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FOCUSR: Feature Oriented Correspondence
using Spectral Regularization –

A Method for Precise Surface Matching
Herve Lombaert, Leo Grady, Jonathan R. Polimeni, Farida Cheriet

Abstract—Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we
present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface
and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and
spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly
such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph
Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly
deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as
additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full
power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals.
Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a
sub-millimeter level) while performing at much greater speed than existing methods.

Index Terms—Registration, Surface fitting, Spectral methods, Graph Theory

✦

1 INTRODUCTION

M ESH correspondence is a key step in many appli-
cations of computer vision and whose precision

and speed are crucial. It is at the core of studies on
shape variability and on object and motion analysis. In
the medical field, precision is essential and a fast method
enables investigations on large studies between organs or
individuals. The challenge of shape matching is to find the
dense correspondences mapping all points on one surface
to their equivalent points on a second surface. This task
becomes particularly arduous when the matching involves
highly convoluted surfaces or two surfaces representing
different poses of an articulated object. Early solutions [8]
to this problem, aligning surface models, were limited to
rigid transformations [47], or relied on fiducial markers
placed on the surfaces [5], [48]. Methods based on de-
formable surfaces [53], [30], [72], [67] could find nonrigid
transformations. Such iterative deformation of surfaces,
using minimal distorsion [10], is also an adequate strategy
for matching partial data [14], even with a change in
topology [67], [63]. However, to keep these approaches
tractable, prior knowledge on the underlying deformation
between surfaces [35], [9], or the use of control or feature
points [1], [61], [34], [52], [43], [64], is often required to re-
strain the search domain. Rather than optimizing for a de-
formation, other approaches would directly solve for the
correspondence map [2], avoiding iterative deformations
of the surfaces. Moreover, these surfaces may be correlated
with measurable features other than their explicit mesh
geometry. For example, the method used in FreeSurfer
[25], a leading tool for brain surface reconstruction and
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matching, uses geometric features such as cortical curva-
ture and sulcal depth (the depth in the cortical folding
pattern) [38] to drive the warping of one brain surface into
another surface. However, despite its precision, FreeSurfer
suffers from a substantial computational burden, taking
hours to compute a correspondence map between typical
brain surface models consisting of hundreds of thousands
of vertices. Needless to say, the incorporation of additional
features is a convenient aspect for a matching algorithm.

A direct method of matching two surfaces based on
features (e.g., the geometry of the cerebral cortex in
brain matching, or texture intensities for articulated object
matching) is to treat the available features as characteristic
signatures which can be used to identify each vertex within
the surface mesh. With these signatures, a vertex on one
surface could be mapped to the vertex on a second surface
which most closely resembles the same characteristic fea-
tures (e.g., by computing a Euclidean distance between the
feature vectors). This feature matching technique would
have the merits of being fast (e.g., computable within
Voronoi cells) and flexible enough to allow any set of
features to drive the matching. Unfortunately, this feature
matching technique would completely ignore the spatial
organization of the surface vertices and result in a highly
non-smooth mapping between the surfaces. Our approach
to the matching problem seeks to preserve the speed
and flexibility of direct feature matching and address
the problem of smooth mapping by using an improved
spectral correspondence as a regularization.

Spectral correspondence [19] utilizes a graph (mesh)
spectrum, which is the set of Laplacian eigenvalues and
eigenvectors (illustrated on Fig. 1), to produce a vertex
correspondence between two graphs (meshes). The key
utility of spectral correspondence in our context is to
provide a spatial regularization on the correspondence
map. This regularization is enabled by the fact that the
low-frequency eigenvectors (those corresponding to small
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eigenvalues) are spatially smooth, as they represent low-
frequency harmonics [28]. Put differently, all neighboring
nodes will have a small change in the values of these har-
monics, meaning that a correspondence driven by these
harmonics will map neighboring nodes to neighboring
locations in the range space. The value of the harmonics
at each vertex are known as the spectral coordinates of
the vertex. At its core, our technique for spectral regu-
larization is to supplement the direct feature matching
technique described above by extending the vertex sig-
nature to additionally include the spectral coordinates of
each vertex. Matching vertices are revealed with similar-
ities in such extended signatures. Fortunately, including
the spectral coordinates in our matching maintains the
speed and flexibility of the simple technique. We call our
method FOCUSR for Feature Oriented Correspondence
Using Spectral Regularization.

Spectral methods have been used in many fields, such as
in the segmentation and registration of shapes in images
[45], in the indexing of structures [57], or in the clustering
of data [54], [7], [6]. Their use in shape matching is often
limited to hierarchical matching (e.g., matchings of limbs
in body models, or of large surface areas). Few medical
applications of spectral methods exist and are targeted to
brain studies in order to study the geometrical patterns of
the anatomical structures of the brain such as the cortical
folds [42], [46], [55], [56] and with the smoothing of corti-
cal surfaces [3]. Spectral coordinates have also been used
directly for graph partitioning [17]. Umeyama [65] and
later Scott and Longuet-Higgins [50] pioneered the use of
spectral methods for the correspondence problem. Shapiro
and Brady [51] compared ordered eigenvectors of a prox-
imity matrix to find correspondences. Their work served
as a basis for future spectral correspondence methods.
Variants include the use of different proximity matrices
using different kernels, the use of the adjacency matrix,
shock graphs [44], [58], different normalized Laplacian
matrices, or the use of Multi-Dimensional Scaling [49],
[23], [68], [10], [11]. Closely related are also methods based
on the Heat Kernel [62], [43] which use multiscale descrip-
tions of intrinsic shape properties, or on other conformal
maps, for instance, the Ricci flow [71] (deforming the
Riemannian metric underlying the original shape toward
another conformal metric) or the Wave Kernel Signature
[4] (using mechanical properties as an intrinsic metric).
The blending of various conformal maps has also been
shown to improve matching accuracy [34]. Learning of
local shape descriptors may also be an alternative strategy
[16]. Recent surveys covering the use of spectral methods
in the past fifteen years are available in [66], [73]. Mateus
et al. [40] proposed an original unsupervised spectral
method with an alternative to eigenvalue ordering based
on eigenvector histograms and refining the eigenvectors
alignment with a probabilistic point matching within the
framework of the EM algorithm [15]. Jain and Zhang
[33] approach the eigenvector alignment problem with a
nonrigid deformation based on Thin Plate Splines.

Spectral correspondence has presented several difficul-
ties that act as a barrier to its widespread adoption.
Specifically, when computing the eigenvectors for two
surfaces, the signs of the eigenvectors need to be aligned
(the eigenvectors are ambiguous to sign), the eigenvectors

sometimes require reordering (due to near algebraic mul-
tiplicity of the eigenvalues causing ordering changes of
the spectral coordinates). Additionally, spectral matching
methods typically start with a rigid alignment of the
eigenvectors to account for translation and scaling of
the spectral coordinates. Small variations however exist
in the spectral coordinates (due to non perfect shape
isometry, e.g., local expansion and compression within
meshes). There is therefore a need for robust nonrigid
point correspondence between spectral coordinates. Fur-
thermore, the use of vertex features has not been fully
realized in previous work on spectral correspondence,
which have incorporated these features only to produce
edge weights (measuring changes between neighboring
features) rather than as node weights (using the features
themselves). We address and improve all these aspects
of spectral correspondence while additionally using the
spectral coordinates to provide a smooth regularization of
the simple feature matching technique. This work makes
several contributions to dense surface matching:

• Extending simple surface feature matching with spec-
tral regularization. The integration of spectral compo-
nents in extended signatures alongside feature char-
acteristics provides a natural means of regularization
(i.e., matching extended signatures reveal matching
vertices).

• Nonrigid alignment of the multidimensional embed-
dings (i.e., of the extended signatures, rather than
only the spectral coordinates).

• The weighting of nodes in the graph Laplacian, which
controls the influence of each node during correspon-
dence.

• A global approach to handle automatically the sign
ambiguity and the rearrangement of the graph Lapla-
cian eigenvectors.

After detailing FOCUSR in the next section, we show
in controlled experiments that it outperforms both direct
feature matching and conventional spectral correspon-
dence. Firstly, we demonstrate that nonrigid alignment
of the spectral coordinates improves the direct matching
method. We also show that FOCUSR can be used as a
general method for mesh matching by benchmarking our
method on generic meshes of animals or humans in vari-
ous poses, faces having different expressions, and on the
widely used TOSCA dataset. The computed correspon-
dence maps have in fact a negligible error from ground
truth. Secondly, we show the full power of FOCUSR with
the use of additional features and assess its precision with
the challenging task of brain surface matching. Indeed,
while the sulcal and gyral folding pattern of the human
cerebral cortex are somewhat stable across individuals,
some geometric variability does exist [32], making the
direct use of the folding geometry unsuitable for sur-
face matching. This application to the problem of brain
matching provides a platform for FOCUSR where the
use of additional features available in the brain data—
such as cortical Gaussian curvature, sulcal depth, and
cortical thickness—can improve the matching precision.
We show that FOCUSR produces results in a fraction of
the time required by FreeSurfer while maintaining the
same level of precision. We believe that this large gain in
processing speed would make possible new brain studies
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Fig. 1. Example of eigenmodes for pairs of animals and

human brain surfaces. Each row shows the first five spec-

tral components of a model (eigenmodes of the associated

graph Laplacian, reordered and sign adjusted, so paired

sets match). The color scale indicates the value of the

spectral coordinate over the surface.

that were previously limited by computational burden, or,
more generally, studies on meshes that wish to use non-
standard features for driving the correspondence.

