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A B S T R A C T

Reconstructing and segmenting cortical surfaces from MRI is essential to a wide range of brain analyses.
However, most approaches follow a multi-step slow process, such as a sequential spherical inflation and
registration, which requires considerable computation times. To overcome the limitations arising from these
multi-steps, we propose SegRecon, an integrated end-to-end deep learning method to jointly reconstruct and
segment cortical surfaces directly from an MRI volume in one single step. We train a volume-based neural
network to predict, for each voxel, the signed distances to multiple nested surfaces and their corresponding
spherical representation in atlas space. This is, for instance, useful for jointly reconstructing and segmenting the
white-to-gray-matter interface and the gray-matter-to-CSF (pial) surface. We evaluate the performance of our
surface reconstruction and segmentation method with a comprehensive set of experiments on the MindBoggle,
ABIDE and OASIS datasets. Our reconstruction error is found to be less than 0.52 mm and 0.97 mm in terms of
average Hausdorff distance to the FreeSurfer generated surfaces. Likewise, the parcellation results show over
4% improvements in average Dice with respect to FreeSurfer, in addition to an observed drastic speed-up from
hours to seconds of computation on a standard desktop station.
1. Introduction

Brain surface analysis requires the accurate reconstruction and seg-
mentation of cortical surfaces from MRI volumes (Querbes et al., 2009;
Glasser et al., 2016; Billot et al., 2023). Standard surface process-
ing pipelines for reconstructing cortical surfaces (Fischl et al., 2004;
Dahnke et al., 2013; Kim et al., 2005; Kriegeskorte and Goebel, 2001;
Shattuck and Leahy, 2002) and hippocampus (Styner et al., 2006;
Puonti et al., 2016) follow a sequence of costly operations that often
include: white matter segmentation, surface mesh generation from
the segmentation masks, mesh smoothing and projection to a sphere,
topological correction of the projected mesh, and fine-tuning of re-
projected mesh on the segmented volume. The cortical surfaces are
segmented into neuroanatomical parcels in a subsequent and highly-
expensive step. Such segmentation can take several hours to finish,
which involves the re-projection of each surface to a sphere via a
metric-preserving inflation process, registration to a spherical atlas (Fis-
chl et al., 1999; Klein and Tourville, 2012) and cortical parcellation
using atlas labels (Desikan et al., 2006).

Recently, Henschel et al. (2020) developed a framework called
FastSurfer using deep learning that accelerates the processing times
for brain segmentation and spectral embedding for registration to a
spherical atlas. Despite reducing computation times considerably, this
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pipeline still performs reconstruction and segmentation in two consec-
utive steps. To overcome this limitation, Cruz et al. (2021), Ma et al.
(2021), Hoopes et al. (2022) and Bongratz et al. (2022) proposed a deep
learning based models for cortical surface reconstruction. This method
draws inspiration from Park et al. (2019), and samples points on a
reference grid of arbitrary resolution to reconstruct a surface without
the need for an explicit segmentation step. However, this process is
highly expensive in terms of both computation and memory for detailed
surfaces with hundreds of thousands of points. Additionally, DeepCSR
only performs surface reconstruction, and cannot be used for parcel-
lation which is one of the most time-costly operations in conventional
neuroimaging pipelines (Fischl et al., 2004). Similarly, (Ma et al., 2021)
proposed a 3D deep learning framework for pial surface reconstruction.
Approaches that directly operate (Wu et al., 2019; López-López et al.,
2020) or learn on surface data (Gopinath et al., 2019; Lombaert et al.,
2015; Gopinath et al., 2020) have been used for cortical parcellation,
but are designed to process single surfaces separately for each subjects.
Spectral embeddings of surface meshes in a low-dimensional space can
be exploited to predict cortical parcellation labels (Lombaert et al.,
2015; Germanaud et al., 2012). However, a major limitation of these
early learning approaches is that mesh nodes are considered separately
instead of jointly. Recent work has proposed using graph convolutional
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Fig. 1. Overview of the algorithm – Our proposed method for joint brain surface reconstruction and segmentation from images. On the left is input: MRI volume 𝑋. In the
middle are the intermediate learned voxel level predictions from the 3D CNN model. These include for each voxel 𝑣: hemisphere label ℎ𝑣(𝑋), azimuthal angle 𝛾𝑣(𝑋) and polar
angle 𝜙𝑣(𝑋) in the spherical atlas space, signed distance to white matter surface 𝑑𝑤

𝑣 (𝑋), and signed distance to pial surface 𝑑𝑝
𝑣 (𝑋). On the right are the reconstructed white and

pial surface along with cortical parcels for each hemisphere of the brain.
networks (GCN) (Gopinath et al., 2019; Wu et al., 2019; He et al., 2020;
Gopinath et al., 2020) to exploit the connectivity information of a mesh
graph. Similarly, DBPN (Zhang and Wang, 2019) introduced a two-
stage spatial graph convolution network and ASEGAT (Li et al., 2022)
proposed to use an anatomically constrained squeeze-and-excitation
self attention graph network to perform a cortical parcellation in the
original mesh space. While such strategy provides an accurate and
faster parcellation of the cortical surface, it is highly sensitive to the
quality of the surface reconstruction step. For instance, small errors
or holes in the reconstructed cortical mesh may causing graph con-
volution methods to fail at parcellation tasks. In a similar manner,
SPHARM-Net (Ha and Lyu, 2022a) uses a spherical harmonics-based
convolutional neural network for vertex-wise cortical parcellation. Fur-
thermore, recent parcellation methods such as (Zhao et al., 2019, 2021;
Parvathaneni et al., 2019; Ha and Lyu, 2022b) rely on inflated spheres
of the cortical surface to perform spherical convolution-based parcel-
lation. Extracting these cortical meshes, inflating them and registering
them to spheres are typically computationally expensive steps, often
ignored by these methods.

