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c� Hervé Lombaert, 2012
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The research undergone during this thesis has been funded through the sponsorship

of Siemens Corporate Research, as well as the NSERC Alexander Graham Bell Canada

Graduate Scholarship (CGS) and several travel grants (INRIA, EGIDE, NSERC, IAPR,

IPMI ).



vii

RÉSUMÉ

La recherche sur l’anatomie humaine, en particulier sur le cœur et le cerveau, est d’un intérêt

particulier car leurs anomalies entrâınent des pathologies qui sont parmi les principales causes

de décès dans le monde et engendrent des coûts substantiels. Heureusement, les progrès en

imagerie médicale permettent des diagnostics et des traitements autrefois impossibles. En

contrepartie, la quantité phénoménale de données produites par ces technologies nécessite

le développement d’outils efficaces pour leur traitement. L’objectif de cette thèse est de

proposer un ensemble d’outils permettant de normaliser des mesures prélevées sur différents

individus, essentiels à l’étude des caractéristiques de structures anatomiques complexes.

La normalisation de mesures consiste à rassembler une collection d’images dans une

référence commune, aussi appelée construction d’atlas numériques, afin de combiner des

mesures provenant de différents patients. Le processus de construction inclut deux étapes

principales ; la segmentation d’images pour trouver des régions d’intérêts et le recalage

d’images afin de déterminer les correspondances entres régions d’intérêts. Les méthodes

actuelles de constructions d’atlas peuvent nécessiter des interventions manuelles, souvent

fastidieuses, variables, et sont en outre limitées par leurs mécanismes internes. Principale-

ment, le recalage d’images dépend d’une déformation incrémentales d’images sujettes à des

minimums locaux. Le recalage n’est ainsi pas optimal lors de grandes déformations et ces

limitations requièrent la nécessité de proposer de nouvelles approches pour la construction

d’atlas.

Les questions de recherche de cette thèse se concentrent donc sur l’automatisation des

méthodes actuelles ainsi que sur la capture de déformations complexes de structures ana-

tomiques, en particulier sur le cœur et le cerveau. La méthodologie adoptée a conduit à

trois objectifs de recherche spécifiques. Le premier prévoit un nouveau cadre de construction

automatisé d’atlas afin de créer le premier atlas humain de l’architecture de fibres cardiaques.

Le deuxième vise à explorer une nouvelle approche basée sur la correspondance spectrale,

nommée FOCUSR, afin de capturer une grande variabilité de formes sur des maillages. Le

troisième aboutit finalement à développer une approche fondamentalement différente pour

le recalage d’images à fortes déformations, nommée les démons spectraux.

Le premier objectif vise plus particulièrement à construire un atlas statistique de l’archi-

tecture des fibres cardiaques à partir de 10 cœurs ex vivo humains. Le système développé a



viii

mené à deux contributions techniques et une médicale, soit l’amélioration de la segmentation

de structures cardiaques et l’automatisation du calcul de forme moyenne, ainsi que notam-

ment la première étude chez l’homme de la variabilité de l’architecture des fibres cardiaques.

Pour résumer les principales conclusions, les fibres du cœur humain moyen varient de ±12◦,

l’angle d’hélix s’étend entre −41◦(±26◦) sur l’épicarde à +66◦(±15◦) sur l’endocarde, tan-

dis que l’angle transverse varie entre +9◦(±12◦) et +34◦(±29◦) à travers le myocarde. Ces

résultats sont importants car ces fibres jouent un rôle clef dans diverses fonctions mécaniques

et électro-physiologiques du cœur.

Le deuxième objectif cherche à capturer une grande variabilité de formes entre structures

anatomiques complexes, plus particulièrement entre cortex cérébraux à cause de l’extrême

variabilité de ces surfaces et de leur intérêt pour l’étude de fonctions cognitives. La nou-

velle méthode de correspondance surfacique, nommée FOCUSR, exploite des représentations

spectrales car l’appariement devient plus facile et rapide dans le domaine spectral plutôt

que dans l’espace Euclidien classique. Dans sa forme la plus simple, FOCUSR améliore

les méthodes spectrales actuelles par un recalage non rigide des représentations spectrales,

toutefois, son plein potentiel est atteint en exploitant des données supplémentaires lors de la

mise en correspondance. Par exemple, les résultats ont montré que la profondeur des sillons

et de la courbure du cortex cérébral améliore significativement la correspondance de surfaces

de cerveaux.

Enfin, le troisième objectif vise à améliorer le recalage d’images d’organes ayant des

fortes variabilités entre individus ou subis de fortes déformations, telles que celles créées par

le mouvement cardiaque. La méthodologie amenée par la correspondance spectrale permet

d’améliorer les approches conventionnelles de recalage d’images. En effet, les représentations

spectrales, capturant des similitudes géométriques globales entre différentes formes, permet-

tent de surmonter les limitations actuelles des méthodes de recalage qui restent guidées par

des forces locales. Le nouvel algorithme, nommé démons spectraux, peut ainsi supporter de

très grandes déformations locales et complexes entre images, et peut être tout autant adapté

à d’autres approches, telle que dans un cadre de recalage conjoint d’images. Il en résulte

un cadre complet de construction d’atlas, nommé démons spectraux multijoints, où la forme

moyenne est calculée directement lors du processus de recalage plutôt qu’avec une approche

séquentielle de recalage et de moyennage.

La réalisation de ces trois objectifs spécifiques a permis des avancées dans l’état de l’art
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au niveau des méthodes de correspondance spectrales et de construction d’atlas, en per-

mettant l’utilisation d’organes présentant une forte variabilité de formes. Dans l’ensemble,

les différentes stratégies fournissent de nouvelles contributions sur la façon de trouver et

d’exploiter des descripteurs globaux d’images et de surfaces. D’un point de vue global, le

développement des objectifs spécifiques établit un lien entre : a) la première série d’outils,

mettant en évidence les défis à recaler des images à fortes déformations, b) la deuxième

série d’outils, servant à capturer de fortes déformations entre surfaces mais qui ne reste pas

directement applicable à des images, et c) la troisième série d’outils, faisant un retour sur

le traitement d’images en permettant la construction d’atlas à partir d’images ayant subies

de fortes déformations. Il y a cependant plusieurs limitations générales qui méritent d’être

investiguées, par exemple, les données partielles (tronquées ou occluses) ne sont pas actuelle-

ment prises en charge les nouveaux outils, ou encore, les stratégies algorithmiques utilisées

laissent toujours place à l’amélioration.

Cette thèse donne de nouvelles perspectives dans les domaines de l’imagerie cardiaque

et de la neuroimagerie, toutefois, les nouveaux outils développés sont assez génériques pour

être appliqués à tout recalage d’images ou de surfaces. Les recommandations portent sur des

recherches supplémentaires qui établissent des liens avec la segmentation à base de graphes,

pouvant conduire à un cadre complet de construction d’atlas où la segmentation, le recalage,

et le moyennage de formes seraient tous interdépendants. Il est également recommandé

de poursuivre la recherche sur la construction de meilleurs modèles éléctro-mécaniques car-

diaques à partir des résultats de cette thèse. En somme, les nouveaux outils offrent de

nouvelles bases de recherche et développement pour la normalisation de formes, ce qui peut

potentiellement avoir un impact sur le diagnostic, ainsi que la planification et la pratique

d’interventions médicales.
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ABSTRACT

Research on human anatomy, in particular on the heart and the brain, is a primary con-

cern for society since their related diseases are among top killers across the globe and have

exploding associated costs. Fortunately, recent advances in medical imaging offer new possi-

bilities for diagnostics and treatments. On the other hand, the growth in data produced by

these relatively new technologies necessitates the development of efficient tools for processing

data. The focus of this thesis is to provide a set of tools for normalizing measurements across

individuals in order to study complex anatomical characteristics.

The normalization of measurements consists of bringing a collection of images into a

common reference, also known as atlas construction, in order to combine measurements

made on different individuals. The process of constructing an atlas involves the topics of

segmentation, which finds regions of interest in the data (e.g., an organ, a structure), and

registration, which finds correspondences between regions of interest. Current frameworks

may require tedious and hardly reproducible user interactions, and are additionally limited

by their computational schemes, which rely on slow iterative deformations of images, prone

to local minima. Image registration is, therefore, not optimal with large deformations. Such

limitations indicate the need to research new approaches for atlas construction.

The research questions are consequently addressing the problems of automating current

frameworks and capturing global and complex deformations between anatomical structures,

in particular between human hearts and brains. More precisely, the methodology adopted in

the thesis led to three specific research objectives. Briefly, the first step aims at developing

a new automated framework for atlas construction in order to build the first human atlas

of the cardiac fiber architecture. The second step intends to explore a new approach based

on spectral correspondence, named FOCUSR, in order to precisely capture large shape vari-

ability. The third step leads, finally, to a fundamentally new approach for image registration

with large deformations, named the Spectral Demons algorithm.

The first objective aims more specifically at constructing a statistical atlas of the cardiac

fiber architecture from a unique human dataset of 10 ex vivo hearts. The developed frame-

work made two technical, and one medical, contributions, that are the improvement of the

segmentation of cardiac structures, the automation of the shape averaging process, and more

importantly, the first human study on the variability of the cardiac fiber architecture. To
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summarize the main finding, the fiber orientations in human hearts has been found to vary

with about ±12◦, the range of the helix angle spans from −41◦(±26◦) on the epicardium

to +66◦(±15◦) on the endocardium, while, the range of the transverse angle spans from

+9◦(±12◦) to +34◦(±29◦) across the myocardial wall. These findings are significant in car-

diology since the fiber architecture plays a key role in cardiac mechanical functions and in

electrophysiology.

The second objective intends to capture large shape variability between complex anatom-

ical structures, in particular between cerebral cortices due to their highly convoluted surfaces

and their high anatomical and functional variability across individuals. The new method for

surface correspondence, named FOCUSR, exploits spectral representations since matching

is easier in the spectral domain rather than in the conventional Euclidean space. In its

simplest form, FOCUSR improves current spectral approaches by refining spectral repre-

sentations with a nonrigid alignment; however, its full power is demonstrated when using

additional features during matching. For instance, the results showed that sulcal depth and

cortical curvature improve significantly the accuracy of cortical surface matching.

Finally, the third objective is to improve image registration for organs with a high inter-

subject variability or undergoing very large deformations, such as the heart. The new ap-

proach brought by the spectral matching technique allows the improvement of conventional

image registration methods. Indeed, spectral representations, which capture global geomet-

ric similarities and large deformations between different shapes, may be used to overcome a

major limitation of current registration methods, which are in fact guided by local forces and

restrained to small deformations. The new algorithm, named Spectral Demons , can capture

very large and complex deformations between images, and can additionally be adapted to

other approaches, such as in a groupwise configuration. This results in a complete frame-

work for atlas construction, named Groupwise Spectral Demons, where the average shape is

computed during the registration process rather than in sequential steps.