2 METHODS

We begin our exposition of FOCUSR by detailing a simple
technique for feature matching that does not preserve
smoothness of the mapping between surfaces (Fig. 2 a).
We then describe how spectral coordinates can be used to
regularize feature matching. We re-examine and improve
each step in the spectral correspondence process to over-
come previous limitations with spectral correspondence.
The algorithm is summarized in Fig. 3. Code implemen-
tation in Matlab is available at http://step.polymtl.ca/
∼rv101/focusr1.

2.1 Direct feature matching to provide vertex corre-
spondence

Assume that we have two graphs, G1 = {V1,E1} and
G2 = {V2,E2} (with vertices and edges) such that a corre-
spondence φ : vi ∈ V1 → vj ∈ V2 is desired. Note that we

1. This private link is going public after publication

do not require that |V1| = |V2| or |E1| = |E2| (i.e., meshes
can have different sizes and structures). Consequently,
there is no guarantee that the mapping is one-to-one and
may not be invertible. We will use the terms node, vertex
and point interchangeably to describe a member of V1 or
V2. Given a set of K features Xi at every node vi ∈ V1,
and a set of K features Yj at every node vj ∈ V2, our goal
is to use these features to produce a correspondence φ.

A direct feature matching approach to producing this
correspondence would be to set

φ(vi) = min
vj∈V2

||Xi −Yj ||, (1)

which could be computed quickly by precomputing a
Voronoi tessellation of the range space. Unfortunately, this
simple technique has several inadequacies. Specifically,
the technique based on the Voronoi tesselation does not
properly account for global changes in the feature space
(e.g., due to a global scaling or translation), nor does it
utilize the neighborhood structure provided by the edge
sets in any way (i.e., there is no spatial regularity to the
mapping in the sense that neighbors in the domain are
unlikely to remain neighbors in the range).

Global changes in the feature space can be accounted
for by using a more sophisticated point correspondence
than what is described in Eq. (1). Robust Point Matching
[18] with a Thin Plate Spline-based transformation is
often used for 2D or 3D registration. However, with this
approach the final registration depends on the number
and choice of the control points. A more recent approach
to the point correspondence problem is the Coherent Point
Drift (CPD) method [41] which is fast and demonstrates
excellent performance. To summarize this method, the
registration is treated as a Maximum Likelihood problem
where Gaussian Mixture Model centroids are fit into a
point set. There is no assumption on the global trans-
formation between point sets. Instead, the evolution of
the transformation is constrained with a motion coherence
[41]. The CPD algorithm offers the possibility to perform
matching on a subset of the points (for increased speed)
while computing the transformation in the continuous
domain (i.e., the continuous transformation, found with
only a subsample of V1 and V2, can be applied on all
points of V2 and thus find a dense matching between V1

and V2). Furthermore, each feature (i.e., each coordinate
of Xi or Yj) can be weighted in order to accentuate or
reduce its influence.

Although CPD provides a method to account for global
transformation in the feature space between the two
graphs, it is still necessary to incorporate spatial regularity
into the mapping such that neighboring points in V1 map
to neighboring points in V2. Note that a strict neighbor-to-
neighbor mapping is only possible when the two graphs
are isomorphic. Since we target a more general scenario,
we want to account for neighborhood relationships by
promoting a correspondence that maps nearby nodes in
V1 (based on E1) to nearby nodes in V2 (based on E2).
Our strategy for promoting spatial regularization is to
supplement Xi and Yj with the spectral coordinates at
nodes vi and vj before applying the CPD point correspon-
dence. The values of the spectral coordinates over a few
sample surfaces are illustrated on Fig. 1. The fundamental

http://step.polymtl.ca/~rv101/focusr
http://step.polymtl.ca/~rv101/focusr
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(c) Using FOCUSR in its simplest setting
(nonrigidly deformed embeddings)

Fig. 2. Direct matching (coloring indicates correspondence, and links and circles indicate matching of leg extremities,

crosses indicate ground truth) : (a) Finding closest points in space: this naive correspondence map is computed by

finding for each point of model X its closest point in space of model Y (match X with Y ). As illustrated, this strategy is

dependent on rigid and nonrigid deformations and generates an inconsistent correspondence map. (b) Finding closest

points in the spectral domain: the correspondence map is computed by finding for each point of model X its closest

spectral equivalent in model Y (match X with Y instead of X with Y ). As illustrated, even though the meshes are not

aligned in space (they are translated), their spectral embeddings (red is X , blue is Y, both use three eigenmodes for 3D

visualization) are almost perfectly superimposed. Spectral embeddings are much less dependent on rigid and nonrigid

deformations, and finding closest points in the spectral domain generates a much better correspondence map (2.02%

average error). FOCUSR in its simplest setting : (c) Our method performs matching in the spectral domain (with lower

error over the surface) and improves the alignment of the spectral embeddings. Note that no additional features are used

here in FOCUSR.

difference between the use of X and Y as general feature
vectors (illustrated with 3D coordinates (x, y, z)) and as
spectral coordinates is demonstrated in Fig. 2 b. The low-
frequency spectral coordinates are dependent on the ge-
ometry of the surface, and these coordinates are effectively
more stable across articulated shapes or highly deformable
shapes, i.e., normalizing these shapes in a same referential.
Additionally, they are known to be spatially smooth (see
below) in accordance with the low-frequency harmonics of
an elastic surface [28]. In the next section we will review
spectral coordinates, and demonstrate improvements to
traditional methods for solving some of the difficulties
associated with comparing spectral coordinates from two
graphs.

2.2 Spectral Coordinates

We may define the |V | × |V | adjacency matrix W of a
graph in terms of affinity weights (see [28]), which are
derived from a given distance metric dist(i, j) between
two neighboring vertices (vi, vj). The elements of the
weighted adjacency matrix are given by

Wij =

{

1/ dist(i, j) if ∃ eij ∈ E ,

0 otherwise
(2)

The matrix W provides a weighting on the graph edges
derived from the given distance metric. The distance may
be derived from the geometry via the vertex coordinates
x = (x, y, z)T embedded in space (e.g., dist(i, j) = ‖xi−xj‖,
the distance between nodes vi and vj), from feature vec-
tors (e.g., dist(i, j) = ‖Fi−Fj‖, where F = (f (1), . . . , f (K))T

for K features), or both. The more general edge weighting



5

1) Compute spectra

(Unsorted components)
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↓
Laplacian
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Downsample

↓
Compare
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↓
Reorder
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3) Align spectra

(Spectrum alignment)

Subsample
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Add feature coordinates

(Add info. on embedding)

↓
Nonrigid alignment
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Transform embeddings

→
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(Correspondences)

Closest points

on embeddings

↓
Diffusion of
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Fig. 3. FOCUSR overview for matching a pair of surfaces. First, we build a graph out of each surface mesh and set

the graph edge weights and graph node weights to construct the Laplacian matrix. The eigendecomposition of each

graph’s Laplacian matrix reveals its spectral components. Second, we reorder the spectral components by finding the

optimal permutation of components between the pair of meshes. Third, regularization is performed by matching the

spectral embeddings. Finally, corresponding points are found with closest points in both spectral embeddings, and the

final correspondence map is diffused.

between vertices vi and vj uses the ℓ2 norm between
extended vectors:

wi,j = dist(i, j) = ‖(xi, γFi)− (xj , γFj)‖ , (3)

where (x, γF) is the concatenation of the 3D coordinate
values x = (x, y, z)T with the K feature values F =
(f (1), . . . , f (K))T. The K × K diagonal matrix γ contains
the K weights controlling the influence of each feature.
To compensate for the different scalings of the feature
values, each feature vector f (k) is normalized with respect
to the range of the 3D coordinate values x (i.e., feature
values are normalized such that min(f (k)) = min(x) and
max(f (k)) = max(x)).

The general Laplacian operator on a graph was formu-
lated in [28] as a |V | × |V | matrix with the form:

L = G−1 (D −W ) , (4)

where D, the degree matrix, is a diagonal matrix defined
as Dii =

∑

j Wij , and G is the diagonal matrix of node
weights. Typically in spectral correspondence G is set to
identity G = I , or to G = D. However, we propose here
to replace the default assignment G = D with any mean-
ingful node weighting. In particular, we propose to use a
function of feature magnitudes to establish the (positive-
valued) node weighting based on the assumption that
nodes with significant features are of more interest to
match precisely (i.e., nodes with large weight have a
greater influence on the spectral correspondence than low-
weight nodes). For example, if half of the nodes in a graph
had a large weight and the other half had a small weight,
the Laplacian eigenvectors would closely resemble the
eigenvectors of the large-weight subgraph. The diagonal
of matrix G contains the general node weights for each
vertex vi:

wi = Gii = di

K
∑

k=1

γiρ
(

f
(k)
i

)

, (5)

where di is the node degree (i.e., Dii), γ is the previously
mentioned feature weights, and ρ(·) is a function that
enforces positive values (e.g., ρ(f) = f2 or ρ(f) = exp(f)).
The denominator in Eq. (5) contains the sum of the influ-
ences of each feature on vertex vi. We used ρ(f) = exp (f)
to promote correspondence between nodes having the
largest feature components (which we assume indicate
greatest significance).