We propose SegRecon, a novel deep learning model for the joint
reconstruction and parcellation of cortical surfaces. Our end-to-end
model works directly on MRI volumes and predicts a dense set of
surface points along with their corresponding parcellation labels (see
Fig. 1). A 3D CNN based UNet (Çiçek et al., 2016) predicts for each
input voxel of the volume, the brain hemisphere, its signed distance to
the nested surfaces (white matter and pial surfaces) of that hemisphere,
and the spherical coordinates in the registered atlas space. We use
this predicted nested signed distance surfaces for surface reconstruction
and the spherical coordinates for surface parcellation. By learning to
solve this multi-task problem, the network can be used to reconstruct
and segment brain surfaces efficiently and in a topologically-accurate
manner (Bazin and Pham, 2007).

The main contributions of our work are the following:

– To our knowledge, we propose the first deep learning model for
the joint reconstruction of multiple nested surfaces and their seg-
mentation, with an application on brain surfaces. This contrasts
2

with existing approaches, which either perform surface recon-
struction and segmentation in separate steps (Henschel et al.,
2020), are limited to reconstruction (Cruz et al., 2021), or require
a pre-generated mesh as input (Gopinath et al., 2019; Wu et al.,
2019; Lombaert et al., 2015);

– Compared to the current surface reconstruction learning ap-
proaches (such as DeepCSR), the proposed method implements
a fully-convolutional architecture that densely predicts the loca-
tion of all input voxels relative to cortical surfaces, in a single
feed-forward pass. Our method also leverages a novel surface
reconstruction loss that controls the minimum and maximum
distance between white matter and pial surfaces (i.e., cortical
thickness), thereby ensuring that these surfaces never cross;

– We present a comprehensive set of experiments involving three
publicly-available datasets, i.e., MindBoggle (Klein et al., 2017),
OASIS (Marcus et al., 2007) and ABIDE-I (Di Martino et al.,
2014), that compare the surface reconstruction and segmentation
accuracy of our method against several baselines. Our results
demonstrate the major advantages of our method over standard
brain surface analysis pipelines are recent approaches for cortical
parcellation. With respect to the widely-used FreeSurfer software,
our method generates surfaces with an average Hausdorff dis-
tance less than 0.52 mm, while boosting the parcellation Dice by
4.3% and being several orders of magnitude faster.

The proposed work is a substantial extension of our MICCAI ar-
ticle (Gopinath et al., 2021). The major extensions are: firstly, the
reconstruction of multiple nested surfaces extracts both white matter
and pial surfaces; secondly, a novel surface reconstruction loss ensures
that the white and pial surfaces never cross; finally, the evaluation of
the surface reconstruction is made on two independent test sets with
varying factors, such as image acquisition, processing parameters, age,
and cortical surface alterations.

In the next section, we present our proposed joint reconstruction
and segmentation approach, describing in detail the network archi-
tecture, training losses and inference steps. The performance of our
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Fig. 2. Overview of SegRecon architecture: The 3D-CNN model takes as input MRI volume 𝑋 for joint learning of the signed distance to white-to-gray matter interface,
gray-matter-to-CSF interface and its corresponding spherical coordinates in the registered atlas space. (Red) The cortical white matter or pial surface is reconstructed by applying
Gaussian smoothing and topological correction on the predicted signed distance map prediction 𝑑𝑤

𝑣 (𝑋) or 𝑑𝑝
𝑣 (𝑋), followed by iso-surface reconstruction via the Marching Cubes

algorithm. (Blue) In parallel, the predicted spherical atlas coordinates (𝛾𝑣(𝑋), 𝜙𝑣(𝑋)) and hemisphere label (ℎ𝑣(𝑋)) are used to propagate atlas parcellation labels to near-surface
voxels 𝑣. An illustration of the left hemisphere white matter surface is shown here.
method is then evaluated on the MindBoggle (Klein et al., 2017),
OASIS (Marcus et al., 2007) and ABIDE-I (Di Martino et al., 2014)
datasets. The ablation study and comparison to the state-of-art in our
experiments demonstrate the important benefits of our method.

2. Method

An overview of SegRecon is shown in Fig. 2 with the end-to-
end surface construction and segmentation steps illustrated. Let  =
{(𝑋𝑖, 𝑆𝑊

𝑖 , 𝑆𝑃
𝑖 , 𝑌𝑖)}

𝑛
𝑖=1 be a training set where each example is composed

of: a 3D volume 𝑋𝑖 ∈ R|𝛺| with voxel set 𝛺 ⊂ Z3, a white matter surface
𝑆𝑊
𝑖 ∈ R𝑚×3 defined by 𝑚 points, a pial surface 𝑆𝑃

𝑖 ∈ R𝑛×3 defined
by 𝑛 points, and a one-hot encoded segmentation 𝑌𝑖 ∈ [0, 1]𝑚×𝑐 of the
white matter surface, where 𝑐 is the number of segmentation classes.
The goal is to learn a model 𝑓 parameterized by θ which maps an input
3D volume 𝑋 to a white matter surface 𝑆𝑊 with corresponding parcel
labels 𝑌 , and a pial surface 𝑆𝑃 .