The achievements of these three specific objectives permitted advances in the state-of-

the-art of spectral matching methods and of atlas construction, enabling the registration

of organs with significant shape variability. Overall, the investigation of these different

strategies provides new contributions on how to find and exploit global descriptions of images

and surfaces. From a global perspective, these objectives establish a link between: a) the first

set of tools, that highlights the challenges in registering images with very large deformations,
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b) the second set of tools, that captures very large deformations between surfaces but are

not applicable to images, and c) the third set of tools, that comes back on processing images

and allows a natural construction of atlases from images with very large deformations. There

are, however, several general remaining limitations, for instance, partial data (truncated or

occluded) is currently not supported by the new tools, or also, the strategy for computing

and using spectral representations still leaves room for improvement.

This thesis gives new perspectives in cardiac and neuroimaging, yet at the same time,

the new tools remain general enough for virtually any application that uses surface or image

registration. It is recommended to research additional links with graph-based segmentation

methods, which may lead to a complete framework for atlas construction where segmenta-

tion, registration and shape averaging are all interlinked. It is also recommended to pursue

research on building better cardiac electromechanical models from the findings of this thesis.

Nevertheless, the new tools provide new grounds for research and application of shape nor-

malization, which may potentially impact diagnostic, as well as planning and performance

of medical interventions.
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INTRODUCTION

Better Understanding of Human Anatomy

Figure 1: Leonardo da Vinci
(1452–1519) was among the
firsts to study human anatomy
by blending art and sci-
ence with surprisingly accu-
rate sketches of the heart and
brain (possible self-portrait,
original kept at the Royal Li-
brary of Turin, Italy).

The human anatomy has fascinated mankind since the very

early ages. In a particular manner, the initial quest for

the center of the mind and soul was a recurrent theme in

many civilizations and led to intermingled studies on the

human heart and brain. Starting with the Egyptians, who,

in the Book of Hearts (circa 1550BC) (Wilkins, 1992), gave

the heart a central role in mental and physical illnesses;

with the Chinese, who, in the Book of Songs (circa 700BC)

(Schwartz, 1985), had similar beliefs in making the heart

the source of intellect and sentiments (the words heart and

mind share even the same Chinese character); or with the

Greeks, who, with Aristotle (384BC–322BC), also viewed

the heart as the primary organ for the mind and emo-

tions, the comprehension of anatomy changed throughout

the years with careful examination of human bodies. For

instance, Alcmaeon (circa 540BC–500BC) already started

to differentiate the role of the heart and brain by consid-

ering the latter as the seat of intelligence (Codellas, 1932),

later, Galen (129AD–circa 200AD) also challenged the cen-

tral role of the heart and gave equal importance to the brain and liver (Siegel, 1976). Sadly,

progress in Science slowed down during the Dark Ages, although, notorious advances were

still made in the Islamic world, where, perhaps most importantly, Ibn al-Nafis (1213–1288)

formulated the modern concepts of the circulatory system (West, 2008). Later during the

Renaissance, interests in human anatomy came back in the Western world, with, for instance,

the well-known anatomical drawings of da Vinci (1452–1519, Fig. 1) (Keele, 1964), the sem-

inal anatomical atlas De humani corpois fabrica (Vesalius, 1543) of Vesalius (1514-1564), or

the study of Harvey (1578–1657) on cardiac mechanical functions (Harvey, 1628). Among

Harvey’s disciples was also Willis (1621–1675) who coined the term Neurology and pioneered

research on brain anatomy and its functions (Willis, 1664). Since that time, the Industrial
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Age saw a flurry of scientific advances, including the influential work of “Le règne animal”

(Cuvier, 1817) by Cuvier (1769–1832) and “On the Origin of Species” (Darwin, 1859) by

Darwin (1809–1882), that made, both, a great progress in the field of comparative anatomy.

These findings were collected in highly detailed anatomical atlases, however, the variability

of anatomy, its functions, and associated diseases remain yet to be fully understood.

Modern medicine is still searching for a better understanding of human anatomy and

pathology, particularly in cardiology and neurology, since these fields continue to address

major concerns for society. For instance, nowadays, 71 million Americans (more than a

fifth of the population) live with a form or another of cardiovascular disease, costing more

than $258 billion and claiming more than 930,000 lives annually (by far the number one

killer) (Thom et al., 2006). The Worldwide Health Organization estimates that, worldwide,

17 millions of deaths are attributable to heart-related diseases (30% of deaths). Not far in

the rank of top causes of death is also dementia, and particularly Alzheimer’s disease (70%

of all cases of dementia) that claims lives for more than 100,000 persons in the US each

year (400,000 worldwide) and with related costs rising to $100 billion annually (Meek et al.,

1998).

The better understanding of complex anatomical and functional characteristics of the

heart and brain is essential to a better diagnosis and treatment for any related diseases.

Among the possible tools available today, recent advances in medical imaging provide a

panoply of images on various organs and multiply the possibilities for research and compre-

hension on many pathologies. Unfortunately, the growth in data produced by these relatively

new technologies necessitates the development of new tools in order to adequately process

these images. The purpose of this thesis is to precisely develop new methods for constructing

atlases in order to analyze the variability of complex anatomical and functional characteris-

tics. The research presented in the following chapters was conducted with images of the heart

and brain. The next section provides, therefore, background information on these organs

that is necessary for reading this thesis. Following this summary are the main contributions

and an overview of the organization of the manuscript.

Background Information

Two organs are studied across the thesis: the human heart and brain. As previously men-

tioned, their anatomy and functions have always been intriguing to many civilizations. Here,
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The heart pumps blood through the lungs and
body

Left and right side of the heart

Figure 2: A human heart has 4 chambers: Left Atrium (LA), Left Ventricle (LV), Right
Atrium (RA), Right Ventricle (RV). Blood 1) enters the heart in the RA, 2) transfers to the
RV; 3) RV contraction pushes blood into the lungs; 4) blood returns in the heart in the LA,
5) transfers to the LV; 6) LV contraction ejects blood throughout the body (Images adapted
from Gray’s anatomy, plate 490 and 498).

they are demystified by explaining the general concepts on, first, the human heart and, sec-

ond, the human brain, that are necessary for reading the following chapters.

The Heart

The Merriam-Webster dictionary defines the heart as “a hollow muscular organ that acts as a

force pump maintaining the circulation of blood”. It has about the size of a fist and is located

in the chest behind the breastbone. It is at the heart of the cardiovascular system and its role

is to ensure blood flows through the body. The heart may be one of the most fascinating

organs in mammals since it unceasingly pumps blood throughout life and undergoes an

extreme deformation during its beating. The mechanics underlying such motion may be

attributable to a complex cardiac electrophysiology and anatomical architecture, described

as following.

Cardiac Anatomy and Physiology

The heart of mammal species is divided into left and right sides, and consists of 4 cardiac

chambers, an atrium and a ventricle on each side. An atrium receives blood before transfer-

ring it to the ventricles, and each ventricle acts as a powerful pump ejecting blood out of the
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Laminar sheet 

Muscle fiber 

Section of LV 

Left Ventricle 
(LV) 

a) Organization of cardiac
fibers as laminar sheets b) Possible structures of the cardiac fiber architecture

Figure 3: a) Illustration of the fiber organization in a segment of the left ventricle (LV). The
cardiac fibers are organized as laminar sheets. The torsion of the LV is related to the fiber
orientation on the inner and outer surface of the ventricle, moreover, electrical conductivity
is greatest along the fiber direction. b) Four possible architecture. The cardiac muscle may
be formed by: A, 4 myocardial bundles (Mall, 1911), B, by a spiral muscle sandwiched onto
itself (Rushmer et al., 1953), C, by toroidal surfaces resembling doughnuts (Streeter, 1979),
or D, by a unique band folded around itself (Torrent-Guasp et al., 2005) (Images adapted
from (LeGrice et al., 1995) and (Buckberg et al., 2008)).

heart. The cardiac cycle is summarized in Fig. 2 and can be decomposed in 6 main steps:

1. Right Atrium Diastole — During the relaxation of the heart, deoxygenated and low-

pressure blood enter the right atrium (RA) from the inferior and superior venae cavae

(IVC, SVC).

2. Right Atrium Systole — The contraction of the heart pushes blood through the tricus-

pid valve, into the right ventricle (RV).

3. Right Ventricle Systole — The contraction of the RV expels blood through the pul-

monary valve, into the pulmonary artery (PA) where it is oxygenated in the lungs.

4. Left Atrium Diastole — During the relaxation of the left atrium (LA), the oxygenated

blood comes back from the lungs, through 4 pulmonary veins (PV) and into the LA.
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5. Left Atrium Systole — The contraction of the LA and the ongoing expansion of the

left ventricle (LV) cause blood to be transferred through the mitral valve, into the LV.

6. Left Ventricle Systole — The strong contraction of the LV, which has the thickest

muscle of all chambers, ejects the newly oxygenated blood though the aortic valve,

into the aorta, where it distributed across the whole body.

In effect, the left and right sides function simultaneously, producing the familiar sound of

the cardiac beating (the blood stopped by a valve produces a beat). In a cycle, two successive

beats (dubbed the “lub-dub”) are produced by the closure of, first, the tricuspid and mitral

valves, and second, the pulmonary and aortic valves. A perturbation in this sound may be

a sign of a heart defect.

A healthy heart has a good synchronization of cardiac muscles during contraction (sys-

tole) and relaxation (diastole). Systole first occurs in the upper chambers (LA and RA), and

subsequently, in the two lower chambers (LV and RV). These contractions are caused by an

electrical activation that propagates throughout the heart.

Cardiac Fiber Architecture

The heart, likewise any muscle, is mostly composed by muscular fibers. They are locally

organized as laminar sheets (Streeter et al., 1969; LeGrice et al., 1995) and have different

orientations on the inner surface (endocardium) and outer surface (endocardium) of the

cardiac muscle (illustrated in Fig. 3 a). This complex fiber architecture determines various

cardiac mechanical functions (Costa et al., 2001) and cardiac electrophysiology patterns

(Hooks et al., 2002) since the torsion of the LV is directly related to the orientation of these

cardiac fibers (Russel et al., 2009) and electrical conductivity is greatest along these fibers

(Hooks et al., 2007).