The right eigenvectors of the Laplacian matrix comprise
the graph spectrum X = (x(1), x(2), . . . , x(n))T, where n =
|V | is the number of nodes. The values over surfaces for
the five lowest frequency eigenvectors are shown on Fig. 1,
and illustrates the stability of these eigenvectors between
articulated or highly deformable shapes. Each eigenvec-
tor2 x(u) is a column matrix with n values, and represents
a different (weighted) harmonic on a mesh surface that
corresponds to an inherent property of the mesh geometry.
This is in comparison with extrinsic properties such as
the spatial location of points (i.e., point coordinates vary

when the model takes a different pose). The n values (x
(1)
i ,

x
(2)
i , . . . , x

(n)
i ) give the spectral coordinates of node vi (i.e.,

a coordinate in a spectral domain). The first eigenvector
x(1) is the trivial (uniform) eigenvector, and the eigenvec-
tors associated with the lower non-zero eigenvalues (e.g.,
x(2),x(3)) represent coarse (i.e., low-frequency) intrinsic
geometric properties of the shape. The first of them x(2) is
called the Fiedler vector [19], while eigenvectors associated
with higher eigenvalues (e.g., x(n−1),x(n)) represent fine

2. In our notation x represents the 3D coordinate in space (i.e., x, y, z),
and the superscripted x

(i) represents the ith spectral coordinate (i.e., the
ith eigenvector of the graph Laplacian).
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(high-frequency) geometric properties. For example, in
Fig. 1, the values of x(2) increase along a virtual centerline
depicting the global shape of the models (a coarse intrinsic
property), while the values of x(5) depict finer details of
the models.

To illustrate why spectral coordinates corresponding to
small eigenvalues transition smoothly and slowly across
neighboring nodes, consider the Rayleigh quotient

λ =
xTLx

xTG−1x
=

∑

eij∈E
wij(xi − xj)

2

∑

vi∈V

1
wi

x2
i

. (6)

The minimum value of λ is the smallest eigenvalue for
L. If the minimization of λ over x is conducted in the
space orthogonal to the eigenvector corresponding to the
smallest eigenvalue, then the minimum λ is the second
smallest eigenvalue (the Fiedler value, in our case). Put
differently, all of the eigenvectors corresponding to the
smallest eigenvalues have small values of the Rayleigh
quotient in Eq. (6). Examining the numerator of Eq. (6),
we see that neighboring nodes must have a small change
in the spectral coordinate (eigenvector) x in order for the
corresponding eigenvalue to be small. However, a small
edge weight indicates that the change in x across that edge
may be large while still maintaining a small numerator
(and therefore a small eigenvalue). Consequently, the edge
weights act to enforce a smoother change between similar
neighbors, but the spatial regularization is more relaxed
for mapping neighboring points which are dissimilar.
Examining the denominator of Eq. (6), we see that large
node weights have the effect of reducing the influence
of the node in the denominator, effectively pushing the
node to take a value that minimizes the numerator (i.e.,
the average of its neighbors). By pushing the node to
minimize the numerator, the large node weight effectively
promotes maximal smoothness in the spectral coordinates
at that node.

Consequently, we use the node features to enforce
more spatial regularity between similar neighboring nodes
(large edge weight) and to enforce more spatial regularity
at unremarkable nodes (nodes with small feature magni-
tude and small node weight). Ultimately, this use of the
node features to promote variable spatial regularization
is designed to enforce a stronger correspondence between
key nodes (nodes with large feature magnitude) and to
enforce stronger spatial regularity between key nodes. In
this manner, the key nodes (which are similar in the two
meshes) are matched strongly, while the remaining nodes
are matched to promote maximal spatial regularity.

2.3 Spectrum Ordering

Each node is represented with M ≪ |V | spectral co-
ordinates associated with the M smallest (non-trivial)
eigenvalues, i.e., the embedded representations for meshes
X and Y are XM = (x(2), . . . ,x(M+1))T and YM =
(y(2), . . . ,y(M+1))T. Unfortunately, the spectral coordinates
of the two meshes may not be directly comparable as a
result of two phenomena. First, there exists a sign ambi-
guity when computing eigenvectors, i.e., if Ax = λx (the
spectral decomposition of A) then A(−x) = λ(−x), which
requires checking that each corresponding eigenvector in
the two meshes has the same sign. Additionally, as a result

of greater algebraic multiplicity of an eigenvalue, it may
be possible that the ordering of the lowest eigenvectors will
change, e.g., if two eigenvectors correspond to the same
eigenvalue in both meshes, then the solver may compute
these eigenvectors in one order for the first mesh and in
the opposite order for the second mesh. A graph with
an eigenvalue having algebraic multiplicity greater than
one indicates symmetry in the mesh. For large meshes,
symmetries (and near symmetries) is a common problem
and the eigenvectors must be reordered.

Our approach to the eigenvector reordering is to favor
pairs of eigenvectors that are most likely to match based
on the similarity of their eigenvalues, histograms, and
spatial distributions of their spectral coordinate values.
The costs of pairing the uth eigenvectors, x(u), of mesh
X with the vth eigenvectors, y(v), of mesh Y are gathered
in a M × M dissimilarity matrix C. It consists of three
terms:

C(u, v) = cλ(u, v) · chist(u, v) · cspatial.

The first term penalizes pairs of eigenvectors whose eigen-
values are far distant, cλ(u, v) = exp

(

−(λ(u) − λ(v))2/2σ2
)

with a kernel width σ that depends on the average eigen-
gap 1

K−1

∑K−1
k=1 λ(k+1)−λ(k). The second term chist(u, v) fa-

vors pairing of eigenvectors that have similar histograms
of spectral coordinate values. To ease comparison, spectral
coordinates are normalized to the range [0, 1]. Pairing
based on histograms is also used in [40], however, we
found that using a logarithmic scale produces the best
results (it minimizes the effect of over represented spectral
coordinates values, such as those close to zero), such as
in chist(u, v) = | log (hist(u))− log (hist(v)) |. The third term
verifies the spatial coherence of the spectral coordinate
values between two meshes. To speed up the reordering,
all eigenvectors are subsampled by randomly selecting a
subset of N < |V | nodes (we used 500 nodes or about
0.4% of the vertices in our experiments). The pairs of
closest points within these subsampled points determine
the correspondence map µ (i.e., vertex vi ∈ V1, on the
first mesh, is closest to point vj=µ(i) ∈ V2, on the second
mesh). Then, we simply compute for all corresponding
points (vi ∈ V1 → vj=µ(i) ∈ V2) the squared difference

between the coordinate values x
(u)
i and y

(v)
µ(i) and cspatial =

∑N

i=1

(

x
(u)
i − y

(v)
µ(i)

)2

.

The Hungarian algorithm may be used to find an
optimal permutation of eigenvectors y(v) that minimizes
dissimilarity. In the same step we can remove the sign
ambiguity by calculating the minimal dissimilarity be-
tween all x(u) and y(v), as well as between all x(u) and
−y(v). The cost matrix used in the Hungarian algorithm is
thus Q(u, v) = min{C(u, v), C(u,−v)}. After permutation
π, any eigenvector x(u) corresponds with y(π(u)), and its
permutation cost Q(u) is stored for use in the spectral
alignment.

To keep the notation simple, in the next sections we
assume that the spectral coordinates have been appropri-
ately reordered and signed (i.e., XM and Yπ◦M will simply
be denoted as XM and YM such that x(u), on the first
mesh, corresponds with y(u), on the second mesh).
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(a) Before alignment (b) After alignment

Fig. 4. Nonrigid alignment of the two spectra correspond-

ing to two brain surfaces. For visualization purposes, the

first three eigenvectors (x(2), x(3), and x(4)) are used as 3D

coordinates (x, y, z). Red and blue are the control points

used to align both spectra. Initial spectra (a) before and (b)

after final alignment.

2.4 Nonrigid Spectral Alignment

Once the reordering and sign adjustment of the eigen-
vectors have taken place, finding the closest points in the
spectral domain between embeddings X and Y generates a
smooth correspondence map (Fig. 2). However, these em-
bedded representations contain slight differences, mostly
due to perturbations of the shape isometries such as small
changes in distances where the surface undergoes local
expansion or compression between meshes. As illustrated
on Fig. 4, nonrigid differences in the spectral embeddings
become even more severe in highly convoluted surfaces
such as brain cortices. Spectral representations need to be
nonrigidly aligned.