One of the main challenges in this task comes from the disparity
between the well-defined grid space of images 𝑋 and the domain of
surfaces 𝑆𝑊 and 𝑆𝑃 , where the number of points can vary from one
surface to another and points can lie anywhere in 3D space. In Cruz
et al. (2021), this problem is solved by giving as input to model 𝑓
both the image 𝑋 and a query point 𝑝 ∈ R3 in the template space. The
model then predicts if 𝑝 belongs to the surface in 𝑋 or, alternatively,
its distance to this surface. To reconstruct a surface at inference time,
the model is queried over a fixed reference grid. While this strategy
allows reconstructing a surface at arbitrary resolution, it suffers from
two important drawbacks. First, since the template points which can be
in the hundreds of thousands are queried independently, reconstructing
a surface requires significant time and computation. Moreover, unlike
dense prediction approaches, this strategy does not exploit the spatial
relationship between points. Last, because feature maps need to be
computed for the whole 3D volume 𝑋, it also needs a large amount
of memory.

To overcome these drawbacks, we instead learn a model that
densely projects voxels of the input volume 𝑋 to a spherical atlas space.
Specifically, 𝑓 maps each voxel 𝑣 ∈ 𝛺 to a vector

𝑓𝑣(𝑋) =
[

𝑑𝑤𝑣 , 𝑑
𝑝
𝑣 , 𝜙𝑣, 𝛾𝑣, ℎ

𝑙ℎ
𝑣 , ℎ𝑟ℎ𝑣 , ℎ𝑏𝑔𝑣

]

, (1)

where 𝑑𝑤𝑣 is the signed distance from 𝑣 to its nearest surface point,
such that 𝑑𝑤𝑣 ≤ 0 if 𝑣 is inside the surface else 𝑑𝑤𝑣 > 0. Similarly, 𝑑𝑝𝑣
is the signed distance from 𝑣 to its nearest pial surface. 𝜙𝑣, 𝛾𝑣 are
the polar angle and azimuthal angle of 𝑣 ∈ 𝛺 defining its position
3

in the spherical atlas, and ℎ𝑙ℎ𝑣 , ℎ𝑟ℎ𝑣 , ℎ𝑏𝑔𝑣 ∈ [0, 1] are the probabilities
that 𝑣 is in the left hemisphere, right hemisphere and background,
respectively. Here, polar and azimuthal angles are normalized so to lie
in the [−1, 1] range. A further topological correction step (Bazin and
Pham, 2007) over the predicted surface points prevents the extraction
of critical points yielding topological defects. The resulting white and
pial surfaces are defined implicitly as the 0-levelset of their respective
distance map and can be efficiently reconstructed using an iso-surface
extraction algorithm such as the Marching Cubes (Lorensen and Cline,
1987).

2.1. Training the model

Denote �̂�𝑖 = 𝑓 (𝑋𝑖) as the predicted vector for an image 𝑋𝑖 and let
𝐟𝑖 be the corresponding ground-truth. To train the model, we use the
following loss function

(𝜃;) =
𝑛
∑

𝑖=1
𝓁wsurf (�̂�𝑖, 𝐟𝑖) + 𝓁psurf (�̂�𝑖, 𝐟𝑖) + 𝜆1 𝓁hemi(�̂�𝑖, 𝐟𝑖) + 𝜆2 𝓁thick (�̂�𝑖),

(2)

The first loss term, 𝓁wsurf , ensures that the signed distance of voxels to
the white matter surface, as well as their position in the spherical atlas
space, are well predicted. Dropping index 𝑖 for simplicity, it is defined
as

𝓁wsurf (�̂� , 𝐟 ) =
∑

𝑣∈𝛺
1
|𝑑𝑤

𝑣 |≤𝜖
⋅
[

(𝑑𝑤
𝑣 − 𝑑𝑤

𝑣 )
2 + min

{

(𝜙𝑣 − 𝜙𝑣)2, (1 + 𝜙𝑣 − 𝜙𝑣)2
}

+ min
{

(�̂�𝑣 − 𝛾𝑣)2, (1 + �̂�𝑣 − 𝛾𝑣)2
}

]

. (3)

where 1𝑃 is the indicator function, equal to 1 if predicate 𝑃 is true
else, 0 otherwise. We only consider voxels within a distance of 𝜖 to
the nearest white matter surface point in order to focus learning on
relevant points close to our surface. This is achieved with function
1
|𝑑𝑤𝑣 |≤𝜖 in Eq. (3). Additionally, we consider the non-uniqueness of

spherical coordinates (e.g., −𝜋 ≡ 𝜋) by computing, for each angle,
the minimum 𝐿2 distance from the predicted angle or this angle plus
1 to the ground-truth. Using the minimum function of the two cyclic
angles aids in optimizing the training of both polar and azimuth angles..
The distance 𝑑𝑤𝑣 is, therefore, defined between the center of the voxel
𝑣 in image space and the nearest point on white matter surface 𝑆𝑊 .
In this work, we use the white matter surface mesh generated by
FreeSurfer for training. The sign of 𝑑𝑤𝑣 is determined using the white-
matter segmentation mask, with voxels inside the white matter having
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Fig. 3. Surface reconstruction visualization: Comparison of cortical white and pial surface reconstructed by our method (even columns) with FreeSurfer generated surfaces (odd
columns). The first row shows the surfaces reconstructed by our method using binary mask prediction. A reconstruction error of 2.8 mm in Hausdorff distance (HD) is seen with
the use of binary mask (BW) vs. a reconstruction error of 0.9 mm in Hausdorff distance (HD) with the use of a signed distance (SD) map. The reconstruction in the last column
for pial surface highlights the downside of using BW masks with irregular surface reconstruction.
a negative distance. Likewise, the ground-truth spherical coordinates
𝜙𝑣 and 𝛾𝑣 are obtained using FreeSurfer (Fischl et al., 2004) with the
Desikan–Killiany–Tourville (DKT) atlas (Klein and Tourville, 2012).