The exact description of this fiber architecture is not fully known in humans. Its under-

standing has been mostly limited by tedious histological studies and is largely speculated

from observations in other species. Different theories exist and are surveyed in (Buckberg

et al., 2008) (illustrated in Fig. 3 b). The hypothesis is that the cardiac muscle may be formed

by 4 myocardial bundles (Mall, 1911), by a spiral muscle sandwiched onto itself (Rushmer

et al., 1953), by toroidal surfaces resembling doughbuts (Streeter et al., 1969; Torrent-Guasp

et al., 2005), or by a unique band folded around itself (Torrent-Guasp et al., 2005).
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a) Cerebrum and cerebellum b) Grey and white matter c) Four lobes of the cortex

Figure 4: The brain is composed of many parts. The most prominent is the cerebrum,
composed of grey and white matter. The cortical surface is divided into four lobes and is
important since it is thought to be responsible for perception and cognition (Images from
Gray’s anatomy, plate 677, 737 and 1197).

The Brain

The brain is the center of the nervous system and is associated with perceptive and cognitive

functions. It is contained within the skull and has a general structure common to most

mammal species. Because of its functions, neuroscience invests a large amount of efforts in

studying the brain, yet, so little is known on the mechanisms of cognition. This trend is,

however, changing since recent advances in neuroimaging enable the visualization of cerebral

activity. The need to map these functional images onto anatomy is consequently important.

In the following, the general anatomy of the brain and its surface is described.

Anatomy

The brain consists of several distinctive parts and is attached to the spinal cord with the

brainstem (Fig. 4 a). Functions of the brainstem involve primary needs (breathing, diges-

tion, sense of danger). Attached to the brainstem is the cerebellum, a separate structure

underneath the cerebral hemispheres. Its functions may be linked to motor control. The

area that connects the brainstem to the hemispheres forms the limbic system. It comprises

many substructures, such as the hippocampus linked to memory and navigation, and is sur-

rounded by other important brain parts, such as the thalamus or hypothalamus, responsible

for metabolic processes for relaying information within inner structures.
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a) Lateral view of the main cortical gyri and
sulci

b) Medial view of the main cortical gyri and
sulci

c) Brodmann areas on lateral view d) Brodmann areas on medial view

Figure 5: The brain surface, named the cortex, is composed of ridges and furrows, named
gyri and sulci. These main structures are shown on a) a lateral view and b) a medial view.
c,d) The architecture of neuronal cells may be used to divide the cortical surface into 51
Brodmann areas, shown in (Images from Gray’s anatomy, plate 726 and 727, and Brodmann
areas adapted from (Foland-Ross et al., 2011)).

The most prominent brain structure is the cerebrum, divided into two hemispheres that

are connected by the corpus callosum, a bundle of neural fibers that facilitates interhemi-

spheric communication. The cerebrum is composed of gray and white matter, and voids

between hemispheres compose the ventricular system (Fig. 4 b). More precisely, the grey

matter is distributed across the brain surface and consists of a layered architecture of neu-

ronal cell bodies, while the white matter is essentially composed of axons, or fibers, passing

information between different areas. The brain surface, referred to as the cortex, has the

particularity of being highly convoluted in humans (Toro and Burnod, 2005). The ridges

and furrows (or bumps and valleys) of the cortical surface are respectively named gyri and

sulci (Fig. 5).

The cortex in early development is initially smooth and starts to fold in relatively stable
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primary convolutions at midgestation (e.g., the calcarine and central sulcus), soon followed by

a secondary and tertiary convolutions (folds on folds), which are much more variable across

a population (Ono et al., 1990; Welker, 1990). In fact, while a newborn has a relatively

smooth brain surface (Dubois et al., 2008), the tertiary convolutions continue throughout

the first year of life (Chi et al., 1977; Armstrong et al., 1995; Garel et al., 2001).

Cortical Areas

The center of neural activity is thought to reside on the cortical surface, which is divided

into four lobes (Fig. 4 c). The frontal lobe may be involved in planning, problem solving

and high cognitive functions such as behavior and emotions. The occipital lobe, in the

back of the brain, is responsible for processing visual information, including shape and color

recognition. The parietal lobe, on the top of the brain, is responsive to sensation such as

touch and pressure. The temporal lobe, near the ears, is responsive to smell and sound, and

may be related to memory.

Interestingly, the neuronal architecture changes across these cortical areas. It is thought

that distinctive cytoarchitecture, differing by its organization of neuronal layers, may be re-

lated to dedicated cerebral functions. This idea has been popularized by Brodmann (Brod-

mann, 1909), which divided the cortex into 51 areas, each associated with a specific cy-

toarchitecture. For instance, the primary visual cortex is associated with Brodmann area

17 (Fig. 5 c,d). Although Brodmann areas remain the reference, other partitions exist, for

instance, in 14 areas (Campbell, 1903), in 50 areas (Smith, 1907), or in 107 areas (von

Economo and Koskinas, 1925, 2007).

Contributions

Research across the centuries has established key knowledge in human anatomy, however,

as described above, so little is sometimes known in specific aspects of cardiology and neu-

rology. The purpose of this thesis is to develop a set of tools that address precisely a few

of these knowledge gaps. In particular, the construction of atlases, which provides a better

understanding of human anatomy, necessitates improved methods for registering images and

averaging shapes. As a continuation of the research presented earlier, the human brain and

heart will have a particular interest throughout the thesis.

Firstly, the research will focus on the human brain, and more particularly, on the cor-
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tical surface. As mentioned previously, neuroscience studies that try to find correlations

between anatomical and functional areas will provide a better understanding on the me-

chanics of perception and cognition. Such studies depend on efficient and accurate methods

for matching cortical surfaces across a population. Contributions will be made in this par-

ticular topic. Indeed, current methods for matching cortical surfaces are often prohibitively

expensive in computational time. A new approach based on spectral correspondence will be

developed and will yield the original FOCUSR algorithm. The results will show accurate

matching computed at much greater speed than current methods. A few experiments will

be presented in order to show the applicability of FOCUSR in real neuroscience studies.

Secondly, the research will focus on the human heart, and more precisely, on the cardiac

fiber architecture. Contributions will be made by developing a framework to construct the

first statistical atlas of the human cardiac fibers. The automation of the atlas construction

requires original segmentation methods and robust schemes for averaging shapes. Besides

the development of new methods, the variability study of the different fiber structures across

the heart will provide key findings relevant to a better understanding of various cardiac

mechanical functions and electrophysiology.

Additionally, the registration of cardiac images that are subject to very large deforma-

tions will be addressed by developing a fundamentally new approach for image registration.

Inspired by the findings of FOCUSR, a new algorithm, named Spectral Demons , will be de-

veloped. The generic algorithm will be shown to be applicable to any conventional method

for registration with examples that extend both, the classical Demons algorithm and a new

groupwise registration framework. The experiments will show that this fundamentally new

algorithm can naturally capture very large and complex deformations and can demonstrate

substantial improvements over conventional approaches. Spectral Demons will be a key

method for any application that involves general image registration.

Manuscript Overview

This introductory chapter gave the general context of this thesis. The manuscript is com-

posed of three main parts. Firstly, the introduction reviews the current state-of-the-art for

constructing atlases, and provides the basis for the rationale behind the research questions

and their objectives, with a particular focus on the human heart and brain. Secondly, the

methods and results are presented with a study on the complexity of the human cardiac fiber
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architecture, which required the development of a new framework for atlas construction, and

with additionally, a study on the high shape variability of the heart and the brain, which

required the development of new spectral matching methods. Lastly, the final chapters pro-

vide a general discussion that highlights the links between different findings and determines

the general implications, advances and limits of the developed tools and results. Each part

is composed in more details as following:

Part I – INTRODUCTION AND BACKGROUND

• Introduction – This introductory chapter provides the general context, back-

ground information necessary for reading the manuscript (a global description of

the human heart and brain anatomy), as well as the main contributions of the

thesis.

• Chapter 1 – The current state-of-the-art for atlas construction is established

in this chapter by reviewing each building block. More specifically, this survey

focuses on the current limitations found in the literature on image segmentation,

image registration and shape averaging.

• Chapter 2 – The rationale of the general methodology is explained in this chapter

by presenting the problem statement and the proposed research questions. The

research objectives are consequently established and aim at characterizing the

human cardiac fiber architecture and at capturing large deformations between

surfaces and images.

Part II – METHOD AND RESULTS

• Chapter 3 – The first journal article is presented here. It provides a new au-

tomated framework for constructing the first human atlas of the cardiac fiber

architecture. The fiber variability across the myocardium is studied for the first

time in humans. Appendix A provides an additional variability study on the lam-

inar sheet, and Appendix B provides a preliminary comparison between healthy

and abnormal hearts.

• Chapter 4 – The second journal article is presented here. It presents FOCUSR,

an improved spectral correspondence method for matching generic meshes as well
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as brain surfaces. It is based on an original direct feature matching technique that

can use virtually any additional information capable of helping correspondence.

• Chapter 5 – This additional chapter completes the theme initiated by Chapter 4.

In its first sections, FOCUSR is used to construct an atlas of cerebral cortical sur-

faces. The experiments focus on the principal modes of shape variations as well as

the shape of the primary cortical folding. In the last sections of the chapter, the

new improved spectral matching approach is used for image registration. The new

method, named Spectral Demons , is additionally extended in a groupwise frame-

work in order to construct atlases, and it demonstrated substantial improvements

over conventional approaches.

Part III – DISCUSSIONS AND CONCLUSIONS

• Chapter 6 – A general discussion establishes the links between previous work

and the new findings with a focus on their implications, advances, and limitations.

• Conclusion – This final chapter concludes the thesis by summarizing the key

contributions and gives recommendations and perspectives for future work.

Guidelines for Reading the Thesis

This section provides guidelines for reading the thesis and for finding specific information.

As introduced in this chapter, the general purpose of research is to develop new tools that

facilitate measurements of complex characteristics across a population. This manuscript

may, therefore, be read in several ways depending on the reader’s interests:

Image registration and surface matching – The reader interested in shape normalizing

methods (i.e., image registration and surface matching) may focus particularly on

Sec. 3.2.2, 4.2 and 5.4. He will find all three different approaches developed in this

thesis. The first approach is based on the conventional Demons algorithm and uses

simplified images, the second approach is based on spectral correspondence and can

be used with cortical surfaces as well as with generic meshes, and the third approach

is, in a similar manner, based on spectral matching and is capable of capturing very

large deformations between images.
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Shape averaging – The reader interested in computing an average shape may focus on

Sec. 3.2.2, 5.2.1, and 5.4.2. The first framework is based on Guimond’s shape averaging

(Guimond et al., 2000), the second approach averages corresponding surfaces, and the

third framework is a groupwise approach where the average shape is computed in

parallel with image registration.