Closest points in these nonrigidly aligned embedded
representations would reveal corresponding points in both
shapes (i.e., in the M -dimensional space (the spectral
domain), if the point vi ∈ V1 with coordinates XM

i , is
the closest point to vj ∈ V2 with coordinates YM

j , then
vi corresponds to vj). It is at this point where Eq. (1)
is extended by combining the spectral coordinates, XM

and YM , with the feature vectors, Fx = (f
(1)
x , . . . , f

(K)
x )T

for nodes in model X , and Fy = (f
(1)
y , . . . , f

(K)
y )T for

nodes in model Y , to enable spatial regularization in
the correspondence map. The extended vectors of Eq. (1)
becomes:

X = (cxX
M , βFx), (7)

Y = (cyY
M , βFy), (8)

where cx and cy are M×M diagonal matrices that contain
weights influencing each spectral coordinate, and β is a
K × K diagonal matrix containing the weights for each
feature (to emphasize or reflect confidence). Each feature is
initially scaled, as in Eq. (3), to fit the values of the Fiedler
vector, x(2) (i.e., min(f (k)) = min(x(2)) and max(f (k)) =
max(x(2))). The weights c of the spectral coordinates takes
into account the smoothness of an eigenvector (measured
by its eigenvalue λ(u)) and the confidence in the reorder-
ing (measured by the permutation cost Q(u)). Specifically,
the weight, c(u), of the uth spectral coordinate is:

c(u) = exp(−(Q(u)λ(u))2/2σ2), (9)

y1 y2 y3 y4 y5 

x1 x2 x3 x4 x5 

y1 y2 y3 y4 y5 

x1 x2 x3 x4 x5 

y1 y2 y3 y4 y5 

x1 x2 x3 x4 x5 

H(y1) 

H(y3) H(y4) 

H(y2) 

H(y5) 

a) Closest points on
spectral embeddings

b) Smoothing of the
spatial coordinates

c) Resetting the
correspondence map

Fig. 5. Diffusion of the correspondence map: a) The clos-

est corresponding points on the spectral embedding might

not necessarily be coherent spatially, consequently, b) their

spatial coordinates are smoothed using a mean filter within

the neighborhood structure, this moves the corresponding

points to regularized positions (H(yφ(i))), and, c) the final

correspondence map is reset by finding the closest nodes

to these regularized positions.

where σ is a normalization factor set to

σ = mean
{

Q(u)λ(u)
}

u=1···M
. (10)

The alignment of these embeddings can be viewed as
a nonrigid registration, X = φ(Y). Fig. 4 shows the
alignment challenge where the first three spectral compo-
nents (x(2),x(3),x(4)) are used as 3D (x, y, z) coordinates
for visualization purposes. The Robust Point Matching
[18] with a Thin Plate Spline-based transformation is
often used for 2D or 3D registration. However, with this
approach, the final registration depends on the number
and choice of the control points. We apply the recent
Coherent Point Drift method [41] which is scalable to N
dimensions, fast, and demonstrates excellent performance
in this application.

To increase speed in FOCUSR, we take advantage of the
property of the Coherent Point Drift method that a contin-
uous transformation derived from a subset of the points
can be applied to all nodes of the dense embeddings. In
our case, we subsample X and Y by taking randomly a
few points (in our experiments we chose 1% of the total
number of vertices, roughly 1000 points).

2.5 Final Diffusion

After alignment, both embedded representations can be
directly compared (X = φ(Y)), i.e. two points which
are closest in the embedded representations could be
treated as corresponding points in both meshes. However,
the mapping is not guaranteed to be smooth, even after
the CPD alignment. The spectral regularization promotes
smoothness of the correspondence map, but it is possible
to have irregularities in the smoothness when the features
differ significantly between the two meshes. The resulting
embeddings warped with the CPD, in the K +M multi-
dimensional space, can contain local spatial incoherence
in the correspondence map (as illustrated on Fig. 5 a).
Consequently, we include a postprocessing step to enforce
additional smoothness of the correspondence map.

The correspondences obtained after CPD are used to
map the second mesh vertices (target point y in Fig. 5 a)
to the first mesh vertices (fixed points x in Fig. 5 a). The 3D
coordinates of these mapped points on the second mesh
are now treated as independent scalars and diffused on
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Horse Sequence Correspondence Error 
 Average: 1.41% (±0.57%) 

Camel Sequence Correspondence Error 
Average: 1.42% (±0.65%) 

Elephant Sequence Correspondence Error 
Average: 0.95% (±0.54%) 

Facial Expression Sequence 
Correspondence Error 

Average: 0.47% (±0.26%) 
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Fig. 6. Correspondences across animated sequences for

50 horses (average error of 1.41%(±0.57%)), 50 camels

(1.42%(±0.65%)), 50 elephants (0.95%(±0.54%)), and 10

facial expression changes (0.47%(±0.26%)), for clarity, only

a subset of each sequence is shown. Corresponding

points have a unique color ((r,g,b) components given by

the first three eigenmodes) and colored lines show five

points tracked along the sequence for visualization (blue

circles show corresponding points found with FOCUSR,

blue crosses show ground truth).

the surface of the first mesh (i.e., this moves the points
of the second mesh to positions obeying the (smooth)
neighborhood system of the first mesh as illustrated with
points H(y) in Fig. 5 b). We used the smoothing method
in [20] which is similar to the Laplacian smoothing, while
other methods could also be used for this step. At this
stage, the points x on the first mesh can be associated
with either the smoothed coordinates H(y) on the second
mesh (i.e., vertices of the first mesh could be matched
to coordinates in between the vertices of the second
mesh), or with actual points on the second mesh. In our
applications, we matched nodes to nodes, so the latter
strategy is chosen. The correspondence map linking the
first mesh to the second mesh is therefore updated by
linking each point in the first mesh with the point in the
second mesh which has the minimum Euclidean distance
to the diffused geometric coordinates (shown with the new
map in Fig. 5 c). In our experiments, 40 iterations were
sufficient to diffuse the point coordinates. The fourth step
in Fig. 3 shows a few corresponding points between two
brain surfaces.

Direct Point Matching Direct Spectral Matching FOCUSR

Average error: Average error: Average error:
5.49%(±4.66%) 1.70%(±1.13%) 1.41%(±0.57%)

Average error: Average error: Average error:
10.75%(±9.03%) 2.88%(±1.46%) 1.42%(±0.65%)

Average error: Average error: Average error:
5.15%(±3.63%) 3.22%(±32.30%) 0.95%(±0.54%)

Average error: Average error: Average error:
0.92%(±0.72%) 4.09%(±2.61%) 0.47%(±0.26%)

  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 %

Fig. 7. Average relative error distance from the ground

truth in each animated sequence (in percentage between

0% and 5%, e.g., if a mesh is 100 mm, 5% means an

average error of 5 mm, the lower percentage the better).

Three settings are used: a) Direct matching of closest

points on surfaces, b) direct matching of closest points on

rigidly aligned spectral embeddings, and c) matching using

nonrigidly aligned spectral embeddings in FOCUSR. While

matching points in the spectral domain clearly improves

correspondence, FOCUSR gets additional precision by

aligning the spectral embeddings. Note that no additional

features are used here in FOCUSR.

3 RESULTS

To demonstrate the effectiveness of FOCUSR, we first
match a variety of generic meshes in a controlled ex-
periment (3 sequences of 50 and 10 frames of models in
various poses, totaling the computation of 160 matchings,
all with a known ground truth) and show that the use
of a nonrigid alignment of spectral coordinates improves
precision over a simple direct spectral matching method.
In a second experiment, we evaluate FOCUSR on an
established benchmark dataset and show that our method
tracks the accuracy of the state-of-the-art with a simpler
approach. We chose the high resolution TOSCA shapes
[13] (totaling 80 objects with up to 50,000 vertices) since it
has been tested on a variety of mesh matching methods
[12], [34]. In a last experiment, we show the benefits of us-
ing FOCUSR in a real medical application, namely to brain
surface matching where precision is crucial and where
additional features are known to be meaningful to surface
alignment. We do so by processing and analyzing the
correspondence of 264 pairs of brain surfaces (each with
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up to 135,000 vertices) using 15 different combinations of
features (totaling the computation of 3,960 correspondence
maps). This neuroimaging application reveals the full
power of FOCUSR where the introduction of additional
features significantly improves shape matching.

3.1 Benefits of Spectral Alignment

We first begin our validation by showing that FOCUSR
can find efficiently and precisely a dense correspondence
between generic meshes. We use the data from [61]
(available publicly3) where animal models have been de-
formed in various poses. These meshes were created in
[61] by transferring the deformation of a sequence of
source meshes to target reference meshes. We use in the
dataset the sequence of a galloping animal for a horse
(8,431 vertices, 50 frames), an elephant (21,887 vertices,
50 frames), and a camel (42,321 vertices, 50 frames), all
illustrated on Fig. 6. We want to recover the deformations
and assess the precision of the correspondences between
all models in a sequence and the reference model. For
each gallop animation, the same mesh is deformed, and
all vertices across the sequence maintain a direct one-to-
one correspondence with the reference mesh (i.e., node
i of any mesh in the animation corresponds with node
i (the same index value i) in the reference mesh). This
gives a ground truth for the correspondence maps in all
animations (i.e., φ(i) = i) on which we can compare our
method.