The second loss term, 𝓁psurf , ensures that the signed distance of
voxels to the nearest pial surface is predicted accurately. We define it
as

𝓁psurf (�̂� , 𝐟 ) =
∑

𝑣∈𝛺
1
|𝑑𝑝𝑣 |≤𝜖

⋅ (𝑑𝑝𝑣 − 𝑑𝑝𝑣 )
2. (4)

where 𝑑𝑝𝑣 is the distance defined between the center of the voxel 𝑣 and
its closest point on pial surface 𝑆𝑃 obtained by FreeSurfer pial meshes.
The sign of the distance 𝑑𝑝𝑣 is estimated using the brain segmentation
mask with voxels inside the brain mask having negative distance.
Similar to 𝓁wsurf in Eq. (3), 1𝑃 is the indicator function used to restrict
the training to the useful voxels within a distance of 𝜖 to the closest
pial surface.

The third term, 𝓁hemi enables the network to predict if a voxel 𝑣 lies
in the left hemisphere (𝑙ℎ), in the right hemisphere (𝑟ℎ) or is outside
both (𝑏𝑔). This prediction is necessary since the surface atlas is defined
separately for each hemisphere. Here, we use cross-entropy as loss
function:

𝓁hemi(�̂� , 𝐟 ) = −
∑

𝑣∈𝛺

∑

𝑐∈{𝑙ℎ,𝑟ℎ,𝑏𝑔}
ℎ𝑐𝑣 log ℎ̂𝑐𝑣. (5)

The ground-truth hemisphere masks are once again obtained from
FreeSurfer.

Since the white matter and pial surfaces are reconstructed from two
separate predictions, it may happen that predicted surfaces are near
to the ground-truth while still violating anatomical constraints. For
example, in very thin regions of the cortex, the reconstructed surfaces
may overlap or even cross each other. To avoid this problem, we add a
last term to the loss function, 𝓁thick , which controls the minimum and
maximum distance between the surfaces:

𝓁thick (�̂� ) =
∑

𝑣∈𝛺
1𝑑𝑝𝑣≤0

⋅
[

max(𝑑𝑝𝑣−𝑑
𝑤
𝑣 +𝑡𝑚𝑖𝑛 , 0) + max(𝑑𝑤𝑣 −𝑑𝑝𝑣−𝑡𝑚𝑎𝑥 , 0)

]

(6)

where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the minimum and maximum allowed inter-
surface distances (cortical thickness). These hyperparameters can be
set based on the dataset ground-truth or some clinical reference. For
instance, a cortical thickness range from 1 to 4.5 mm is reported
in Fischl and Dale (2000). We use similar values in this work: 𝑡𝑚𝑖𝑛 = 0
and 𝑡𝑚𝑎𝑥 = 5 mm. Effectively, this prevents surfaces from crossing each
4

other or separating beyond 5 mm. As defined in Eq. (6), this penalty
is only calculated for voxels inside the pial surface, i.e., voxels 𝑣 such
that 1𝑑𝑝𝑣≤0

.

2.2. Surface reconstruction and segmentation

Once the network is trained, it can be used to reconstruct and
segment surfaces directly from a test volume 𝑋. First, we feed the
volume to the network to obtain a prediction vector for all voxels.
Since the network is fully-convolutional, this can be done efficiently
in a single feed-forward pass. Next, we apply a small-width Gaussian
filter on the predicted 3D white matter surface distance map 𝑑𝑤 using
a single convolution operation and employ a topological correction
step (Bazin and Pham, 2007) to overcome any defects in the surface.
The same steps are followed to extract the 3D pial surface using
distance map 𝑑𝑝. The surface is reconstructed using the Marching
Cubes algorithm (Lorensen and Cline, 1987) on the 0-levelset of its
predicted signed distance map, smoothed with a Gaussian kernel and
topologically corrected with the method of Bazin and Pham (2007).

To segment the surface, we first compute the near-surface voxels in
each hemisphere as follows:

𝑆𝑐 =
{

𝑣 ∈ 𝛺 | |𝑑𝑣| ≤ 𝜖 ∧ 𝑐 = arg max
𝑐′

ℎ̂𝑐
′
𝑣
}

, 𝑐 ∈ {𝑙ℎ, 𝑟ℎ}. (7)

Next, we find the nearest-neighbor to a given reference atlas 𝑅𝑐 for
all the near-surface voxels 𝑣 ∈ 𝑆𝑐 using their predicted angles 𝜙𝑣 and �̂�𝑣.
The segmentation labels from this reference atlas 𝑅𝑐 are later projected
back to the near-surface voxels 𝑆𝑐 . A majority voting across multiple
atlases is eventually applied to obtain the final parcellation labels.

2.3. Implementation details

The overall architecture of SegRecon is shown in Fig. 2. As an input,
we provide the skull-stripped, intensity normalized 3D T1-MRI volume.
We use a 3D-UNet architecture similar to Çiçek et al. (2016) in order
to map the input voxel to a point in the spherical atlas space.

We apply a softmax activation in the first three output channels
to predict the probability of a voxel belonging to the background, left
hemisphere, or right hemisphere. The polar and azimuthal angles, 𝜙𝑣
and �̂�𝑣, are predicted with a tanh activation. The FreeSurfer generated
cortical meshes and the corresponding registered spheres are used to
pre-compute the surface distances and interpolate the ground-truth

spherical coordinates for each voxels respectively. The last two output
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Table 1
Performance of surface reconstruction: The reconstruction error (mm) measured between surface meshes generated by our SegRecon method and FreeSurfer generated meshes.