Statistical framework – The reader interested in tools for statistical analysis may focus

on Sec. 3.2.3 and 5.2.1. The first approach uses the Log-Euclidean metric (Arsigny

et al., 2006b), and the second approach finds the principal modes of shape variations

among a set of surfaces.

Application in computational anatomy – The reader interested in the applicability of

the developed tools may focus on Sec. 3.3, A.3, 5.2.2 and 5.3.2. The first two mentioned

sections are the results of variability studies on the human atlas of the cardiac fiber

architecture. He will find the average angles of the fiber and laminar sheet structures

across several myocardial segments, as well as their normal angular variations. The

last two mentioned sections are applications of FOCUSR where the principal variations

of cortical surfaces are presented along an exploration of the primary cortical folding

pattern.
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PART I

BACKGROUND
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CHAPTER 1 LITERATURE REVIEW

Medical imaging plays a key role in our society and routinely save lives; yet, image processing

becomes increasingly essential in many medical applications. For instance, it provides precise

measurements, digests information, and assists interventions and planning of surgeries. The

focus of this thesis lies on image processing tools, summarized in Fig. 1.1, that are necessary

for building computational atlases of human organs. This construction requires, firstly, image

segmentation, which extracts the region of interest, and secondly, image registration, which

aligns regions of interest into a common space. This chapter will, therefore, review the

literature on these topics with the following order: image segmentation, image registration,

and lastly, atlas construction.

1.1 Segmentation

Image segmentation is the process of localizing regions of interest in an image (objects,

boundaries, or landmarks), and the challenge for this task remains in attaining accuracy and

precision for medical applications (mislabeled pixels could lead to wrong diagnostics, worse,

misplaced dose delivery). The segmentation quality is also crucial when building atlases

since it ensures that the right data is used during construction.

Early segmentation methods can be categorized into edge-based and region-based ap-

proaches. Edge-based methods find boundaries in images (e.g., convolution of filters such as

the so-called Mexican hat (Marr and Hildreth, 1980) or more advanced filters (Canny, 1986;

Deriche, 1987)), while region-based methods find regions instead of boundary and have the

advantage of using the whole image in a global manner, i.e., regions has a broader scope than

boundaries. This region-based approach may be tackled with a top-down scheme, where the

image is successively split (e.g., thresholding (Otsu, 1979; Sezgin and Sankur, 2004)), or

with a bottom-up scheme, where pixels are merged to form regions (e.g., regions are grown

from ”phagocyte” seeds (Brice and Fennema, 1970; Adams and Bischof, 1994)). These two

schemes may be unified with the use of a structural tree (Horowitz and Pavlidis, 1976) that

represents pixels with its leaves and the whole image with its root (e.g., the watershed method

(Vincent and Soille, 1991) builds such tree by merging catching basins during flooding of an

image space).
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Figure 1.1: Fundamental elements necessary to construct an atlas. Segmentation, to
extract regions of interest. Registration, to align the regions of interest in a common
reference. Shape averaging, to find the average structure in a population. Statistical
Analysis, to extract meaningful information from a population.

Jean-Michel Morel (Morel and Solimini, 1995) had the feeling that “most segmentation

algorithms try to minimize [. . . ] one and the same segmentation energy”. On the same

note, Stuart Geman and his brother Donald Geman (Geman and Geman, 1984) already

introduced in 1984 a Bayesian framework (Cooper et al., 1981; Marroquin, 1984) for image

analysis which marks a milestone in image processing, while David Mumford and Jyant

Shah proposed in their seminal paper (Mumford and Shah, 1985, 1989; Mumford, 1994)) to

formulate segmentation as an energy minimization problem. From this anecdotal

feeling, modern segmentation methods are now, for a vast majority of them, formulated

as an energy minimization problem, often based on, or inspired by the piecewise smooth

functional of Mumford and Shah (i.e, they often have a similarity criterion and smoothness

constraints). The state-of-the-art for image segmentation (surveyed in (Pal and Pal, 1993;

Pham et al., 2000; Noble and Boukerroui, 2006; Zhang et al., 2008a; Heimann and Meinzer,

2009; Petitjean and Dacher, 2011)) may be categorized into variational approaches and graph-

based approaches. A third category may also be set from methods relying on an atlas, which

register a pre-segmented atlas onto an image, however, this would rather fall as being a

registration approach.
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1.1.1 Variational Approaches

The segmentation of an image can be generated with a slow, tractable, transformation of

an initial solution (e.g., a circle in an image is morphed to fit an object of interest). Such

a variational approach formulates segmentation within a Euler-Lagrangian framework (i.e.,

variables are updated with infinitesimal steps). These update schemes may be categorized

as either explicit or implicit.

The explicit formulation was tackled by Michael Kass et al. (Kass et al., 1988) with

a deformable contour, known as snake, that moves explicitly toward an object boundary,

pulled by external forces computed from the image. These forces contain high-level infor-

mation, such as contour curvature (keeping the snake smooth), and low level information,

such as image gradient direction (pulling the snake toward the object boundary). In (Xu

and Prince, 1997), forces derived from the gradient field are diffused in order to extend these

pulling forces to a greater distance far away from the object boundary. These extended

forces, named gradient vector flow, improve dramatically the convergence of snakes toward

boundaries. However, the main limitation of these active contour formulations is that they

do not naturally handle changes in topology (the snake cannot split and merge).

The implicit formulation, proposed by Stanley Osher and James A. Sethian (Osher

and Sethian, 1988), transposes segmentation into a higher dimension (i.e., by deforming a

surface instead of a contour). Their core idea is that the intersection of a 3D surface with a 2D

plane (the image) defines an implicit contour (the zero level set, which represents an object

boundary). As the surface evolves, its level sets may undergo splits and merges implicitly,

and therefore, changes in topology are naturally handled (tracking of splits and merges is

no longer necessary). Two types of forces are typically used: Internal forces, that keep the

surface smooth, and external forces, derived from image gradients (Malladi et al., 1995) that

pull the surface toward object boundaries. This level set method is a versatile framework that

is capable with a broad range of applications and energies (even the snake energy (Caselles

et al., 1995) and gradient vector flow (Paragios et al., 2004)). One popular energy, proposed

by Tony Chan and Luminita Vese (Chan and Vese, 1999), focuses on finding the right balance

between image regions rather than optimizing primarily a boundary cost (multiple regions are

handled in (Yezzi et al., 1999)). Additionally, simplifications and computationally efficient

versions of the level set method exist (Chopp, 1993; Adalsteinsson and Sethian, 1995; Li

et al., 2005; Mitiche and Ayed, 2010), notably the Fast Marching algorithm (Sethian, 1996,
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1999), a special case where the surface is always expanding or collapsing.

1.1.2 Graph Based Approaches

In the 1920s Max Wertheimer fathered the Gestalt theory movement (Wertheimer, 1925,

1938; Desolneux et al., 2007). He suggested that cognition is a whole and cannot be ex-

plained by summing each parallel operation alone. Applied to visual perception, this may be

interpreted as that global properties, such as image partitions, cannot be found by combining

separate low-level cues (e.g., pixel intensities) and requires an organization and grouping of

these cues (e.g., pixels alone means little, while their relations may be meaningful). Using a

graph to segment an image is an elegant implementation of this theory (the graph organizes

low-level cues). For instance, graph leaves may correspond to image pixels and global prop-

erties (e.g., an energy) may be modeled with the structural organization of graph edges and

nodes. Regions are subsequently found by partitioning the graph. A few approaches exist; for

instance, minimum spanning trees (Zahn, 1971; Chen and Pavlidis, 1990; Felzenszwalb and

Huttenlocher, 2004) organize the graph as a tree and merge regions into branches. Moreover,

Zhenyu Wu and Richard Leahy (Wu and Leahy, 1990, 1993) were among the first to intro-

duce a global optimization approach. The proposed minimum cut (in terms of its total edge

weights) optimizes a boundary cost function by finding an optimal partition of the graph

(Greig et al., 1989; Wu and Leahy, 1993). This approach can be computationally efficient

(Boykov and Kolmogorov, 2004, 2001) but suffers from a bias toward short boundaries (i.e.,

small boundaries cost less). The ratio cut (Wei and Cheng, 1989; Hagen and Kahng, 1992;

Cox et al., 1996; Chan et al., 1993) (also known as average cut (Sarkar and Soundararajan,

2000; Soundararajan and Sarkar, 2001, 2003)) and normalized cut criteria, although compu-

tationally less efficient, overcome this shrinkage bias toward short boundaries. Furthermore,

these approaches based on eigendecomposition have strong links (Perona and Freeman, 1998;

Amir and Lindenbaum, 1998; Williams and Thornber, 1998; Weiss, 1999) with spectral the-

ory. In the following, the widely used (minimum cut) Graph Cuts algorithm and graph

spectral methods will be reviewed.

Graph Cuts

The minimum cut criterion (Greig et al., 1989; Wu and Leahy, 1993) favors a cut through

the graph whose sum of severed edge weights is minimal (i.e., finding the cut with the minimal
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cost). Fortunately, polynomial time algorithms (Karger and Stein, 1996) can be used to solve

the equivalent problem of maximum flow in a graph (Ford and Fulkerson, 1962). Yuri Boykov

and Vladimir Kolmogorov (Boykov and Kolmogorov, 2004, 2001) introduced the seminal

Graph Cuts algorithm and showed that it guarantees a global optimal solution

for binary variables. Moreover, image segmentation between foreground and background

(Boykov and Jolly, 2000; Boykov and Funka-Lea, 2006) can be performed interactively and

there are improved variants of the Graph Cuts algorithm1 when time (Juan and Boykov,

2006; Delong and Boykov, 2008) or memory (Lombaert et al., 2005; Xu et al., 2003; Lerm

et al., 2010) becomes an issue. The segmentation of large 4D datasets (3D+time) is also

possible with the use of temporal links in the graph (Wolz et al., 2010; Lombaert and Cheriet,

2010b; Lombaert et al., 2011f).

Multi-labeled variables may be additionally optimized in a Graph Cuts based framework

(Boykov et al., 1998, 2001; Kolmogorov and Zabih, 2002, 2004; Freedman and Drineas, 2005;

Veksler, 1999) that guarantees a solution (for metric energies) bounded within a known factor

of the global optimum. Recently, Label Cost (Delong et al., 2011, 2010a,b) adds further

regularization in the framework. The Graph Cuts algorithm attained a vast popularity in

computer vision and finds applications beyond image segmentation with, in particular, few

recent attempts in image registration (Kim et al., 2003; Tang and Chung, 2007; So and

Chung, 2009, 2010; So et al., 2011; Bhat et al., 2006; So and Chung, 2011; Lombaert et al.,

2007; Lombaert and Cheriet, 2012)2.