We quantify precision by measuring the average dis-
tance between the locations of corresponding points found
with FOCUSR and with the ground truth. That is, for
all points vi ∈ V1 in the first mesh matching the points
vφ(i) ∈ V2 in the second mesh, the mean distance error is

the average of the distances, 1
N

∑N

i ||xi − xφ(i)||, between
the real locations of the corresponding points, xi, and
their recovered locations on the second mesh, xφ(i). For
each gallop animation, we computed the correspondence
maps of the meshes of all frames with the reference mesh.
Fig. 7 shows the average relative distance error for all
sequences when finding the closest points in space, in
the spectral domain, and when using FOCUSR in its
simplest setting (i.e, K = 0 in Eq. (8)). Mismatches due
to nonrigid deformations (e.g., articulated limbs of the
galloping animals) are the most severe when matching
in the spatial domain, while these errors are attenuated
when matching occurs in the spectral domain (about a
60% increase in precision). FOCUSR improves precision
over the simple spectral matching by about 50%.

The relative average distance error in FOCUSR with
its standard deviation (expressed in percentage of the
size of a mesh) is for the whole horse gallop anima-
tion: 1.41%(±0.57%) with an average computation time
of 44 seconds, for the camel gallop: 1.42% (± 0.65%) in
79 seconds, and for the elephant gallop: 0.95% (± 0.54%)
in 98 seconds (timing were performed on a 2.8 GHz Intel
Pentium 4 using unoptimized Matlab code). We addition-
ally ran the same experiment on an animation of changing
facial expressions (15,941 vertices, 10 expressions) and
found a relative average error of 0.47% (± 0.26%) with

3. Meshes available at http://people.csail.mit.edu/

sumner/research/deftransfer

Fig. 8. Matching using FOCUSR on two models of the

Michael dataset. Corresponding points have a unique color

((r,g,b) components given by the first three eigenmodes).

Red lines indicates 50 random correspondences.

on average 40 seconds of computation. All these errors
remain relatively small with corresponding points found
at more or less 1% of the size of the mesh from their true
locations (e.g., for a mesh of 100 mm, an error of 1% is
a mismatch of 1 mm). Additionally, five points of interest
were tracked along each animation (between the ears, the
tail tip, right rear and front paw, and on the sternum of
the animals; and the right ear, left upper eyelid, nose tip,
lower lip, and chin of the head).

By applying a nonrigid alignment of spectral coordi-
nates, FOCUSR exhibits an improved level of precision (of
about 1.4% error) even in the absence of using additional
features. Higher errors often occurs in areas of high non-
rigid deformation, such as skin stretching (e.g., the side of
the horse undergoing expansion and compression while
galloping). One might also argue that displaced areas are
not necessarily errors (e.g., the skin could move freely over
a body by a few centimeters when galloping).

3.2 Benchmarking on Nonrigid Meshes

We now pursue our evaluation on a benchmark dataset
that presents a broader variety of non rigid deformations.
The high resolution TOSCA dataset [13] consists of 3
humanoids in various poses (Michael in 20 poses, each
with 52,565 vertices; David, 7 poses with 52,565 vertices;
Victoria, 12 poses, 45,659 vertices), a centaur (6 poses,
15,768 vertices), a cat (11 poses, 27,894 vertices), a dog (9
poses, 25,290 vertices), a horse (8 poses, 19,248 vertices)
and a wolf (3 poses, 4,344 vertices). Meshes within the
same class have again the same triangulation with vertices
numbered in a compatible way, thus establishing a ground
truth for correspondence maps (i.e., φ(i) = i). We quantify
precision in a similar fashion to the previous experiment,
that is by measuring the displacement of correspondences
from their ground truth positions.

We first ran our experiment by matching all models
against their respective reference using the direct spec-
tral matching approach used earlier (i.e., finding pairs
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Fig. 9. Correspondence error when using FOCUSR on the TOSCA benchmark dataset (distance error color coded in

percentage of the mesh size). The average error map within each class is shown on the reference mesh (larger models on

the left) while errors in matching each individual model to the reference are shown on each right. FOCUSR demonstrates

an average correspondence error of 1.46% on the TOSCA dataset.

of closest points in the spectral domain). The relative
distance error from ground truth (expressed in per-
centage of the mesh size, with standard deviation) is
on average 3.27%(±2.59%), or within each dataset, for
Michael: 4.06%(±2.87%), for the centaur: 3.91%(±3.07%),
for David: 3.57%(±2.70%), for the cat: 2.53%(±2.26%), for
the dog: 3.74%(±3.00%), for the horse: 2.71%(±2.39%), for
Victoria: 2.26%(±2.05%), and for the wolf: 2.21%(±2.21%).

We then matched all models using FOCUSR in its
simplest setting (i.e., K = 0 in Eq. (8)) in order to
benchmark its general performance (without exploiting
additional information) with respect to the direct match-
ing of spectral embeddings as well as with the state-of-
the-art. One example of matching is illustrated on Fig. 8
and the results for all pairs of matching are reported
in Fig. 9 where the average correspondence error within
each class is shown on each respective reference model
(larger models on the left). The relative distance error from
ground truth (expressed in percentage of the mesh size,
with standard deviation) is on average 1.46%(±1.43%),
or within each dataset, for Michael: 1.51%(±1.58%), for
the centaur: 1.96%(±1.78%), for David: 1.27%(±1.28%),
for the cat: 1.42%(±1.09%), for the dog: 1.17%(±1.54%),
for the horse: 1.57%(±1.56%), for Victoria: 1.22%(±1.16%),
and for the wolf: 2.27%(±1.86%). Most errors look to
appear on thighs, where again, ambiguity remains when
there is a slight change in isometry (e.g., how to handle the

relative motion of the skin over the body). The increase in
accuracy between the performances of the direct spectral
matching and FOCUSR (a 55% improvement) illustrates
the benefits of using a nonrigid alignment of spectral
embeddings in spectral matching approaches.

For comparison purposes, we computed the geodesic
distances from all corresponding points to their ground
truth using the code provided by [34] and compared
the results of FOCUSR with those reported in [34] for
several methods, namely the Möbius Voting [36], the
Generalized Multidimensional Scaling (GMDS) [10], and
the Heat Kernel Maps method (HKM) [43]. FOCUSR
produces an average geodesic distance error of 0.0470
which is significantly lower than the error produced by the
Möbius Voting (0.0985), GMDS (0.3085) and HKM (0.2287).
Details for each dataset are summarized in Table 1 and the
cumulative distributions of the geodesic distance error are
shown in Fig. 10. It is interesting to note that the Blended
Intrinsic Maps method [34] produces the best results,
however, it relies on multiple conformal maps that are
blended together in order to establish correspondences.
In this experiment, we evaluate the accuracy attained by
FOCUSR with simple spectral coordinates, however, its
accuracy may possibly increase with the use of various
blended conformal maps.

Furthermore, from the results reported in [12], FOCUSR
appears to perform at higher accuracy than other conven-
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Dataset FOCUSR Blended Möbius GMDS HKM
Michael: 0.0539 0.0329 0.1392 0.2820 0.2593
Centaur: 0.0476 0.0602 0.0407 0.1456 0.1205
David: 0.0486 0.0290 0.2118 0.2463 0.1799

Cat: 0.0369 0.0430 0.1000 0.1490 0.1815
Dog: 0.0357 0.0370 0.0499 0.5403 0.2291

Horse: 0.0713 0.0235 0.0342 0.3350 0.1568
Victoria: 0.0350 0.0306 0.1129 0.3918 0.3602

Wolf: 0.0581 0.0084 0.0145 0.3685 0.2444
Total: 0.0470 0.0342 0.0985 0.3085 0.2287

TABLE 1

Average geodesic error on TOSCA shapes using

FOCUSR (our method), Blended Intrinsic Maps, Möbius

Voting, GMDS, Heat Kernel Maps with 2 correspondences.
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Fig. 10. Performance of various methods on TOSCA

shapes. The x-axis depicts the geodesic distance from the

computed corresponding points to the ground truth, and

the y-axis indicates the percentage of correspondences

having accuracy below the prescribed geodesic distance.

FOCUSR (our method) performs better on TOSCA shapes

than the Möbius Voting, GMDS, and Heat Kernel Maps. It

is possible that the Blended Intrinsic Maps method, which

uses a collection of conformal maps, may benefit from

using maps generated with FOCUSR.

tional spectral methods such as [21], [22] (whose geodesic
distance error is reported at 8.77 in the isometry test). It is,
however, hard to assess the differences with other spectral
methods, in particular with [40], yet our first controlled ex-
periment showed that the nonrigid alignment of spectral
components does improve the matching accuracy, whereas
current state-of-the-art spectral methods, such as [40], cur-
rently rely on a simplistic rigid alignment. FOCUSR may
therefore demonstrate further accuracy than conventional
spectral methods due to its nonrigid spectral alignment.