Experiment Left White Matter Right White Matter Left Pial Right Pial

CD AAD HD CD AAD HD CD AAD HD CD AAD HD

SD map 1.760(0.23) 0.337(0.02) 0.850(0.06) 1.772(0.20) 0.346(0.02) 0.876(0.05) 2.234(0.38) 0.419(0.03) 0.835(0.07) 2.287(0.29) 0.438(0.02) 0.896(0.09)
BW map 5.019(0.35) 0.630(0.04) 3.104(0.60) 4.954(0.27) 0.632(0.04) 3.032(0.47) 5.034(0.34) 0.806(0.04) 2.730(0.60) 4.970(0.27) 0.829(0.04) 2.509(0.47)

OASIS CN 1.820(0.68) 0.360(0.05) 0.805(0.12) 1.726(0.45) 0.354(0.04) 0.806(0.16) 2.949(0.91) 0.508(0.07) 1.405(0.24) 2.893(0.60) 0.512(0.06) 1.424(0.24)
OASIS AD 2.003(0.75) 0.396(0.05) 0.843(0.11) 1.973(0.70) 0.385(0.05) 0.819(0.09) 2.975(0.78) 0.554(0.08) 1.374(0.24) 2.948(0.57) 0.552(0.06) 1.389(0.22)

ABIDE CN 1.995(0.80) 0.357(0.05) 0.934(0.17) 1.920(0.52) 0.357(0.04) 0.936(0.15) 3.182(1.29) 0.470(0.13) 1.385(0.54) 3.350(1.13) 0.494(0.12) 1.536(0.54)
ABIDE ASD 1.946(0.70) 0.353(0.04) 0.936(0.16) 1.931(0.68) 0.355(0.03) 0.942(0.14) 3.159(1.34) 0.463(0.13) 1.378(0.54) 3.286(1.19) 0.480(0.11) 1.510(0.53)

The Chamfer distance (CD), absolute average distance (AAD) and the 90th percentile of Hausdorff distance (HD) are reported for white and pial surface meshes of both left and
right hemisphere. The first row highlights the performance of our method with surface reconstruction from signed distance (SD) map, whereas the second row shows the limitation
of using binary (BW) segmentation map for surface reconstruction. The third and fourth rows report the reconstruction error on OASIS dataset. Likewise, the last two rows show
the results on ABIDE dataset. Reconstruction metrics are reported on unseen OASIS and ABIDE data containing both healthy and AD/ASD subjects. The standard deviation is
reported inside the parenthesis.
channels produce the signed distance map 𝑑𝑤𝑣 and 𝑑𝑝𝑣 for each voxel
. The 𝜆1 and 𝜆2 are set to 0.05 and 1 respectively. The network
arameters, 𝜃, are optimized using a stochastic gradient descent with
he Adam optimizer (Kingma and Ba, 2014). During training, we pick
he maximum distance of surface voxels in Eq. (3) to be 𝜖 = 2.5 mm,
hich corresponds to the overall average thickness reported in Fischl
nd Dale (2000). We employ the (Lewiner et al., 2003) implementation
f the marching cubes in scikit-image on the 0-levelset of its predicted
igned distance map, smoothed with a Gaussian kernel of sigma =
.5 mm to ensure that the reconstructed surfaces are one-connected
eshes with no cracks or tears. We use an Intel i7 desktop machine
ith 16Gb RAM and Nvidia RTX 2080 GPU for our work.

. Experiments and results

To benchmark the performance of our method, we use one of the
argest publicly-available dataset containing manual surface parcella-
ion, MindBoggle (Klein et al., 2017). This dataset contains 101 subjects
ith MRI volumes, FreeSurfer processed meshes, and 32 manually-

abeled cortical parcels. We split the dataset randomly into training,
alidation, and testing using a ratio of 70-10%–20%. We also use the
BIDE-I (Di Martino et al., 2014) and OASIS (Marcus et al., 2007)
atabases as independent test sets to measure the surface reconstruc-
ion error of our method with FreeSurfer-generated cortical and pial
urfaces. The ABIDE dataset contains brain surfaces for 1035 subjects
ith 530 healthy and 505 autism spectrum disorder (ASD) subjects.
ikewise, the OASIS dataset comprises a total of 226 brain surfaces from
3 healthy subjects and 133 subjects with Alzheimer’s disease (AD).
hese two datasets are used to validate the robustness of the method to
arious factors, including image acquisition and processing parameters,
ge (the majority of ABIDE subjects are children or adolescents, while
ost OASIS subjects are elders) and cortical surface alterations (AD

ubjects in OASIS have a thinner cortex, on average, resulting from the
eurodegenerative disease).

In a first experiment, we validate the benefit of predicting a signed
istance map for surface reconstruction compared to predicting a bi-
ary mask. For this experiment, we train the model using only data
rom MindBoggle, and measure the reconstruction error on subjects
rom the ABIDE and OASIS datasets. The qualitative results of the
econstructed surface are shown in Figs. 3 and 4. In the next experi-
ent, we evaluate the impact of varying the reference atlas template

or predicting parcellation labels, and show that a robust parcellation
an be achieved by combining the predictions from multiple atlases.
inally, we highlight the advantages of our joint reconstruction and
arcellation model against state-of-the-art methods.

.1. Surface reconstruction

To assess the quality of reconstructed surfaces quantitatively, we use
5

he Chamfer distance (CD) (Park et al., 2019), absolute average distance
(AAD) (Cruz et al., 2021) and Hausdorff distance (HD) (Cruz et al.,
2021). Chamfer distance is a widely-used evaluation metric defined as
the sum between the average squared-distance from predicted surface
points to their nearest point on the ground truth surface and the aver-
age squared-distance from ground truth surface points to their nearest
point on the predicted surface. Similarly, AAD measures the mean
absolute nearest-neighbor distance between the predicted and ground-
truth surface points, averaging values computed in both directions
(predicted to ground-truth and the opposite). Finally, HD computes the
maximum distance between a point on a surface and its nearest point
on the other surface. As in Cruz et al. (2021), to minimize the impact of
outliers, we consider the 90th percentile of nearest-neighbor distances
for one direction and the other. For all metrics, a lower value in mm
indicates a better surface reconstruction.