Graph-Spectral Methods

The ratio cut criterion (Wei and Cheng, 1989; Hagen and Kahng, 1992; Chan et al., 1993;

Sarkar and Soundararajan, 2000; Soundararajan and Sarkar, 2001, 2003) was proposed to find

optimal partitions in electronic circuit designs. The minimum cut was indeed not adequate

as it favors small cuts in a graph (i.e., the cut isolating one single graph node is very small).

To avoid such shrinkage bias, the optimal ratio cut creates partitions with equal sizes (same

number of nodes in each partition). The minimal ratio cut separates two regions with similar

sizes.

The normalized cut criterion (Shi and Malik, 1997, 2000) goes along the same princi-

1First hierarchical approach (Lombaert et al., 2005) proposed by the candidate
2Extension using landmarks (Lombaert et al., 2007) and joint image denoising/registration (Lombaert

and Cheriet, 2012) proposed by the candidate
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ple (balancing the size of each partitions), however, the size of a partition is defined with its

connectivity degree (strong if nodes have many connections within a region, weak if nodes

are loosely connected). More precisely, the minimal normalized cut separates regions with

similar areas that are adjusted for their node densities.

The Laplacian matrix (Fig. 1.2) represents the connectivity between nodes in a graph

(possible applications surveyed in (Mohar, 1997; Spielman, 2010)). Interestingly, finding its

smallest (non zero) eigenvector (also called the Fiedler vector (Chung, 1997b)) actually gives

the minimal ratio cut. The minimal normalized cut can be found similarly by decomposing

the normalized Laplacian matrix. Binary image segmentation (Shi and Malik, 1997, 2000) is,

therefore, performed by simply thresholding the Fiedler vector of a graph (each component

of this vector gives the probability of a pixel to belong to a region). The Fiedler vector plays,

in fact, an important role in spectral graph theory (Chung, 1997b; Luxburg, 2007) and gives

a probabilistic foundation for graph-based segmentation approaches (Meila and Shi, 2000,

2001; Robles-Kelly, 2005).

When seed points are available, the minimization of the ratio cut and of the normal-

ized cut can be solved with linear systems of equations (Grady and Schwartz, 2005; Grady,

2006a; Grady and Schwartz, 2006; Daneshgar and Javadi, 2012). On the same line, Leo

Grady introduced the Random Walker algorithm (Grady et al., 2005; Grady, 2005, 2006b)

that generates a segmentation satisfying the Laplace equation with Dirichlet boundary con-

ditions (which are set with seed points). Initialization with pre-computed eigenvectors of the

weighted Laplacian matrix allows faster Random Walker and can be interpreted as a seeded

Normalized Cuts algorithm (Grady and Sinop, 2008). The random walker paradigm can

also explain the Graph Cuts algorithm (Sinop and Grady, 2007), and recently, the Power

Watershed algorithm (Couprie et al., 2009, 2011) proposed to unify the Random Walker,

Graph Cuts, and the Minimum Spanning Tree. The graph Laplacian operator plays

an important role in graph-based segmentation methods (Fig. 1.3).

1.2 Registration

Image registration is the process of matching images into a common space in order to find

their correspondences. In a medical context, aligning images aids clinical interpretation by

highlighting differences in regions of interest between individuals (inter-patient registra-

tion) or in a single patient (intra-patient registration) due to structural (e.g., morpholog-
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Figure 1.2: Example of a Laplacian matrix associated with a graph (here a 3 × 3 lattice).
The matrix L = D − W represents the graph connectivity. The edge weight wi,j between
nodes vi and vj is reported in Li,j and Lj,i. The node degree di (the sum of all edge weights
from this node) is reported in the diagonal element Li (in gray). The sum of entries in each
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Figure 1.3: Comparison of Graph Based Segmentation methods. Left: Examples of cuts
in an extreme configuration where nodes are all concentrated on the left, sparser on the
right, and with a lone node on the bottom right. Right: Min Cut finds the cut between
region A and B with minimal cost. Ratio Cut adds equipartition (A and B have similar size).
Normalized Cut favors similar connectivity within regions (A and B have similar connectivity
degree). L is the Laplacian matrix that incorporates edge weighting of the graph, and D is
the node degree matrix of the graph.
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ical growth) or functional changes (e.g., organ mechanics). Moreover, registration becomes

particularly challenging when an organ undergoes severe deformation (e.g., a beating heart)

or high variation in shape (e.g., brain surface folding patterns).

Historically, registration methods were categorized, firstly, as rigid (simple translation

and rotations), and secondly, as nonrigid (different local transformations). For instance,

simple translations could be used to automate digitized angiography (Venot and Leclerc,

1984). Jean Talairach and Pierre Tournoux (Talairach and Tournoux, 1988) proposed in

1967 to study brains in a common stereotactic space (known as the Talairach coordinate

system) by warping brains with affine transformations (to correct for translation, rotation

and scaling). Furthermore, ambiguous local minima can be avoided with block-matching

optimization (Ourselin et al., 2000; Ourselin, 2002). Affine transformations might be suffi-

cient to a register brain image with small changes between scans, however, in most medical

applications, complex transformations often exist between images of soft-tissues. A broad

variety of algorithms exist with wide surveys in, for instance, (Brown, 1992; van den Elsen

et al., 1993; Mcinerney and Terzopoulos, 1996; Maintz and Viergever, 1998; Fitzpatrick et al.,

2000), and more recently, in (Zitova, 2003; Crum et al., 2004) with a focus on cardiac imaging

(Mäkelä et al., 2002) and brain imaging (Gholipour et al., 2007). They can be categorized in

numerous ways (based on their transformation type, type of features (Rohr et al., 2003; Hel-

lier and Barillot, 2003; Azar et al., 2006), similarity measure, optimization scheme (Glocker

et al., 2008)). This thesis focuses on the generic approach where each pixel can move freely

with a displacement field.

1.2.1 From Deformable Models to Vector Fields

Demetri Terzopoulos et al. (Terzopoulos et al., 1987) unified shape and motion description

in an elastic deformation model, which is governed by dynamics that resist to stretching,

bending, and twisting. In the context of image matching, deformable models are transformed

until they match images. The underlying transforming forces are derived from differences

between images (Terzopoulos, 1980; Mcinerney and Terzopoulos, 1996). As an aside, this

framework already suggests links between image segmentation and image registration since a

deformable surface may be used to either segment an image (similarly to the snake mentioned

earlier) or register images (by transforming itself from one image to a second image). Rather

than using a deformable surface with elastic constraints, Gary Christensen et al. (Christensen
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et al., 1996) proposed to apply such elastic constraints on a deformation field (i.e., each pixel

moves with an associated vector), where external forces guide the matching of images while

preserving smoothness of the deformation. Two physical models are presented: an elastic

model should be preferred for small displacements (Davatzikos and Prince, 1994) while a

viscous fluid model should be considered for large displacement (Christensen et al., 2002;

D’Agostino et al., 2003).

Vector fields can also be computed by solving the optical flow equation that assumes a

point keeps a similar intensity over time:

I0(x, y) = I1(x+ δx, y + δy).

Bruce Lucas and Takeo Kanade (Lucas and Kanade, 1981a,b) assume a constant point dis-

placement within a neighborhood (all neighboring points move coherently). Such displace-

ment field can be computed locally with the least squares approach. Berthold Horn and Brian

Schunk (Horn and Schunck, 1981, 1992) use an iterative approach by minimizing a global

energy with a smoothness constraint on the whole displacement field. Additionally, mass

conservation constraints can be applied on the displacement field (Song and Leahy, 2002).

This is relevant for intra-patient registration of incompressible organs, such as muscles and

hearts. Rather than using image intensity to drive the optimization of the displacement

field, statistical shape information may also be used (Wang and Staib, 1998, 2000).

Interpolation

In 1917, Sir D’Arcy Wentworth Thompson suggested in his book On Growth and Form

(Thompson, 1917) that shape differences of living organisms, due to homologies of organs,

can be modeled with simple transformations. He often used a grid with few control points

to model such transformations. Similarly, the computation of image transformations could

benefit from being interpolated with only a few control points in a spline-based transforma-

tion model such as the Free-Form Deformations (Sederberg and Parry, 1986; Lee et al., 1995,

1997; Bardinet et al., 1996; Rueckert et al., 1999) or the Thin-Plate Splines (Duchon, 1976;

Meinguet, 1979; Bookstein, 1989).

The Free-Form Deformation (FFD) (Sederberg and Parry, 1986) is an extension of

a spline-based interpolation model. The underlying model interpolates any position on a
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curve from control points that influence the shape of the curve from their positions and a set

of weighted basis functions (often B-splines). The interpolation of positions can be similarly

extended on surfaces and generalized to any dimension with hyper surface patches. The

FFD model is a lattice composed of such hyper patches where each node of the lattice is a

control point. Put differently, an object embedded in the lattice is deformed when lattice

nodes are displaced. Moreover, the influence of control points in B-splines is local and thus,

suitable for localized deformations, however, the direct manipulation is not natural with

FFD and may require complex computation of inverse deformations (Hsu et al., 1992). In

the medical field, Eric Bardinet et al. (Bardinet et al., 1996) used FFD to track motion in

cardiac sequences and Daniel Rueckert et al. (Rueckert et al., 1999) successfully used FFD

for nonrigid registration of medical images.

The Thin-Plate Spline (TPS) (Bookstein, 1989) models the deformation of a plate

(e.g., a metallic surface) that passes through several anchor points and has minimal bend-

ing. These anchor points directly control the plate. The role of TPS is to interpolate

the height of such surface from the positions of the displaced anchor points. Jean Duchon

(Duchon, 1976) and later Jean Meinguet (Meinguet, 1979) were the firsts to propose the

thin-plate equation as an interpolation model. Fred Bookstein (Bookstein, 1989) proposed

to use a relaxation term affecting the influence of all control points over the surface, while

Grace Wahba (Wahba, 1990) studied approximation schemes by adding localized uncertainty

to each control point (anisotropic case (Rohr et al., 2001)). Furthermore, the generalization

to dimensions higher than 3D requires the use of radial basis functions (Sprengel et al.,

1996). In a concrete application where a set of features (e.g., salient points, lines) needs to

be registered, the correspondences between features are first established before finding the

complete transformation with TPS. This is a basis of the Robust Point Matching algorithm

(TPS-RPM) (Rangarajan et al., 1997; Chui et al., 1999; Chui and Rangarajan, 2000b,a)

where registration is performed by alternatively updating correspondence and transforma-

tion. TPS may also be used for segmentation (Lombaert and Cheriet, 2010a)3.