3.3 Brain Surface Matching

We now show an application where FOCUSR demon-
strates a significant improvement over typically used
methods. Brain surface matching is an important topic
for neuroimaging studies that requires the alignment of
anatomical landmarks or functional activation across a
population. Specifically, cognitive function can only be
studied across individuals when correspondence is made
from one individual to another between activation areas of
the brains. The brain morphology offers the particularity
that every individual has a unique folding pattern in

Coord. Nodes Edges Error
S T C S T C S T C
X X X X X X 0.14 mm
X X X 0.13 mm
X X X 0.29 mm

X X X 0.50 mm
XX XX X 0.07 mm

(with only spectral components) 0.38 mm
(simple feature matching) 53.02 mm

TABLE 2

Settings used in FOCUSR for the recovery of a synthetic

deformation. Checkmarks indicate whether sulcal depth

(S), cortical thickness (T), or cortical Gaussian curvature

(C) is used as features, on graph node weights, or on

graph edge weights. The synthetic deformation process

did not distort sulcal depth or cortical thickness, but did

distort Gaussian curvature. This experiment demonstrates

that FOCUSR can profit from incorporating the meaningful

(undistorted) features. The reported error gives the

average error distance between the matched point and the

ground truth across all available hemispheres. The use of

FOCUSR without any features (with only spectral

components) and the simple feature matching method are

provided for comparison.

their cerebral cortical hemispheres while, at the same
time, many large-scale similarities exist and allow cor-
respondence between brain surfaces. Moreover, matching
brain surfaces allows us to test the ability of FOCUSR to
use extra features, such as the sulcal depth, the cortical
Gaussian curvature, and the cortical thickness, that can
potentially improve the precision of the correspondence
beyond conventional spectral correspondence. We utilize
the two features used by the FreeSurfer algorithm to drive
alignment, which are the sulcal depth [25] at each point
{s1, s2, . . . , sn} (as calculated by FreeSurfer), and the sur-
face curvature at each point, {κ1, κ2, . . . , κn}. FreeSurfer
outputs the mean curvature of a mesh, but in practice our
method generated slightly better results when using the
Gaussian curvature estimated with the method described
in [60]. We thus chose to test the Gaussian curvature
in our feature combinations in order to avoid exploding
the number of feature combinations in our experiments.
In addition, FreeSurfer also supplies gray matter cortical
thickness (calculated from anatomical MRI image data
[24]) at each point, {t1, t2, . . . , tn}, which we can addition-
ally test as a feature to drive the alignment with FOCUSR.

To demonstrate the flexibility of FOCUSR to handle
different features, different combinations of these three
additional features were used in our experiment. Addi-
tionally, we independently examine the effects of using the
features to define only edge weights (in Eq. (3)), only node
weights (in Eq. (5)), or only as coordinates for matching
(in Eq. (8)).

3.3.1 Synthetic deformations

We begin with a synthetic experiment which is designed
to demonstrate that FOCUSR profits from meaningful fea-
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(a) deformed meshes
(b) Error map when using simple

feature matching (K = 2)
Average error: 53.11 mm.

(c) Error map when using spectral
coordinates (M = 5)

Average error: 0.35 mm.

(d) Error map for FOCUSR (K = 2,
and M = 5)

Average error: 0.06 mm.

Fig. 11. Comparison with a synthetic ground truth using one brain hemisphere. (a): The deformed mesh (colored with

its Fielder vector) overlaid with the original vertex positions illustrated by the blue dots. (b): When using simple feature

matching (K = 2,M = 0), the mean distance error with the ground truth is as expected very high, 53.11 mm. (c): When

using FOCUSR with only spectral components and no additional feature (K = 0,M = 5), the mean distance error is

0.35 mm. (d): When using FOCUSR with both spectral components and additional meaningful features (K = 2,M = 5),

the mean distance error using this brain hemisphere is 0.06 mm. When iterating this experiment on all hemispheres, the

mean distance error using FOCUSR is 0.07 mm (Note that surfaces are smoothed in (b,c,d) after correspondence to

visualize the errors within the cortical foldings).

tures to produce a precise alignment. In this experiment,
we synthetically deform a brain surface such that two of
the features are preserved and one feature is distorted.
FOCUSR is shown to perform better when the meaningful
(preserved) features are included and worse when the
noise feature is included. For our experiment, we match
one brain hemisphere with a deformed version of itself.
The vertex indexing remains the same in the deformed
version. Similarly as the last experiment, the true match-
ing is thus known (i.e., φ(i) = i). We severely deform one
cortical surface model, where for each point (x, y, z), we
apply the transformation z′ = (1+α)z, i.e., a compression
in the z-axis controlled by parameter α (we used α = 0.3),
and the transformation x′ = x + βr2/max(r2) with r2 =
x2 + y2, i.e., a radial distortion controlled by parameter
β (we used β = 15). This simulates a deformation due
to a drastic change in the head shape. The deformation
however preserves the same mesh topology as it does not
introduce any discontinuities or intersecting faces. Fig. 11
illustrates the position of the original hemisphere with the
blue dots and the deformed hemisphere with the colored
mesh. The sulcal depth and the cortical thickness are the
same in both cortical meshes. The Gaussian curvature
has been recomputed in the deformed mesh with the
method described in [60]. Therefore two of the features
(sulcal depth and cortical thickness) are meaningful under
this distortion and one feature (Gaussian curvature) is a
distracting noise feature. The goal of this experiment is to
verify if the use of additional meaningful features helps
the matching precision and to measure its improvement.

If we use the simple feature-only correspondence, the
error is on average across all hemispheres 53.02 mm due
to the fact that the correspondence map has virtually
no mechanism to promote smoothness. When FOCUSR
is used with only spectral components with no features
(e.g., K = 0 and M = 5), we find for all hemispheres
an average error distance of 0.38 mm as shown in the
first error map of Fig. 11. Most errors appear to be
located on the sulci extrema. By using FOCUSR to drive
feature correspondence with spectral regularization, the
error drops to 0.07 mm.

In FOCUSR, the surface features affect the correspon-

dence by using the features as coordinates in the point
matching, and/or, by using the features to set edge
weights, and/or by using the features to set node weights.
Now we demonstrate that the greatest precision for FO-
CUSR is obtained by using the features in these three
ways instead of just one or two of these ways. Specifically,
we iterate through all of the 512 possible combinations
(23×3). Table 2 summarizes a few combinations. We tested
FOCUSR using both sulcal depth and Gaussian curvature
as additional features. The average error distance across
all hemispheres is in this case 0.14 mm. Adding the sulcal
depth as the only additional feature yields an error of 0.13
mm; adding only the cortex Gaussian curvature yields an
error of 0.50 mm; and the cortical thickness yields an error
of 0.29 mm. The best combination of features for FOCUSR
was obtained when using sulcal depth and cortical thick-
ness as additional coordinates and on graph nodes, and
using cortical thickness on graph edges, yielding an error
of 0.07 mm. It is expected that FOCUSR should perform
best with these features, since they were not changed
by the synthetic deformation, but the Gaussian curvature
was. The error map on a single hemisphere is shown
on Fig. 11. The best-performing combination of features
demonstrates an almost perfect matching for FOCUSR.

This experiment shows that by incorporating meaning-
ful features FOCUSR can indeed improve the matching
precision. The weighting functions used here also differs
slightly from the one used in [39] which used the exponen-
tials of the additional features. This experiment confirms
that using stable features between two cortices (i.e., the
same sulcal depth and cortical thickness) improves the
cortex matching precision.

3.3.2 Performance Evaluation on Real Data

Cortical surface matching is a challenging problem due to
the wide variability in gyral morphology and topology be-
tween individuals. There is no ground truth available for
perfect brain surface matching across individuals. How-
ever, FreeSurfer [25] has been demonstrated to provide
highly precise cortical matchings that closely align cortical
areas across subjects [32] and therefore provides a reliable
surrogate for our comparison. The delineations of 81 sulcal
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Parcel overlaps using FOCUSR
Average overlap: 71% (in 208 sec)

Parcel overlaps using FreeSurfer
Average overlap: 71% (in several hours)

Fig. 12. In green, good overlap of projected sulcal regions,

in red, wrong projection outside the sulcal regions, and

in light blue, missed sulcal regions. (First brain) Corre-

spondences computed in 208 seconds on average using

FOCUSR, while (second brain) FreeSurfer required several

hours (Note that in this visualization surfaces are smoothed

to visualize the correspondence within the cortical fold-

ings).