We first evaluate the benefit of using a signed distance (SD) map,
when reconstructing the white and pial cortical surfaces, by comparing
it against using a binary mask (BW). To predict the binary mask, we use
an architecture similar to the one in Fig. 2 where the last two output
maps (corresponding to white matter and pial surfaces) are generated
with sigmoid activations. As reported in Table 1, an improvement in
CD from 5.0 mm to 1.7 mm is obtained when a signed distance map
is used for white matter surface reconstruction. A similar improvement
over the binary mask approach is also observed in terms of AAD and
HD. Qualitative results, presented in Fig. 3, show that the meshes
reconstructed using signed distance maps are more regular and closer to
FreeSurfer-generated meshes, compared to those obtained with binary
masks.

Our surface reconstruction method was also tested on the OASIS
and ABIDE datasets, not used for training, to evaluate its robustness.
As found in Table 1, our method obtained a mean AAD below 0.35 mm
and mean HD less than 0.93 mm for the white matter surface, in both
datasets. Similarly, reconstructed pial surfaces in both datasets have a
mean AAD no greater than 0.58 mm and mean HD less than 1.53 mm
for pial surfaces in both datasets. These results, obtained for subjects
of very different ages and with cortical alterations, are comparable to
those obtained for the MindBoggle test set. The qualitative results in
Fig. 4 validate the visual similarity in surface reconstruction of our
method, across datasets. Furthermore, we present a visualization of the
surface reconstruction geometry overlaid with the curvatures of the
white surface on inflated surfaces (Fig. 5). Additionally, the measured
Euler characteristic of 2 and the presence of one large connected com-
ponent in the reconstructed surface validate the topological accuracy
of our method.

3.2. Effect of reference atlas on parcellation

Instead of predicting class probabilities for each voxel, as in stan-
dard 3D segmentation networks, the proposed network predicts spher-
ical atlas coordinates (i.e., angles 𝜙𝑣 and �̂�𝑣). This has two important

advantages: (i) considerably reducing the number of outputs for the
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Fig. 4. Reconstruction on unseen ABIDE and OASIS datasets: Comparison of a cortical surface predicted by our joint reconstruction and segmentation method and
FreeSurfer (Fischl et al., 1999). Our SegRecon method yields visually similar results while being orders of magnitude faster. Reconstruction error on the unseen ABIDE and
OASIS dataset with both healthy and ASD/AD subjects are identical to the MindBoggle dataset the model is trained on, indicating the robustness of the proposed method. Only
right hemisphere is shown here.
Fig. 5. Qualitative visualization of curvature: The curvature in the range [−1 mm, 1 mm] for the white surface overlaid on the inflated surface. The odd columns illustrates
the curvatures overlaid on surfaces reconstructed and inflated by our method and the even columns indicate curvature for the ground-truth FreeSurfer meshes. The We can see
that both methods produce a similar geometry for the two samples.
number of classes to only two, and (ii) providing information on the
precise location of a voxel inside a parcel instead of simply measuring if
a voxel is inside a parcel or not. As we will show in the next section, this
continuous prediction strategy leads to a higher accuracy compared to
a standard segmentation approach. However, the final predicted labels
depend on the reference atlas.

For assessing the impact of the reference atlas on segmentation
performance, we randomly select five subjects from the training set and
use the spherical coordinates and parcellation labels of their surface
mesh nodes as different atlases Ref1,… ,Ref5. Table 2 reports the mean
Dice score obtained for test subjects using each of the five atlases. While
a high accuracy is obtained in all cases, the performance also varies
significantly from 84.60% to 87.33%.

To provide greater robustness to the choice of an atlas, we apply a
simple multi-atlas strategy in which a separate prediction is obtained
for each atlas, and individual predictions are combined using majority
voting. The number of atlas or references picked for combining labels
can impact the average Dice overlap of parcellation. Table 3 reports ma-
jority voting computed across multiple atlases. The subscripts indicate
the number of atlases used for majority voting. The accuracy obtained
by combining a different number of atlases referenced with subscripts
in Table 3 shows an increase in Dice overlap from 85.29% to 89.40%.
However, the computation time also increases from 1.7 s to 89.9 s, with
an increase in the number of atlases referenced for majority voting.
6

Having a trade-off between performance and computation time, Table 2
(last column) shows the majority voting strategy with 5 reference atlas
obtaining a Dice score of 88.69%.

3.3. Comparison with the state-of-the-art

We now compare our joint reconstruction and parcellation method
SegRecon against several baselines and recent approaches for these
tasks. Table 4 reports the performance of tested methods in terms of
average Dice scores over both hemispheres, mean Hausdorff distances
computed on the surface manifold over both hemispheres, as well as
runtimes. To evaluate the benefit of predicting cortical parcels using
spherical atlas coordinates, we first train a 3D-UNet to predict the
parcellation label probabilities directly at the voxel level as in standard
3D segmentation networks. This baseline, called DirectSeg in Table 4,
gives a low Dice score of 79.95%. As mentioned above, this is due
to the greater number of network outputs (i.e., one output per class)
compared to simply predicting the two spherical atlas coordinates.