1.2.2 Diffeomorphic Registration

Modeling the transformation between two images with free displacements at each pixel does

not guarantee diffeomorphism (one-to-one mapping). For instance, space can be wrongly

3First use of TPS for image segmentation (Lombaert and Cheriet, 2010a) proposed by the candidate
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folded, which would break smoothness and reversibility of the transformation. One ap-

proach is to use an interpolation model that guarantees smoothness and diffeomorphism, for

instance, by using FFD (Rueckert et al., 2006; Craene et al., 2009) or TPS (Marsland and

Twining, 2002). Diffeomorphism might be guaranteed by constraining the registration to

small displacements (i.e., the shape is slowly deformed with small and tractable updates).

This may be, therefore, a long and costly process. Following this idea, a temporal dimension

may be added to the displacement field φ(x, t) which becomes related to a velocity field

v(x, t) with:
d

dt
φ(x, t) = v(x+ φ(x, t), t). (1.1)

Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Miller et al., 2002;

Beg et al., 2005) uses non-stationary velocity fields (velocities vary through time) to compute

geodesic paths on a tangent space of a Riemannian manifold (i.e., in a high dimensional

space that represents all possible transformations, one path describes the deformation of an

image from one configuration to another). Multiscale kernels for LDDMM (Risser et al.,

2010a,b, 2011; Sommer et al., 2011a; Sommer, 2011a; Sommer et al., 2011b) decouple the

contribution of each smoothing scale (highly localized versus global deformation) and multi-

scale characteristics can evolve simultaneously for possibly faster convergence and multi-scale

statistics. These approaches typically consist of elegant mathematical frameworks but are,

however, computationally expensive. Stationary velocity fields (fixed velocities) simplify

the computation of LDDMM (using exponential maps) but still remain costly to compute

(Ashburner, 2007; Hernandez et al., 2007). A solution to Eq. (1.1) may indeed be:

φ(x) = exp(v(x)) (1.2)

The Demons algorithm (Thirion, 1998; Vercauteren et al., 2007, 2008, 2009a) considers

the velocity field as stationary. It shows similar results than stationary LDDMM, however,

it uses a much more efficient algorithm (Hernandez et al., 2008) that is suitable for fast

image registration. The original (non-diffeomorphic) algorithm (Thirion, 1998) decoupled

the optimization of the similarity term and the regularization term by introducing a hidden

variable (i.e., demons forces) that transfers correspondence updates between alternations

(i.e., demons residing in all pixels warp the displacement field from their positions). The



25

minimized energy (Cachier et al., 2003) in the Demons algorithm is:

E(I0, I1, c,φ) = α2
iSim(I0, I1 ◦ c) + α2

xdist(c,φ)
2 + α2

TReg(φ). (1.3)

In a first step, that is controlled with weight αi, the transformation φ is fixed, and the

similarity term is optimized (e.g., Sim = (I0(x)−I1◦c(x))2), which yields the updates u = δc

of the correspondences between I0 and I1 ◦φ. In a second step, that is controlled with weight

αT , the correspondences c are fixed, and the regularization takes place (e.g., Reg = ∇||φ||2)
by smoothing the transformation φ = K � (c + u) with a convolution kernel K. Ideally,

correspondences c must be close to the transformation φ, e.g., dist(c,φ) = ||c − φ||, and αx

controls how they may differ (i.e., the maximal update step is α−1
x ).

Additionally, the Demons algorithm can be defined to enforce incompressibility of the

deformation (Mansi et al., 2009, 2010; Mansi, 2010), which is satisfied by directly enforc-

ing the Jacobian to one (Rohlfing et al., 2003; Haber and Modersitzki, 2004) or using a

divergence-free constraint (Bistoquet et al., 2008; Saddi et al., 2007). Other variants include

the multichannel Demons, which allows spatio-temporal registration (Peyrat et al., 2008,

2010; Forsberg et al., 2011), or the Spherical harmonics, which enables the registration of

spherical meshes, such as brain surfaces (Yeo et al., 2010a). We now provide a walk-through

of the evolution of the classical demons (Thirion, 1998) in order to understand its symmetric

diffeomorphic version (Vercauteren et al., 2008, 2009a).

Classic Demons The classical Demons (Thirion, 1998) decouples, as mentioned earlier,

the minimization of Eq. (1.3) by computing and regularizing alternatively an update field

described in Alg. (1). The smoothing of the updates with a convolution kernelKfluid (typically

Gaussian) acts as a fluid-like regularization, while the smoothing of the correspondences with

Kdiff acts as a diffusion-like regularization. Moreover, additions of displacement fields, such

as φ+ u, can be replaced with compositions, φ ◦ u (i.e., (φ ◦ u)(x) = φ(u(x)).

Log Demons The classical Demons algorithm (Thirion, 1998) is not diffeomorphic in

nature. The transformation can create folding in space and there is no guarantee that the

transformation is invertible. To this effect, the Diffeomorphic Demons (Vercauteren et al.,

2007) optimizes Eq. (1.3) over the space of diffeomorphism (i.e., the space of smooth and

invertible transformations such that φ−1φ = I) through the use of exponentials of velocity
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Algorithm 1 Classical Demons
Input: Images F , M , and initial transformation φ.
Output: Transformation φ mapping F to M .

repeat
• Find updates u mapping F to M ◦ φ
u(p) = − δ(p)

||Jp||2+α2
x

α2
i
|δ(p)|

JpT ,

with δ(p) = F (p)−M ◦φ(p) and Jp = −∇T
p (M ◦φ)

• Smooth updates: u ← Kfluid � u.
• Update transformation: φ ← φ+ u.
• Smooth transformation: φ ← Kdiff � φ.
until convergence

Algorithm 2 Log Demons
Input: Images F , M , and initial velocity field v.
Output: Transformation φ = exp(v) mapping F to M

φ is diffeomorphic and invertible (φ−1 =
exp(−v))
repeat
• Find updates u mapping F to M ◦ exp(v).
• Smooth updates: u ← Kfluid � u.
• Update velocity field: v ← log (exp(v) ◦ exp(u))

(BCH approximation: v ← v + u).
• Smooth velocity field: v ← Kdiff � v.
until convergence

Algorithm 3 Symmetric Log Demons
Input: Images F , M , and initial velocity field v.
Output: Transformation φ = exp(v) mapping F to M

φ is diffeomorphic, invertible, and symmet-
ric.
repeat
• Find updates uF→M mapping F to M ◦ exp(v).
• Find updates uM→F mapping M to F ◦ exp(−v).
• Average updates: u ← 1

2 (uF→M − uM→F ).
• Smooth updates: u ← Kfluid � u.
• Update velocity field: v ← log (exp(v) ◦ exp(u))

(approximated with v ← v + u).
• Smooth velocity field: v ← Kdiff � v.
until convergence

Algorithm 4 Exponential φ = exp(v) of a ve-
locity field v
Input: Velocity field v.
Output: Diffeomorphic exponential map φ = exp(v).

• Choose N such that 2−Nv is close enough to 0,
e.g., such that max ||2−Nv|| ≤ 0.5 pixels.

• Scale velocity field φ ← 2−Nv.
for N times do
• Square φ ← φ ◦ φ.
end for

Figure 1.4: Walk-trough of the evolution of the classical demons toward its symmetric dif-
feomorphic version (differences between algorithms are colored).

fields that are estimated with the scaling and squaring method described in Alg. (4). The

Log-Demons algorithm computes updates on velocity fields rather than on displacement

fields (Alg. (2)). Consequently, the transformation φ is simply a byproduct defined by

φ = exp(v). Such an exponential map guarantees diffeomorphism of the transformation

(i.e., the exponential is diffeomorphic by nature, exp(v)−1 exp(v) = exp(−v + v) = I).

Additionally, the inverse of a transformation comes at no extra cost with φ−1 = exp(−v).

Moreover, the composition of velocity fields can be estimated with the Baker-Campbell-

Hausforff (BCH) formula (Hausdorff, 1906; Campbell, 1897; Poincaré, 1899; Baker, 1902),

where, for instance (Vercauteren et al., 2008; Bossa et al., 2007) shows that a satisfactory

approximation could be exp(v) ◦ exp(u) ≈ exp(v + u).
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Symmetric Demons In the Symmetric Demons algorithm (Vercauteren et al., 2008,

2009a), the computation of the transformation from I0 to I1, regardless to their order,

yields the same symmetric transformations, i.e., the algorithm is robust to the order of input

images: φI0→I1 = φ−1
I1→I0

. This is achieved by averaging symmetric velocity fields in Alg. (3).

Overall, this algorithm presents, therefore, a framework with diffeomorphism, reversibility,

and symmetry, which are properties that will be retained during the development of the

thesis.

Alternatively, symmetry was also proposed in earlier frameworks, for instance, (Chris-

tensen and Johnson, 2001; Johnson and Christensen, 2002; Kumar et al., 2003) use an inverse

consistency of transformations. On the same line, symmetry has been extended to 3 images,

which yields the notion of transition where φ1→3 = φ1→2 ◦ φ2→3 (Christensen and Johnson,

2003; Geng et al., 2005; Skrinjar and Tagare, 2004).

1.2.3 Note on Similarity Measures

In earlier methods, registration was performed by manually selecting feature points (Maintz

and Viergever, 1998). The automation of the registration required the use of similarity

measure between images, and in particular between images of different modalities (e.g., CT

and MRI). To this effect, intensity based approaches were introduced in (Woods et al., 1992)

where the variance of the intensity ratios between images is minimized. Soon after, Derek Hill

et al. (Hill et al., 1993) introduced the use of a joint histogram for multimodal registration.

In the same group, Petra Van den Elsen et al. (van den Elsen et al., 1995) introduced a

method based on the correlation of the gradient.

Mutual Information André Collignon et al. (Collignon et al., 1995b) and Colin Studholme

et al. (Studholme et al., 1995) proposed to use entropy as a similarity measure. While many

definitions exist for the entropy, including the one from Claude Shannon (Shannon, 1948),

they all measure the information contained in a message or an image (these concepts are

in fact derived from the machine learning and information theory fields (Shannon, 1948)).

Later, Paul Viola and Sandy Wells (Viola and Wells, 1995) and André Collignon et al. (Col-

lignon et al., 1995a; Maes et al., 1997) found, in the same year, a new approach based on the

mutual information between two images, which uses the joint intensity histogram between

these two images.
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Figure 1.5: Spectral matching consists of matching spectral signatures (eigenvectors of the
Laplacian matrix associated with each mesh).

This similarity measure may, however, vary depending on the overlap between images.