regions are available for 24 hemispheres (12 subjects).
These sulcal regions were obtained using an automatic
parcellation of the cortex [26] and are considered as our
gold standard. Although parcellations of the cortex into
named sulci and gyri are not excepted to align between
subjects in all cases (except for the primary folds), they
do provide means to compare the two methods. We use
correspondence maps generated by FreeSurfer and FO-
CUSR to project the parcellation areas onto different brain
hemispheres and measure their overlap (illustrated on
Fig. 12). To process a mesh of 135,000 vertices, FreeSurfer
has a varying processing time which is currently on
the order of several hours, while the time required by
FOCUSR is on the order of 3–4 minutes. To process all
our 264 possible pairs of left and right brain hemispheres,
FOCUSR required on average 208 seconds (on a 2.8 GHz
Intel Pentium 4 using unoptimized Matlab code). With
reduced meshes of 20,000 vertices, FOCUSR performed
in 19 seconds. The primary computational burden of the
algorithm is the final diffusion of the correspondence map.
This final step requires the smoothing of the matched
mesh, which currently takes 84 seconds on average in
Matlab. The total time to perform all our 264 correspon-
dences using FOCUSR was 14 hours on a single computer,
a substantial advantage compared to the several weeks
required by FreeSurfer. Each overlap ratio is defined by
the ratio of set intersection to set union. Fig. 13 shows the

Coord. Nodes Edges Overlap Overlap
S T C S T C S T C Left Right

55.11% 55.18%
X X X 70.79% 70.57%
X X X X X X 70.77% 70.60%
X X X X X X 70.77% 70.42%
X X X X X X X 70.73% 70.66%
X X X X X X X 69.65% 70.12%
X X X X X 70.67% 70.65%
X X X X X 65.51% 66.84%
X X X X X 70.67% 70.58%
X X X X X X X X X 70.74% 70.41%
X X X 71.10% 71.16%

X X X 55.25% 56.77%
X X X 55.28% 56.67%

X X X X X X 71.18% 71.11%
X X X X X X 69.64% 70.15%

TABLE 3

Different combinations of features with spectral

correspondence (three modes: as matching coordinates,

to define edge weights or to define node weights)

demonstrate that using all three combination modes (as

we advocate in FOCUSR) gives the best performance.

Additionally, different combinations of three features,

sulcal depth (S), cortical thickness (T), or Gaussian

curvature (C), demonstrate that using sulcal depth and

cortical curvature in FOCUSR provides performance most

similar to FreeSurfer (as expected since it relies on similar

features). In comparison, FreeSurfer’s overlap ratios are

72.03% in the left hemispheres, and 70.95% in the right

hemispheres. The experiment was performed over all 264

pairs (from 12 brains), averaged across the twelve largest

parcels

overlap ratios for the twelve largest sulcal parcellations1

using FOCUSR and FreeSurfer. The results of FOCUSR
are correlated to FreeSurfer’s overlaps with a correlation
coefficient of ρ = 0.897.

From Fig. 13, we can see that FOCUSR closely matches
the performance of FreeSurfer when using a similar fea-
ture set (sulcal depth and cortical curvature) to drive
the correspondence (71.16% overlap for FOCUSR versus
70.95% overlap for FreeSurfer). In contrast, the pure fea-
ture matching or the use of FOCUSR with only spectral
components produces results with a much lower precision
(effectively null at 0.48% overlap). We now demonstrate
that using features purely for edge or node weights (or
purely as feature coordinates) also produces suboptimal
results.

1. Sulcal regions: 9 (G frontal middle), 10 (G frontal middle), 18 (G occipit
temp med Lingual part), 23 (G parietal inferior Supramarginal part), 24 (G
parietal superior), 26 (G precentral), 41 (Medial wall), 42 (Pole occipital), 45
(S central), 47 (S cingulate Main part and Intracingulate), 59 (S intraparietal
and Parietal transverse), 80 (S temporal superior).
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Fig. 13. Average overlap ratios of the twelve largest sulcal regions on the right hemisphere over 264 matchings. (Dark

blue) FOCUSR with features only, sulcal depth and cortical Gaussian curvature (i.e., K = 2, M = 0): 0.48% ± 0.28%
overlap. (Cyan) FOCUSR with spectral components only (i.e., K = 0, M = 5): 55.18%±9.09% overlap. (Yellow) FOCUSR

with features (sulcal depth and cortical Gaussian curvature) and spectral components (i.e., K = 2, M = 5): 71.11% ±
5.98% overlap. (Red) FreeSurfer’s overlap ratios (requiring weeks of computations): 70.95% ± 7.27% overlap. FOCUSR

only required 14 hours to perform all 264 matchings and is strongly correlated with FreeSurfer (correlation coefficient of

ρ = 0.897). The error bars show the standard deviation of each overlap ratio.

3.3.3 Testing with multiple configurations

We first analyze the matching performance using different
configurations of the same features used by FreeSurfer,
namely sulcal depth and cortical curvature. In a second
step, to demonstrate the flexibility of FOCUSR, we in-
troduce a different feature not used by FreeSurfer and
tested several combinations of features to see whether
any of these combinations performs better than FreeSurfer.
Additional features were incorporated in FOCUSR using
Eq. (8), Eq. (3), and Eq. (5), with γ = 1.2 and β = 0.2
(the description of the behavior of these parameters are
described in [39]). Overall, fifteen different combinations
of additional features were used. For each combination,
we ran FOCUSR on the 132 pairs (n(n − 1) with n = 12
brains) of left brain hemispheres and on the 132 pairs of
right brain hemisphere (totaling 3,960 matchings, 264×15).
The results are summarized in Table 3. In comparison,
FreeSurfer performs with an average overlap ratio for the
largest parcels of 72.03%(±8.52%) in the left hemispheres
(the variation is the standard deviation of all overlap
ratios), and 70.95%(±7.27%) in the right hemispheres.
Fig. 13 shows three relevant combinations.

• The first combination shown on Fig. 13 demonstrates
the poor performance of the direct feature matching
method where FOCUSR uses no spectral coordinates
as described in Section 2.1 (i.e., M = 0, matching
is a simple feature comparison using sulcal depth
and cortical Gaussian curvature (K = 2) as used
in Eq. (1)). The average overlap ratio on the largest
parcels is effectively null at 0.38%(±0.19%) in the
left hemispheres (0.48%(±0.28%) in the right hemi-
spheres).

• The second combination shows FOCUSR using no
features and only spectral components (K = 0 and
M = 5). The average overlap ratio on the largest
parcels is only 55.11%(±10.73%) in the left hemi-
spheres (55.18%(±9.09%) in the right hemispheres).

• The third combination shows the full power of FO-
CUSR where it uses spectral components along-
side sulcal depth and cortical curvature features,
which are the same features driving the corre-
spondence in FreeSurfer. The overlap ratio is as
high as 71.18%(±7.63%) in the left hemispheres
(71.11%(±5.98%) in the right hemispheres). This is
almost a perfect match with the overlap ratios in
FreeSurfer (72.03% in the left side, and 70.95% in the
right side).

FOCUSR is, in the left and right cortices, equivalent
with FreeSurfer’s overlap ratios (71.18% vs. 72.03% in the
left side, and 71.16% vs. 70.95% in the right side). It is
important to note that there is no perfect combination
of features to drive the correspondence. Our experiment
shows that certain combinations perform better on partic-
ular parcels than on others. The best combination of extra
features thus depends on which sulcal region of the brain
should be matched. This finding concurs with a similar
conclusion in [69].

3.3.4 Dependence on the number of spectral coordinates

In the previous section we demonstrated that it is optimal
to use features to derive edge weights, node weights
and as explicit feature coordinates. We now examine
the dependence of the performance on the number of
eigenvectors used as spectral coordinates by running the
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Fig. 14. Robustness of FOCUSR to the number of eigen-

vectors used as spectral coordinates. When no eigenvector

is used (M = 0, i.e., direct feature matching), the corre-

spondence is weak, whereas the performance becomes

stable after just three eigenvectors are included. The per-

formance is measured with the overlap ratios of sulcal

regions as used previously.

previous experiment with a varying number of eigenvec-
tors. When no spectral regularization is used (i.e., direct
feature matching with M = 0 eigenvectors), the algorithm
relies solely on feature coordinates. As expected, the per-
formance is weak. The plot in Fig. 14 shows, for the twelve
largest parcels, indeed a low overlap ratio of 0.38% in
the left hemispheres (0.48% in the right side) when using
pure feature matching, sulcal depth and cortical Gaussian
curvature, with no spectral coordinates (i.e., M = 0).
The performance improves quickly when eigenvectors are
used (i.e., M > 0) to spatially regularize the feature
matching. These spectral coordinates provide additional
means of discrimination during the optimization of the
correspondence map. FOCUSR gains no further significant
improvement in quality after M > 3. Essentially, this re-
sult demonstrates that the primary purpose of the spectral
coordinates is to provide a spatial regularization, which is
achieved by using only the lowest-frequency eigenvectors.

4 DISCUSSION AND CONCLUSIONS

This paper presents a novel method, based on spectral
correspondence, for the challenging task of precise surface
matching. Current methods, most of which are iterative
and control local deformations of surfaces, are dependent
on the extrinsic mesh geometry. They find their limitations
when matching articulated or highly deformable shapes.
Isometric deformations may be handled by using intrin-
sic metrics, however, this strategy often requires more
complex methods, such as GMDS [10], which finds the
embedding with the least distortion from one surface
onto another (computationally expensive on meshes with
> 4, 000 vertices), approaches based on Heat Kernels [62],
[43], which use multiscale geometric descriptors, or even
other conformal maps [71]. We show in this paper that
FOCUSR greatly generalizes and improves spectral cor-
respondence, making it suitable for efficient and precise
surface matching.

