothing strategy relies on the intuition of giving an equal contribution to the central
label and all surrounding labels combined, its impact on the training, from an optimization standpoint,
has not been studied.

The contributions of this work can be summarized as follows:

* We provide a constrained-optimization perspective of Spatially Varying Label Smoothing
(SVLS) [[7], demonstrating that it imposes an implicit constraint on a soft class proportion
of surrounding pixels. Our formulation shows that SVLS lacks a mechanism to control
explicitly the importance of the constraint, which may hinder the optimization process as it
becomes challenging to balance the constraint with the primary objective effectively.

* Following our observations, we propose a simple and flexible solution based on equality
constraints on the logit distributions. The proposed constraint is enforced with a simple
linear penalty, which incorporates an explicit mechanism to control the weight of the penalty.
Our approach not only offers a more efficient strategy to model the logit distributions but
implicitly decreases the logit values, which results in less overconfident predictions.

» Comprehensive experiments over multiple medical image segmentation benchmarks, in-
cluding diverse targets and modalities, show the superiority of our method compared to
state-of-the-art calibration losses.

2 Methodology

Formulation. Let us denote the training dataset as D(X,Y) = {(x™,y™)}M_,, with x(") ¢
X C R representing the n'” image, €, the spatial image domain, and y(™ € Y c R¥ its
corresponding ground-truth label with K classes, provided as a one-hot encoding vector. Given
an input image x("), a neural network parameterized by 6 generates a softmax probability vector,
defined as fy(x(™) = (™) € R *K where s is obtained after applying the softmax function over
the logits 1(*) € R®»*X_ To simplify the notations, we omit sample indices, as this does not lead to

any ambiguity.

2.1 A constrained optimization perspective of SVLS

Spatially Varying Label Smoothing (SVLS) [[7] considers the surrounding class distribution of a given
pixel p in the ground truth y to estimate the amount of smoothness over the one-hot label of that pixel.
In particular, let us consider that we have a 2D patch x of size d; X ds and its corresponding ground
truth Furthermore, the predicted softmax in a given pixel is denoted as s = [sg, 81, ..., Sk—1]-

"For the sake of simplicity, we consider a patch as an image x (or mask y), whose spatial domain € is equal
to the patch size, i.e., di1 X da.



Let us now transform the surrounding patch of the segmentation mask around a given pixel into
a unidimensional vector y € R9, where d = d; x dy. SVLS employs a discrete Gaussian kernel
w to obtain soft class probabilities from one-hot labels, which can also be reshaped into w € R4,
Following this, for a given pixel p, and a class k, SVLS [7]] can be defined as:

~k _ |
W= s wAZyz (1)

Thus, once we replace the smoothed labels ng’f in the standard cross-entropy (CE) loss, the new
learning objective becomes:
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where s’; is the softmax probability for the class k at pixel p (the pixel in the center of the patch).
Now, this loss can be decomposed into:

d
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with p denoting the index of the pixel in the center of the patch. Note that the term in the left
is the cross-entropy between the posterior softmax probability and the hard label assignment for

pixel p. Furthermore, let us denote 7, = Zle yz"wZ as the soft proportion of the class & inside the
i#p

patch/mask y, weighted by the filter values w. By replacing 7 into the Eq. 3 and removing | Zf wj|
as it multiplies both terms, the loss becomes:
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CE Constraint on T

As T is constant, the second term in Eq. 4| can be replaced by a Kullback-Leibler (KL) divergence,
leading to the following learning objective:

LE Lop+ Drp(rs), (5)

where < stands for equality up to additive and/or non-negative multiplicative constant. Thus,
optimizing the loss in SVLS results in minimizing the cross-entropy between the hard label and the
softmax probability distribution on the pixel p, while imposing the equality constraint 7 = s, where
T depends on the class distribution of surrounding pixels. Indeed, this term implicitly enforces the
softmax predictions to match the soft-class proportions computed around p.

2.2 Proposed constrained calibration approach

Our previous analysis exposes two important limitations of SVLS: /) the importance of the implicit
constraint cannot be controlled explicitly, and 2) the prior T is derived from the o value in the
Gaussian filter, making it difficult to model properly. To alleviate this issue, we propose a simple
solution, which consists in minimizing the standard cross-entropy between the softmax predictions
and the one-hot encoded masks coupled with an explicit and controllable constraint on the logits 1. In
particular, we propose to minimize the following constrained objective:



min Lgg st 7=1, (6)