If their overlap is small, the mutual information between both images is going to be small,

and vice versa. To correct this bias, the normalized mutual information was introduced in

(Studholme, 1999). Recent methods based on mutual information are surveyed in (Pluim

et al., 2003). It is in fact known to be one of the best suitable similarity measures for

multimodal registration.

Kullback-Leibler distance Another important similarity measure, also derived from the

information theory, is the Kullback-Leibler distance (Kullback, 1959), which can be used

for registration (Chung et al., 2002; Guetter et al., 2005). It measures the distance from

an expected distribution (a joint histogram) and an observed distribution. This similarity

measure proved to be more robust in methods using a priori distributions in a multiresolution

approach (Gan et al., 2004). The same authors of the later work also proposed to use joint

class histograms (Chen et al., 2003), which use labels instead of intensities.
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1.2.4 Spectral Matching

Spectral matching (Chung, 1997b) utilizes a graph spectrum to produce a vertex corre-

spondence between two graphs (or meshes), and essentially consists of matching the spectral

decomposition of matrices representing graphs. The decomposition of a graph Laplacian

(Grady and Polimeni, 2010) into a set of Laplacian eigenvalues and eigenvectors is illus-

trated in Fig. 1.5 and reveals the shape harmonics, which provide a spectral signature for

each point of a mesh. Matching vertices are consequently found with similarities in these

spectral signatures.

Spectral methods have been used in many fields, such as in the segmentation and regis-

tration of shapes in images (Reuter, 2009; Leordeanu and Hebert, 2005), in the indexing of

structures from structural trees (Shokoufandeh et al., 2005), in shape modeling (Chung et al.,

2011; Seo et al., 2011), graph partitioning (Chan et al., 1995), or in clustering of data (Shi

and Malik, 2000; Bengio et al., 2004; Bach and Jordan, 2004). Their use in shape matching

is often limited to hierarchical matching (e.g., matchings limbs, or large surface areas, in

body models). Few medical applications of spectral methods exist and are mostly targeted

to brain studies, for instance, on the geometric patterns of the cortical folding (Niethammer

et al., 2007; Reuter et al., 2009; Shi et al., 2009, 2010), or on the smoothing of brain surfaces

(Anqi et al., 2006).

Shinji Umeyama (Umeyama, 1988) and later Guy Scott and Christopher Longuet-Higgins

(Scott and Longuet-Higgins, 1991) pioneered the use of spectral methods for the correspon-

dence problem. On the same ideas, Larry Shapiro and Michael Brady (Shapiro and Brady,

1992) compared ordered eigenvectors of a proximity matrix to find correspondences. Their

work served as a basis for future spectral correspondence methods. For instance, variants in-

clude the use of different proximity matrices using different kernels, the use of the adjacency

matrix, shock graphs (Pelillo et al., 1999; Siddiqi et al., 1999), different normalized Laplacian

matrices, or the use of Multi-Dimensional Scaling (Schwartz et al., 1989; Elad and Kimmel,

2003; Wuhrer et al., 2009; Bronstein et al., 2006, 2007). Recent surveys covering the use

of spectral methods in the past fifteen years are available in (van Kaick et al., 2011; Zhang

et al., 2010). Among these methods, Diana Mateus et al. (Mateus et al., 2008) proposed an

original unsupervised spectral method with an alternative approach to spectral reordering

that is based on the use of eigenvector histograms and the alignment of eigenvectors with

a probabilistic point matching (Carcassoni and Hancock, 2003). Varun Jain and Richard
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Zhang (Jain and Zhang, 2006) also addressed the alignment of eigenvectors with a nonrigid

deformation where they used the Thin Plate Splines.

1.2.5 Joint Segmentation and Registration

As segmentation and registration can both be solved through energy minimization, they

may be combined into the same optimization framework. This approach has been little

explored. Typically, feature-based registration uses points (Arun et al., 1987), edges or

surfaces (Borgefors, 1986, 1988; Zhang, 1994) found in a preliminary segmentation step.

The registration depends, therefore, on this feature localization. Rather than seeing both

steps as separate processes, they can be solved simultaneously. For instance, in (Bansal et al.,

1998), segmentation and registration are solved in a unified framework; however, two steps

are still used in this algorithm, where segmentation and registration are solved individually.

In (Yezzi et al., 2003, 2001), both processes are expressed in the same formulation within a

variational framework. Nonrigid transformations are also addressed in (Unal and Slabaugh,

2005). Furthermore, solving simultaneously segmentation and registration within the same

framework can answer the registration of partial data as proposed in (Periaswamy and Farid,

2003, 2006). More precisely, the registration uses a joint segmentation approach that treats

differently the existing and missing data between two images.

The levelset method also offers the possibility to simultaneously segment and register

two images (Leventon et al., 2002; Tsai et al., 2003). Other unified approaches are based

on the Expectation Maximization algorithm (Dempster et al., 1977), where pixels are si-

multaneously labeled and matched to an atlas (Pohl et al., 2005, 2006). Alternatively, a

probabilistic framework is presented in (Ashburner and Friston, 2005), where image regis-

tration, tissue classification, as well as bias field correction, are computed with a mixture

of Gaussian models that incorporates intensity variation, nonrigid displacements, and tissue

probability maps.

These joint approaches provide elegant unifying frameworks. In fact, solving simul-

taneously what may be one unique problem could become a leading approach for

both segmentation and registration. Moreover, the earlier review of spectral graph methods

showed strong links with the decomposition of the Laplacian matrix (Shi and Malik, 1997,

2000; Meila and Shi, 2000). This decomposition was shown in the last section to be at the

core of spectral matching methods and suggests that further links exist between segmentation
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and registration via the decomposition of the Laplacian matrix.

1.3 Atlas Construction

A medical atlas compounds statistics from a population by providing an average data with

its global or local variability. It enables numerous studies, for instance, in neuroimaging,

such as the analysis of Alzheimer’s disease, asymmetry in brain hemispheres, classification

of population, or characterizing specific syndromes ((Toga and Thompson, 2001) provides

a survey in neuroimaging applications). Emerging methods (Grenander and Miller, 1998)

in segmentation and registration, reviewed above, plays a crucial role in ameliorating the

accuracy and precision of atlases. Homology, which is the basis for comparative biology

(studying similar structures or functions), brings the philosophical debate (Fitch, 2000) on

how to construct an atlas (Crum et al., 2003). Indeed, the same anatomical structure (e.g.,

one brain area) may have different functions between individuals, while on the contrary,

one same function may be performed by different structures between individuals (e.g., the

variability of cognitive areas over the brain surface (Maudgil et al., 1998)). One arising

question is: should we register functional areas (e.g., Brodmann areas), or should we register

structural areas (e.g., sulcal patterns) in order to perform relevant statistical analysis? The

emphasis on structural alignment (i.e., averaging shapes) is favored as it allows

the important transfer of functional data to structural data (Miller and Qiu, 2009). This

transfer is at the core of neuroimaging studies on functional variability since it determines

the locations of neural functions and establishes links between them.

Among the active groups constructing reference atlases, there are, in neuroimaging, the

Montreal Neurological Institute (MNI) (Evans et al., 1993), the International Consortium for

Brain Mapping (ICBM which targets the use of 7,000 subjects) (Mazziotta et al., 2001a,b),

or in cardiac imaging, the euHeart initiative (Smith et al., 2011) the Cardiac Atlas Project

(CAP, targeting 3,000 subjects) (Backhaus et al., 2010; Fonseca et al., 2011; Young and

Frangi, 2009), as well as other cardiac physiome projects (Smith et al., 2009; Coveney et al.,

2011). Additionally, from unique datasets of cardiac fiber imaging, a few statistical atlases

have been constructed with canine hearts (Peyrat et al., 2007; Peyrat, 2009; Helm, 2005;

Helm et al., 2005a,b; Peyrat et al., 2007; Gilbert et al., 2007) and human hearts (Lombaert

et al., 2011b,e, 2012b)4.

4First human atlas (Lombaert et al., 2011b,e, 2012b) proposed by the candidate



32

!"#$%&'(

!)( !*(

!+(
!,(

!-(

!"#$%*'(

2) Updating Reference 
Toward an Average Shape 

1) Registering Images 
To a Reference Image 

Images 

Reference 

Average Shape 

Alternation between Registration and Shape Averaging 

Figure 1.6: Averaging the shape of all images, based on Guimond et al. (Guimond, 2000).
Firstly, all images are registered to an arbitrary reference image (blue arrows). Secondly,
the reference is transformed with the average of all inverse transforms (ideally, this average
should be zero, meaning that the reference image is at equal distance to all images) (red
arrow). Lastly, the averaging process is iterated until convergence.

The increasing number of possible subjects and the advances foreseen in medical imag-

ing, notably with better resolutions, create a demand for more efficient methods in the

construction of atlases. Most atlases are currently built using sequential registration and

segmentation. For instance, a model can be adapted to find classifications of tissues (Co-

cosco et al., 2003; van Leemput et al., 1999; Fischl et al., 2004; Marroquin et al., 2003) with

the use of probabilistic maps (Cocosco et al., 2003) or Expectation-Maximization approaches

(van Leemput et al., 1999). Joint approaches also exist to build atlases with a simultaneous

segmentation and alignment of images (Leventon et al., 2002; Tsai et al., 2003; Ribbens et al.,

2009, 2010). In more details, the following sections will review the major methods for the

computation of the average shape as well as for performing statistical analysis on atlases.

1.3.1 Average Shape

The underlying idea of building an atlas is to find the average shape of all images, and to

register all these images to their average. The registered set of images enables consequently

statistics within a common reference. More precisely, the average shape is computed it-

eratively by deforming an arbitrary reference until it reaches an average shape that best
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describes all other images (illustrated on Fig. 1.6).

Deformation may be controlled with, for instance, manual placement of control points,

mostly using thin-plate splines (Park et al., 2003; Peyrat et al., 2007). Images can also be

registered automatically and jointly (group-wise) to their average shape. For instance, the

sum of all displacements fields, transforming images to the reference, can be forced to be

zero and to have minimal joint entropy between images (Studholme and Cardenas, 2004).

A simultaneous approach registering all images concurrently is also possible (Bhatia et al.,

2004). Moreover, the modes of shape variations may be optionally provided (Gotland and

Sabuncu, 2011). As an alternative approach, the average shape may be computed from

a multi-dimensional scaling on a distance matrix, where the notion of distance between

images is expressed as a bending energy (in terms of thin-plate splines (Park et al., 2005) or

polyharmonic splines (Marsland et al., 2003; Marsland and Twining, 2004)).

The concept of geodesic averaging instead of a Euclidean averaging is at the core of

diffeomorphic methods. It allows unbiased construction of atlases (Avants and Gee, 2004a;

Joshi et al., 2004) (i.e., the average shape is independent from the choice of initial reference).