Additional information (e.g., texture, anatomical infor-
mation, or landmark positions) can help in establishing a
better correspondence. For example, this is the strategy
that FreeSurfer [25] relies on to match brain surfaces.
Spatial regularization becomes crucial in these methods. It

is clear from our experiments that direct feature matching,
with no spatial regularization (i.e., M = 0) exhibits very
poor performance. We decided to improve this strategy
by using a spectral regularization of the feature matching
method and to improve spectral matching by using a
nonrigid alignment. The space of regularization (i.e., the
spectral domain) is dependent on inherent properties of
the mesh geometry. This modified strategy would free
our method from the limitations of matching articulated
or highly deformable shapes. Spectral methods provide
a natural means of regularizing solutions at speeds of
several orders of magnitude faster than current methods
and are independent of the mesh extrinsic geometry. Our
method can implicitly incorporate additional features to
drive precise correspondence and it exploits the smooth-
ness of the lowest-frequency harmonics of a graph Lapla-
cian to regularize the correspondence map. Present day
spectral correspondence methods are not fully realized
and provide matchings that are not yet reaching a clinical
level of precision. Currently, only intrinsic geometry can
be embedded on graph edges and no additional informa-
tion can be used. We provide a full realization of spectral
correspondence where virtually any feature can be used
as additional information as weights in graph edges, but
also on graph nodes and as extra embedded coordinates
with little or no computational expense. Furthermore,
rigid transformations, or older point matching methods
based on Thin Plate Splines are used [33] and are difficult
to extend beyond 3D [59] to multidimensional feature
space. Our approach is also not limited to genus zero
surfaces [29] and can be applied to surfaces with arbitrary
topology.

In its simplest form, FOCUSR is an improved spec-
tral correspondence method that utilizes nonrigid point
registration. We showed in our first experiment that a
nonrigid alignment of the spectral coordinates improves
significantly (by about 50%) the matching precision over
a direct spectral matching. Its has been demonstrated
with a variety of generic models (animal and human
models in various poses, varying facial expressions) that
the error from a known ground truth is minimal (with
1.4% relative distance error for our matched models).
FOCUSR also showed a greater accuracy on the TOSCA
benchmark dataset than various state-of-the-art surface
matching methods (Möbius Voting [36], the GMDS [10],
and the Heat Kernel Maps method (HKM) [43]). The full
power of FOCUSR is presented in a real-world application
with the challenging task of brain surface matching across
several individuals. We use FOCUSR with different combi-
nations of additional features, such as sucal depth, cortical
Gaussian curvature, and cortical thickness, to improve
the matching precision. The fast speed of our method
allowed us to compute and analyze 3,960 correspondence
maps (which is prohibitively expensive for FreeSurfer).
When no regularization is used (e.g., K = 2 features
and M = 0 spectral components), the correspondence
generates a poor overlap ratio of 0.48% in the largest
sulcal regions. When FOCUSR is used in its simplest
form with no additional feature (e.g., K = 0 features and
M = 5 spectral components), the overlap ratio is 55%. The
performance of FOCUSR is improved by using additional
information (e.g., K = 2 features and M = 5 spectral com-
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ponents), and the overlap ratio increases to a level above
71% (versus 55% when using only spectral components).
Our method is effectively equivalent to FreeSurfer’s level
of precision (which is also around 71%) when aligning
sulcal regions. However, the vast increase in speed (with
a total processing time of 208 seconds on average for
meshes of 135,000 vertices) and the added flexibility when
using additional information gives new perspectives to
previously computationally prohibitive experiments. New
features (e.g., anatomical or functional features extracted
from various data sources) can be quickly tested and
evaluated to see if they improve cortex matching. Quick
parameter sweeps can be performed to isolate the best
parameter value sets, or alternatively, statistical learning
can be used [16]. These computationally intensive ex-
periments can help us to understand what features are
consistently correlated with brain areas across individuals
and what their role are during the development of the
cortical folding pattern. FOCUSR may further improve
accuracy by using other conformal maps as suggested
by [34]. Additionally, the computational time could be
significantly improved with a reimplementation in C++
and with parallel programming for critical sections such as
the eigendecomposition (e.g., LAPACK implementations
on CUDA-enabled GPUs). Approximation methods for
matrix eigendecomposition such as the Nyström approx-
imation [27], the Gaussian projection [31], or the differen-
tiable QR decomposition [6] could be used for additional
speed up in processing time.

Spectral regularization promotes the smoothness of the
correspondence map, but does not guarantee it. Better
relaxation schemes, such as the Relaxation Labeling used
in [74], might improve the matching precision. It is also
important to consider which weighting function to use,
for instance the cotangent weight has been shown to
uniquely determine the discrete Riemannian metric [70],
and to see how generalizable the parameter values are
with a larger sample set. The use of different surface
metrics [37] can be a promising area to investigate. The
algorithm, as with other spectral methods, is also not
symmetric (i.e., φi→j 6= φ−1

j→i). The CPD alignment does
not guarantee symmetry of the resulting transformation
(i.e., the computed correspondence map matching nodes
from mesh X to mesh Y might not be the same as the
inverse correspondence map matching nodes from mesh
Y to mesh X). Our method is also not tailored for match-
ing partial data. However, FOCUSR may be used in any
iterative method that drives a surface deformation with
or without occlusion. Further improvement of the method
will be toward achieving a better regularization and guar-
antee symmetry of the correspondence map. Nevertheless,
FOCUSR already presents several clear advantages over
present day methods for mesh correspondence and, in
particular, conventional spectral matching. It provides a
fast and precise solution for general mesh correspondence
that can handle articulated or highly deformable surfaces,
and creates a method that can implicitly use any set of
additional features to drive improved precision.
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fairing of irregular meshes using diffusion and curvature flow. In
SIGGRAPH, pages 317–324, 1999.8

[21] A. Dubrovina and R. Kimmel. Matching shapes by eigendecompo-
sition of the Laplace-Beltrami operator. In 3DPVT, 2010.11

[22] A. Dubrovina and R. Kimmel. Approximately isometric shape
correspondence by matching pointwise spectral features and global
geodesic structures. Advances in Adaptive Data Analysis, pages 203–
228, 2011.11

[23] A. Elad and R. Kimmel. On bending invariant signatures for sur-
faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(10):1285–1295, 2003.2

[24] B. Fischl and A. M. Dale. Measuring the thickness of the human
cerebral cortex from magnetic resonance images. Proceedings of
the National Academy of Sciences of the United States of America,
97(20):11050–5, 2000.11



17

[25] B. Fischl, M. I. Sereno, R. B. Tootell, and A. M. Dale. High-
resolution intersubject averaging and a coordinate system for the
cortical surface. Human Brain Mapping, 8(4):272–284, 1999.1, 11, 12, 15

[26] B. Fischl, A. van der Kouwe, C. Destrieux, E. Halgren, F. Segonne,
D. H. Salat, E. Busa, L. J. Seidman, J. Goldstein, D. Kennedy,
V. Caviness, N. Makris, B. Rosen, and A. M. Dale. Automatically
parcellating the human cerebral cortex. Cerebral Cortex, 14(1):11–22,
2004.13

[27] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping
using the nystrom method. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):214–225, 2004.16

[28] L. Grady and J. R. Polimeni. Discrete Calculus: Applied Analysis on
Graphs for Computational Science. Springer, 2010.2, 4, 5

[29] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus
zero surface conformal mapping and its application to brain surface
mapping. IEEE Transactions on Medical Imaging, 23(8):949–958, 2004.
15

[30] D. Hahnel, S. Thrun, and W. Burgard. An extension of the ICP
algorithm for modeling nonrigid objects with mobile robots. In
Proceedings of the International Joint Conference on Artificial Intelligence,
pages 915–920, 2003.1

[31] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate
matrix decompositions. SIAM, 53(2):217–288, 2011.16

[32] O. Hinds, N. Rajendran, J. R. Polimeni, J. C. Augustinack, G. Wig-
gins, L. L. Wald, D. H. Rosas, A. Potthast, E. L. Schwartz, and
B. Fischl. Accurate prediction of V1 location from cortical folds
in a surface coordinate system. Neuroimage, 39(4):1585–99, 2008.2, 12

[33] V. Jain and H. Zhang. Robust 3D shape correspondence in the
spectral domain. In IEEE International Conference on Shape Modeling
and Applications, page 19, 2006.2, 15

[34] V. G. Kim, Y. Lipman, and T. Funkhouser. Blended intrinsic maps.
In SIGGRAPH, 2011.1, 2, 8, 10, 16

[35] M. H. Lin. Tracking articulated objects in real-time range image
sequences. In IEEE International Conference on Computer Vision
(ICCV), volume 1, pages 648–653 vol.1, 1999.1

[36] Y. Lipman and T. Funkhouser. Möbius voting for surface corre-
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