We also evaluate the FreeSurfer parcellation against the manual
labels provided in the MindBoggle dataset. FreeSurfer considerably
improves parcellation accuracy compared to DirectSeg with a Dice
score of 84.39%. However, this comes at the price of a significant
increase in computation times, from 300 ms per volume for DirectSeg
to a few hours for FreeSurfer.
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Table 2
Effect of reference atlas.
Ref1 Ref2 Ref3 Ref4 Ref5 Voting

84.60(1.90) 85.85(1.79) 85.29(1.93) 85.08(1.54) 87.33(1.90) 88.69(1.84)

Column 1–5: The average Dice overlap (in %) obtained after using five different references as an atlas for
label propagation. The last column shows the results when we vote across five different atlas references.
The standard deviation is reported inside the parenthesis.
Table 3
Effect of number of reference atlases on parcellation.

Metric Ref1 Ref3 Ref5 Ref10 Ref35 Ref70
Dice overlap 85.29(1.76) 87.62(1.97) 88.69(1.84) 88.55(1.90) 89.33(1.99) 89.4(2.04)
Time 1.7 s 4.2 s 6.5 s 12.9 s 45.0 s 89.9 s

Column 1-6: The average Dice overlap (in %) obtained after using majority voting with 1, 3, 5, 35, 70 different references
as an atlas for label propagation. The standard deviation is reported inside the parenthesis.
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Table 4
Evaluation of SegRecon: Comparison against state-of-the-art approaches in terms of Dice
cores (in %), Hausdorff Distances (in mm), and computational time averaged over both
emispheres.
Methods Dice overlap (%) Hausdorff (mm) Time

DirectSeg 79.95 ± 2.58 – 300 ms
FreeSurfer 84.39 ± 1.91 2.11 ± 0.29 4 h
FS + SRF 79.89 ± 2.62 1.97 ± 0.40 2 h + 18 s
FS + DBPN 84.60 ± 3.40 – 2 h + 1 s
FS + GCN 86.61 ± 2.45 1.66 ± 0.44 2 h + 3 s
FS + ASEGAT 89.00 ± 2.29 – 2 h + 1 s
FS + SPHARM-Net 88.48 ± 1.88 1.36 ± 0.27 2 h + 1 s

Recon+Seg 44.50 ± 0 – 4 s
w/o hemisphere 59.28 ± 12.20 3.94 ± 3.14 8 s
SegRecon (Ours) 88.69 ± 1.84 1.20 ± 1.36 8 s

The first row shows the performance of a DirectSeg a 3D-CNN network on surface
parcellation. The second row illustrates the results of the traditional FreeSurfer
algorithm for parcellation. In the third and fourth row, we show the ability of a Spectral
Random Forest (SRF), DBPN, graph convolutional network (GCN) and ASEGAT learning
based approach to segment the cortical surface. The eighth row shows the importance
of learning hemisphere segmentation in our work. Finally, in the last row, we show
the performance of our proposed model. The Hausdorff distance is computed directly
on the surface mesh.

Third, we show the advantage of predicting cortical surfaces di-
rectly from 3D images, as in our method, compared to working with
surface meshes computed previously. Toward this goal, we compare
our method with four mesh-based surface parcellation methods, named
FS + SRF, FS + DBPN (Zhang and Wang, 2019), FS + GCN (Gopinath
et al., 2018), and FS + ASEGAT (Li et al., 2022). The results reported
for these methods are taken from their original manuscripts since their
code is not publicly available. The first one, Spectral Random Forest
(SRF) (Lombaert et al., 2015), performs a spectral embedding of nodes
in the FreeSurfer mesh graph using the main eigen-components of
its Laplace matrix. The labels of embedded nodes are then predicted
separately using a Random Forest classifier. In the second method,
a two-stage spatial graph convolutional network explores features
both locally and globally to learn the brain surface data. In the
next spectral method, the connectivity of nodes in the mesh graph
is exploited in the prediction using a spectral graph convolutional
network (GCN) (Gopinath et al., 2019). Next, the surface parcellation
using an anatomically constrained squeeze-and-excitation self atten-
tion graph neural network (Li et al., 2022) is evaluated. Finally, we
evaluate a spherical harmonics based network for cortical parcella-
tion, SPHARM-Net (Ha and Lyu, 2022b), in our training setting. As
shown, predicting labels for all nodes simultaneously in FS + DBPN,
FS + GCN, FS + ASEGAT, and FS + SPHARM-Net, instead of individually
in FS + RF, largely improves the Dice score by a minimum of 4.71% to
a maximum of 9.91%. However, these approaches require generating
surface meshes in a former step, which can take around 2 h for
7
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FreeSurfer, their total run time remains substantial. In comparison,
our joint reconstruction and parcellation method achieves a mean Dice
score of 88.69% with an average total run time of only 8 s per volume.
That is a 4.30% improvement over the Dice score of FreeSurfer, at a
fraction of its computational cost.

Next, we evaluate the performance of our SegRecon method in two
ifferent settings. First, we show the importance of the hemisphere
rediction loss of Eq. (5) on performance. To do so, we reduce the
eight of the loss term 𝓁hemi in Eq. (2) to 𝜆 = 0.0001 during training.
his ablation baseline is denoted as w/o hemisphere in Table 4. As
bserved, the lack of accurate hemisphere prediction results in am-
iguous label prediction for surface voxels in both hemispheres which
eads to a low Dice score of 59.28%. Finally, we present the setting
f our model for predicting a distance 𝑑𝑣 for each voxel compared
ith the hemisphere prediction. In this way, our model predicts the

so-surface for surface reconstruction. The accurate prediction of polar
nd azimuth angles (𝜙𝑣 and �̂�𝑣) for obtaining parcel labels from the
tlas yields an average Dice score of 88.69%. Similar improvements
f our method compared to other approaches are also found for the
ausdorff distance metric. Qualitative results obtained by our surface

egmentation method are shown in Fig. 6, where we illustrate the
ifferences between the predicted and manual label boundaries for four
ifferent parcels or regions.