where T now represents a desirable prior, and 7 = 1is a hard constraint. Note that the reasoning
behind working directly on the logit space is two-fold. First, observations in [11] suggest that directly
imposing the constraints on the logits results in better performance than in the softmax predictions.
And second, by imposing a bounded constraint on the logits Value their magnitudes are further
decreased, which has a favorable effect on model calibration [[17]]. We stress that despite both [11]] and
our method enforce constraints on the predicted logits, [[11] is fundamentally different. In particular,
[L1] imposes an inequality constraint on the logit distances so that it encourages uniform-alike
distributions up to a given margin, disregarding the importance of each class in a given patch. This
can be important in the context of image segmentation, where the uncertainty of a given pixel may
be strongly correlated with the labels assigned to its neighbors. In contrast, our solution enforces
equality constraints on an adaptive prior, encouraging distributions close to class proportions in a
given patch.

Even though the constrained optimization problem presented in Eq. [6|could be solved by a standard
Lagrangian-multiplier algorithm, we replace the hard constraint by a soft penalty of the form
P(|T — 1]), transforming our constrained problem into an unconstrained one, which is easier to
solve. In particular, the soft penalty P should be a continuous and differentiable function that reaches
its minimum when it verifies P(|7 — 1|) > P(0), VI € RX, i.e., when the constraint is satisfied.
Following this, when the constraint |7 — 1| deviates from O the value of the penalty term increases.
Thus, we can approximate the problem in Eq. [6]as the following simpler unconstrained problem:

min EcE-l-)\ZmaX(O, |76 — lk]), %)
k

where the penalty is modeled here as a ReLU function, whose importance is controlled by the
hyperparameter .

3 Experiments

3.1 Setup

Datasets. FLARE Challenge [12] contains 360 volumes of multi-organ abdomen CT including liver,
kidneys, spleen and pancreas with their corresponding pixel-wise masks. Volumes are resampled to a
common space and cropped to 192x192x30, and then randomly split into training (240), validation
(40) and testing (80). ACDC Challenge [3]] consists of 100 patient exams containing cardiac MR
volumes and their respective segmentation masks, which include the left and right ventricles and
the myocardium. Following the standard practices on this dataset, 2D slices are extracted from the
volumes and resized to 224 x224. The dataset is randomly split into training (70), validation (10)
and testing (20) sets. BraTS-19 Challenge [15, (1} 2] contains 335 multi-modal MR scans (FLAIR,
T1, T1-contrast, and T2) with their corresponding segmentation masks, which include tumor core,
enhancing tumor and whole tumor. Each volume has a dimension of 155x240x240 voxels and is
resampled 128192 x192. Furthermore, slices containing only background are removed from the
training. Last, the volumes are randomly split into training (235), validation (35), and testing (65).

Evaluation metrics. To assess the discriminative performance of the evaluated models, we resort
to standard segmentation metrics in medical segmentation, which includes the DICE coefficient
(DSC) and the 95% Hausdorff Distance (HD). To evaluate the calibration performance, we employ
the expected calibration error (ECE) [19] on foreground classes, as in [[7], and classwise expected
calibration error (CECE) [9], following [[16}[18]]. The reason behind including the CECE is because
ECE only considers the softmax probability of the predicted class, ignoring the other scores in the
softmax distribution [[16]. The ECE can be approximated as a weighted average of the absolute
difference between the accuracy and confidence of each bin:

Note that the proportion priors are generally normalized.
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where M denotes the number of equispaced bins, B; denote the set of samples with confi-
dences belonging to the " bin, A; is the accuracy of the i-th bin, and it is computed as
Ai = 57X ep, W5 = y;), where 1 is the indicator function, y;, and y; are the predicted
and ground-truth labels for the j*"* sample. Similarly, the confidence C; of the i*" bin is computed as
C; = Flll Zje B, Pj» 1.e. Cj is the average confidence of all samples in the bin. The simple classwise
extension of the ECE (referred to as CECE) metric is defined as:

M K
B,
CECE = ZZ' N’J||Ai,j = Cijl, ®)
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where K is the number of classes, B;; denotes the set of samples from the j”” class in the i*" bin,
_ 1 . _ 1 .
Aij = Bijl ZkeBi,j 1(j = yx) and C j = [Bij] ZkeBi,j Pkj-

Implementation details. We benchmark the proposed model against several losses, including state-
of-the-art calibration losses. These models include the compounded CE + Dice loss (CE+DSC), FL.
[10], Entropy penalty (ECP) [21], LS [22], SVLS [7] and MbLS [11]. Following the literature, we
consider the hyperparameters values typically employed and select the value which provided the best
average DSC on the validation set across all the datasets. More concretely, for FL, v values of 1, 2,
and 3 are considered, whereas 0.1, 0.2, and 0.3 are used for a and X in LS and ECP, respectively.
We consider the margins of MbLS to be 3, 5, and 10, while fixing A to 0.1, as in [18]]. In the case
of SVLS, the one-hot label smoothing is performed with a kernel size of 3 and o = [0.5, 1, 2]. For
training, we fixed the batch size to 16, epochs to 100, and used ADAM [8]], with a learning rate of
103 for the first 50 epochs, and reduced to 10~* afterwards. Following [18]], the models are trained
on 2D slices, and the evaluation is performed over 3D volumes. Last, we use the following prior

T = ijl y¥, which is computed over a 3x3 patch, similarly to SVLS.

3.2 Results

Comparison to state-of-the-art. Table[T|reports the discriminative and calibration results achieved
by the different methods. We can observe that, across all the datasets, the proposed method consis-
tently outperforms existing approaches, always ranking first and second in all the metrics. Further-
more, while other methods may obtain better performance than the proposed approach in a single
metric, their superiority strongly depends on the selected dataset. For example, ECP [21] yields very
competitive performance on the FLARE dataset, whereas it ranks among the worst models in ACDC
or BraTS.

\ FLARE \ ACDC \ BraTS
| DSC  HD ECE CECE | DSC HD ECE CECE | DSC HD ECE CECE

CE+DSC (A =1) 0.846 554  0.058 0.034 0.828 3.14  0.137 0.084 0.777  6.96  0.178 0.122
FL [10] (v = 3) 0.834 6.65 0.053 0.059 0.620  7.30  0.153 0.179 0.848 9.00  0.097 0.119
ECP [21] (A =0.1) | 0.860 530  0.037 0.027 0.782 444  0.130 0.094 0.808 871  0.138 0.099
LS [22] (a« = 0.1) 0.860 533  0.055 0.049 0.809  3.30  0.083 0.093 0.820 7.78  0.112 0.108
SVLS [7] (o = 2) 0.857 572 0.039 0.036 0.824  2.81  0.091 0.083 0.801 8.44  0.146 0.111
MBbLS [11] (m=5) 0836 575  0.046 0.041 0.827 299  0.103 0.081 0.838 7.94  0.127 0.095
Ours (A = 0.1) 0.868 4.88  0.033 0.031 0.854 255  0.048 0.061 0850 578 0.112  0.097

Table 1: Comparison to state-of-the-art. Discriminative (DSC 1, HD |) and calibration (ECE |,
CECE |) performance obtained by the different models (best method in bold, and second best in bold
and underlined).

To have a better overview of the performance of the different methods, we follow the evaluation
strategies adopted in several MICCAI Challenges, i.e., sum-rank [[14] and mean-case-rank [13]]. In
the sum-rank strategy, the final ranking is given as the sum of individual ranking metrics: 7;,., where

Tme Rp = Zlnjlil o "'m» Where 7, is the rank of the segmentation model for the metric m (mean). On
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Figure 1: Sum-rank and mean-rank evaluation. Ranking of the different methods based on the
sum-rank (leff) and mean of case-specific (right) approaches. The lower the value, the better the
performance.

the other hand, to evaluate the different methods following the mean-case-rank alternative, we first
compute the DSC, HD, ECE, and CECE values for each sample, and compute the rank for each
method based on these metrics, separately for each case. Then, we compute the mean rank over
all the evaluation metrics, in a per-case manner, in order to obtain the method’s rank for that given
sample. Last, the mean over all case-specific ranks is computed to obtain the final rank of each
method. As we can observe in the heatmaps provided in Fig. [T} our approach yields the best rank
across all the metrics in both strategies, clearly outperforming any other method. Interestingly, some
methods such as FL or ECP typically provide well-calibrated predictions, but at the cost of degrading
their discriminative performance.

Ablation studies. 1-Constraint over logits vs softmax. Recent evidence suggests that imposing
constraints on the logits presents a better alternative than its softmax counterpart. To demonstrate that
this observation holds in our model, we present the results of our formulation when the constraint
is enforced on the softmax distributions, i.e., replacing 1 by s (Table[2] 7op), which yields inferior
results. 2-Choice of the penalty. To solve the unconstrained problem in Eq. [7} we can approximate
the second term with a liner penalty, modeled as a ReLLU function. Nevertheless, we can resort to
other polynomial penalties, e.g., quadratic penalties, whose main difference stems from the more
aggressive behavior of quadratic penalties over larger constraint violations. The results obtained
when the linear penalty is replaced by a quadratic penalty are reported in Table 2] (middle). From
these results, we can observe that, while a quadratic penalty could achieve better results in a particular
dataset (e.g., ACDC or calibration performance on BraTS), a linear penalty yields more consistent
results across datasets. 3-Patch size. For a fair comparison with SVLS, we used a patch of size 3 x 3
in our model. Nevertheless, we now investigate the impact of employing a larger patch to define the
prior 7, whose results are presented in Table 2| (bottom). Even though a larger patch seems to bring
comparable results in one dataset, the performance on the other two datasets is largely degraded,
which potentially hinders its scalability to other applications. We believe that this is due to the higher
degree of noise in the class distribution, particularly when multiple organs overlap, as the employed
patch covers a wider region.