. Discussion and conclusion

We presented SegRecon, a novel deep learning end-to-end model for
he joint reconstruction and segmentation of nested surfaces, directly
rom MRI volumes. Our model learns multiple signed distance func-
ions that represent surfaces implicitly as iso-levels. An inter-surface
istance loss, computed from the distance maps during training, en-
ures that surfaces do not cross and that the predicted cortical thick-
ess is anatomically possible. After applying a topological correction
ethod (Bazin and Pham, 2007), a mesh is generated for each surface

rom their signed distance map using the (Lewiner et al., 2003) imple-
entation of Marching Cubes algorithm (Lorensen and Cline, 1987).

ointly, the model also learns to predict the spherical coordinates of
ach voxel in a registered atlas space. The propagation of labels from
he atlas space effectively segments the cortical white matter surface.

Our experiments used the largest publicly available dataset of
anually-labeled brain surfaces (Klein et al., 2017), as well as the
BIDE-I (Di Martino et al., 2014) and OASIS (Marcus et al., 2007)
atasets, to evaluate the surface reconstruction and segmentation ac-
uracy of our method. We first showed the advantage of employing a
igned distance map over a binary surface mask for reconstructing cor-
ical surfaces. When comparing surfaces reconstructed by our method
o those produced by FreeSurfer, using a continuous signed distance
ap significantly reduces the Hausdorff distance from 2.8 mm to 1 mm.
ig. 3 shows the irregularities and artifacts in the reconstructed surface
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Fig. 6. Parcellation performance: The manual parcellation boundaries are shown in red, with our predicted parcellation boundaries in black. Our model segments 32 parcels
in total on the brain surface. We show four parcels, namely, Triangularis, Insula, Caudal middle frontal and middle temporal of the left hemisphere for qualitative analysis. The
cortical mesh is inflated here for visualization.
due to the use of binary map. We then validated the robustness of
our reconstruction method on the ABIDE and OASIS datasets which
were not used in training. The method yields a Hausdorff distance
of less than 1.5 mm on samples from these datasets, obtained with
varying acquisition protocols and corresponding to subjects with very
different ages and cortical alterations. The surfaces reconstructed with
our method, presented in Fig. 3, 4, are visually similar to FreeSurfer
meshes which require few hours of runtime to generate. Similarly, the
curvature of the white surfaces, as seen in Fig. 5, highlights the quality
of our surface reconstructions.

We analyzed the impact on performance of the reference atlas
selected for transferring cortical parcellation labels to the surface.
While Dice scores ranging from 84.60% to 87.33% were obtained with
5 different atlases, an improved Dice of 88.69% was achieved via
a multi-atlas strategy combining the predictions for different atlases
with majority voting. We also compared our method against several
baselines and state-of-the-art approaches for cortical parcellation. Our
approach has higher Dice score than directly predicting cortical labels
with 3D-UNet (79.9%) which, unlike our method, cannot be used
to reconstruct cortical surfaces. Moreover, it achieved a significantly
higher mean Dice score than FreeSurfer (84.3%) with substantially
reduced computation times over compared to this method (hours vs.
seconds). Likewise, it improved by over 2% Dice a state-of-art parcel-
lation method based on GCN that requires pre-computed surfaces as
input.

While the potential of our method has been demonstrated in our
results, our method has also limitations in both reconstruction and
parcellation, identified next.

Reconstruction: The reconstruction of surfaces from explicit dis-
tance functions creates a dependency on the input resolution of the
MRI. Our results have evaluated the robustness of our method on a
1mm3 MRI volume. Our approach could however potentially fail when
a surface reconstruction is made on coarser MRI resolutions. Further-
more, our proposed surface reconstruction has only been evaluated
on structural T1 MRI. While an extension to other modalities and
resolutions should follow the same methodology with a re-training,
fine-tuning and additional data augmentation, its validation remains
to be performed. On an additional note, our method adds a penalty
term on thickness during training to ensure non-overlapping white
and pial surfaces implicitly, while also using an external topological
correction technique. To this matter, despite the added dependency on
these external techniques, our results indicates that the reconstructed
cortical surfaces have no measured and observed topological errors.
Assessing alternative topological correction methods remains a po-
tential for future research. As an extension of our work, we further
anticipate that adding constraints to the CNN network that guarantee a
topological correctness could potentially improve the accuracy of the
surface reconstruction. Likewise, the presence of abnormalities such
as tumors and lesions in the brain could hinder the estimation of the
surface distance functions and, hence, their reconstructions.

Segmentation/Parcellation: Our approach consists of performing a
cortical surface parcellation by predicting the spherical coordinates
8

in a registered atlas space. Predicting such spherical coordinates also
enables the use of different atlases at inference time with no retraining.
As shown in Table 2, the results demonstrate a sensitivity to the choice
of the reference atlas picked for label propagation. To overcome this
limitation, we have proposed to aggregate the labels from multiple
reference atlases in a majority voting scheme. The computation time for
our parcellation is, therefore, dependent on the number of references
picked for a label look-up. Furthermore, our method also assumes
a necessary registration between the reference atlases. Our majority
voting could therefore potentially fail if these reference atlases are not
adequately aligned to the same template space.

Future work: Our method has currently been evaluated on cerebral
cortices, while it could also be in practice applied to various other
surface data, such as cardio-vascular surfaces. Moreover, although our
model includes a loss to control the distance between reconstructed
surfaces and prevent them from crossing one another, incorporating
more powerful topological constraints during training could possibly
remove the need for our current use of external topological correction.
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