\ FLARE \ ACDC \ BraT$

| DsC HD ECE CECE | DSC HD ECE CECE | DSC HD ECE CECE

Constraint on s 0862  5.14  0.043 0.030 0.840  2.66  0.068 0.071 0.802 828  0.145 0.104
L2-penalty 0.851 548  0.065 0.054 0.871 1.78  0.059 0.080 0.851  7.90 0.078 0.091
Patch size: 5 x 5 | 0875 596  0.032 0.031 0.813 3.50 0.078 0.077 0735 745 0.119 0.092

Table 2: Empirical results to motivate our methodological and technical choices.

Impact of the prior. A benefit of the proposed formulation , particularly compared to SVLS [7]],
is that diverse priors can be enforced on the logit distributions. Thus, we now assess the impact of
different priors 7 in our formulation (See Supplemental Material for a detailed explanation of each
alternative to compute the prior). The results presented in Table [3]reveal that selecting a suitable prior
can further improve the performance of our model.



\ FLARE \ ACDC \ BraTS
Piorr | DSC HD ECE CECE | DSC HD ECE CECE | DSC HD ECE CECE

Mean 0.868 488 0.033 0031 | 0854 255 0048 0061 | 0.850 578 0.112  0.097
Gaussian | 0.860 540 0.033  0.032 | 0876 292 0.042 0053 | 0813 7.01 0.140 0.106
Max 0859 495 0038 0036 | 0.876 174 0046 0054 | 0833 825 0.114 0094
Min 0854 542 0.034 0033 | 0.881 180 0.040 0.053 | 0836 7.23 0.104  0.092
Median | 0.867 590 0.033  0.032 | 0835 329 0075 0075 | 0.837 753 0.095  0.089
Mode 0854 541 0035 0034 | 0.876 1.62 0045 0056 | 0808 821 0.135 0.113

Table 3: Impact of using different priors (7) in Eq.

Magnitude of the logits. To empirically demonstrate that the proposed solution decreases the logit
values, we plot average logit distributions across classes on the FLARE test set (Fig. [2). In particular,
we first separate all the voxels based on their ground truth labels. Then, for each category, we average
the per-voxel vector of logit predictions (in absolute value). We can observe that, compared to SVLS
and MbLS, —which also imposes constraints on the logits—, our approach leads to much lower logit
values, particularly compared to SVLS.
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Figure 2: Distribution of logit values. From left to right: MbLS, SVLS and ours.

4 Conclusion

We have presented a constrained-optimization perspective of SVLS, which has revealed two important
limitations of this method. First, the implicit constraint enforced by SVLS cannot be controlled
explicitly. And second, the prior imposed in the constraint is directly derived from the Gaussian
kernel used, which makes it hard to model. In light of these observations, we have proposed a simple
alternative based on equality constraints on the logits, which allows to control the importance of
the penalty explicitly, and the inclusion of any desirable prior in the constraint. Our results suggest
that the proposed method improves the quality of the uncertainty estimates, while enhancing the
segmentation performance.
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A Further details on the different priors

For a given pixel p with, and a surrounding patch of size d = d; x dy (note that in this case
y € {0, 1}9*K becomes the label assignment on the patch), the following equations can be used to
obtain the different priors employed in Table [3]of the main manuscript:

d
1
Mean: 7, = il ny (10)
i=1
) d
Gaussian: 7, = —— nywz7 (11)
| 22 wil i

where w; is the Gaussian kernel with o = 2.0 in our experiments, similarly to the value we employed
for SVLS [7]].

Now, let y* € {0, ..., K — 1}? be the label encoding derived from the one-hot labels y. The following
priors can be therefore be defined as:

1, max(y*) ==k
Max: 7 = d &) (12)
0, otherwise.
1, min(y*) ==k
Min: 7 = d &) (13)
0, otherwise.
1, mode(y*) ==k
Mode: 7, = 3ey”) (14)
0, otherwise.
1, median(y*) ==k
Median: 7, = d (Y) (15)
0, otherwise.
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