This initial reference evolves toward the shape with the least difference with the rest of images

(Joshi et al., 2004), where differences are expressed in the space of diffeomorphism. More

precisely, the transformation of the reference shape follows a geodesic path on a Riemannian

manifold (the space of diffeomorphic transformations) defined by the images and converges to

a point representing the optimal transformation (the geodesic average on the manifold) from

the reference to the rest of images (Avants and Gee, 2004b,a). The LDDMM framework

provides an elegant mathematical framework for averaging shapes (Beg and Khan, 2006;

Bossa et al., 2007), with for instance, probabilistic segmentations (Lorenzen et al., 2006),

or with the automatic placement of landmarks for the construction of a ventricle atlas (Beg

et al., 2004). When a large number of images is available, Lilla Zöllei et al. (Zollei et al.,

2005) propose a method also based on this central tendency and minimizes the total pixel

entropy using a multiresolution gradient descent.

More advanced techniques (Allassonnière et al., 2007, 2010) recently surfaced with a for-

ward scheme approach (i.e., formulating the registration functional with transformations of

the atlas toward all images, instead all images toward the atlas) and handle photometric

(intensity), and geometric (shape) variations in a Bayesian framework where geometric vari-

ability is modeled as a hidden variable. The reference image may also be generated from a
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hyper-template (Ma et al., 2008). Moreover, forward schemes may alternatively be modeled

with currents (Durrleman et al., 2009b, 2008, 2011) to represent average and modes of geo-

metric shapes. This use of currents has been successfully applied to build an atlas of white

matter fibers (Durrleman et al., 2009a). However, the complexity of these approaches may

be perceived as prohibitive.

Alexandre Guimond et al. (Guimond, 2000) proposed an efficient iterative algorithm to

construct atlases. They use a groupwise diffeomorphic registration, where an initial refer-

ence I(0)ref evolves toward a geodesic average Iatlas = atlas(I1, ..., In). More precisely, at each

iteration (t+1), the previous reference image, I(t)ref , is updated with the average of all inverse

transforms:

I(t+1)
ref =

1

N

N�

i=1

Ii ◦ φIi→I(t)ref
◦ φ

I(t)ref→I(t+1)
ref

. (1.4)

The initial reference image may be initialized arbitrarily with any image (e.g., I(0)ref = I1).

The transformation maps and velocity fields from all hearts to the reference image (all

φ
Ii→I(t)ref

’s and v
Ii→I(t)ref

’s) are computed using separate diffeomorphic registrations. It is as-

sumed that using the average of all transformations (all φ
I(t)ref→Ii

’s) will bring the reference

image closer to the average shape. Recalling that the transformation is, for stationary veloc-

ity fields, the exponential map of the velocity field φ−1 = exp(−v), hence, the transformation

update is:

φ
I(t)ref→I(t+1)

ref
= φ−1

I(t+1)
ref →I(t)ref

= exp
�
−v

I(t+1)
ref →I(t)ref

�

= exp

�
− 1

N

N�

i=1

v
Ii→I(t)ref

�
,

In practice, Guimond’s algorithm converges to an average shape with about five iterations;

however, it necessitates, in each iteration, complete registrations of all images to the reference

image.

1.3.2 Statistical Analysis

Statistics on atlases may be performed on the analysis of the average shape, but may also be

extended to second-order measures. For instance, the complex variations (Chung, 2001) of
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the underlying deformations between shapes or images may be analyzed through a Principal

Component Analysis (PCA) on point coordinates (Cootes and Taylor, 1994; Cootes et al.,

1995). The variations can be studied on a point level (how the position of a point varies

in space across a dataset), or more interestingly, on a global level (how a point varies with

respect to the other points). Indeed, it must be remembered that the variations of point

positions are partially correlated across the surface or image. In fact, if the position of

a point varies along a certain direction, there is a high chance that the positions of the

neighboring points will vary in a similar manner. A study on the global shape variations

will reveal the correlations between all points. The principal modes of variations have many

applications, including classification (Timoner et al., 2002), recognition (Turk and Pentland,

1991; Golland et al., 2001), or can also guide image registration (Ashburner et al., 1997) by

favoring deformations modeled with the strongest principal modes of variations.

However, the study of more complex characteristics, such as diffusion tensor fields (Jones

et al., 2002), may not be adequate with the standard Euclidean metric. To this effect,

non-linear structures may be modeled with Riemannian geometry, for instance, to model

deformations (Rumpf and Wirth, 2009, 2011) in a shape space (Kendall, 1984; Durrleman

et al., 2009b; Durrleman, 2010) or to model the space of diffusion tensors (symmetric positive

definite matrices, or the SO3 Lie group) (Fletcher and Joshi, 2007, 2004; Pennec et al., 2006).

Statistics such as the mean, variance, or PCA can be computed directly on the manifold

yielding tools such as geodesic PCA (Fletcher and Joshi, 2004; Fletcher et al., 2004; Basser

and Pajevic, 2000; Sommer, 2011b; Huckemann and Hotz, 2009; Huckemann et al., 2010;

Huckemann, 2011). Intrinsic manifold distances are used instead of standard Euclidean

distances in order to capture the complexity of the underlying Riemannian structure.

Statistics can also be performed on a tangent space of a Riemannian manifold (Pennec

et al., 2006). For instance, statistics on diffusion tensor imaging can be computed on an

exponential map with the Log-Euclidean metric (Arsigny et al., 2006a,b). Including regis-

tration uncertainties can also improve tissue classification (Simpson et al., 2011). In fact, the

Log-Euclidean metric is preferred for its simple and fast framework. Moreover, the mean is

computed using simple Euclidean metric on logarithm of diffusion matrices with the Karcher

mean (Karcher, 1977) (also known as the Fréchet mean).



36

1.4 Summary

The fields mentioned in the literature review are summarized in Fig. 1.1. The problem of

constructing atlases has been long studied and involves many related fields of research such

as image segmentation and image registration. All these topics are interconnected and it is

possible to foresee new approaches bridging gaps between image segmentation, registration,

and shape averaging. This thesis proposes new tools that provide improvements in the

reviewed areas. The next chapter gives the principal research questions with the main

objectives, as well as the rationale behind the methodology.
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CHAPTER 2 GENERAL METHODOLOGY

2.1 Problem Statement

Every clinician’s goal is to, firstly, detect abnormality in an individual, secondly, judge if it

poses risk to life and, ultimately, cure it. The question of how to define the normality of

complex characteristics naturally arises in this context (what is normal and how it varies).

However, such statistics on anatomical and functional variability requires the nor-

malization of measurements across subjects. Such normalization (the construction

of atlases) maps many subjects, structures, and measurements into a common space and

highlights the variability of complex characteristics within a population, for instance, the

variability of the fiber architecture, brain surfaces or locations of cerebral activities. Analyz-

ing the variability of such complex characteristics depends on the quality of image acquisition,

the segmentation of these images (extracting the regions of interests), and the registration

of all images into a reference space (finding the correspondences between images). Notwith-

standing the challenges of each step, image registration becomes particularly complex (still

unsolved) with organs undergoing a large shape variation due to inter-patient or intra-patient

differences in morphology (e.g., growth) or function (e.g., a beating heart). This thesis ad-

dresses the general question: How to produce tools for analyzing the variability of

complex anatomical characteristics?

2.2 Research Questions

The specific research questions are focused on the development of shape normalizing methods

demonstrating a sufficient accuracy that enables new advances in the understanding of the

human anatomy.

2.2.1 How to Characterize the Human Cardiac Fiber Architec-

ture?

Question 1: How to construct an atlas from DTMRI that characterizes the average cardiac

fiber architecture and its variability in the human population?
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The cardiac fiber architecture is still not fully known in humans, and yet, plays an im-

portant role in electro-physiology, in mechanical functions, and in remodeling processes.

Recently, DTMRI can provide measures of diffusion within the fiber structures. The con-

struction of a statistical atlas from DTMRI of the cardiac fiber architecture (Chapter 3),

(Lombaert et al., 2011b, 2012b) will allow a better understanding of its complete nature

in humans along with its normal variability (Lombaert et al., 2012b, 2011d,e). Such an

atlas will also be relevant to new methods detecting abnormalities derived from the fiber

architecture (Lombaert et al., 2011c).

2.2.2 How to Capture Large Anatomical Shape Variabilities?

Question 2: How can new spectral methods find correspondences between anatomical struc-

tures exhibiting large shape variability?

The matching of anatomical structures is currently limited in the presence of a significant

variability in shapes (due to morphology or function). Two well-known examples are: the

human brain surface which is highly convoluted, and the heart shape which undergoes a

complex deformation. A new spectral method for fast and accurate surface matching (Chap-

ter 4) (Lombaert et al., 2011a, 2012a) will be relevant to neuroimaging studies of structural

variability and functional variability (Chapter 5). Additionally to surface matching, a new

spectral approach for image registration will allow the capture of large cardiac deformations

due to the inter-subject and intra-subject variability (Chapter 5).

2.3 Research Objectives

The preceding questions suggest the main research objective: To produce tools for the

normalization of complex anatomical structures, as well as to illustrate the use of these

tools in challenging and clinically relevant variability studies. The main target is fulfilled in

the following three specific objectives.

2.3.1 Build a Human Atlas of the Cardiac Fiber Architecture

Objective 1: To construct a human atlas of the cardiac fiber architecture that permits a

variability study within a population and an investigation on the heart abnormality.
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The study of the cardiac fiber architecture has been limited until recently to tedious

histological slices. Diffusion imaging can now be used to measure the orientation of the

fiber structures in three dimensions. In order to construct an atlas of diffusion images, an

automated framework will be developed (Chapter 3) (Lombaert et al., 2011b, 2012b). The

construction of the first human atlas of the cardiac fiber architecture will allow the study on

the variability of the fiber structures within a population and across several segments

of the myocardium (Lombaert et al., 2012b, 2011e). The laminar organization of the fibers

can also be analyzed in order to verify the hypothetic presence of two populations of

laminar sheets (Lombaert et al., 2011d). Furthermore, the comparison of hearts, classified

as abnormal, against the atlas of healthy hearts provides answers on whether differences

in the fiber architecture might explain abnormality (Lombaert et al., 2011c).

2.3.2 Improve Spectral Correspondence

Objective 2: To improve spectral correspondence with high accuracy and fast computation

time in order to measure large anatomical and functional variability on human brain sur-

faces.

The matching of surfaces with large shape variability is often a compromise between ac-

curacy and fast computation time. An encouraging path is the use of spectral representations

that have the benefit of being largely invariant to changes in poses. This property allows,

therefore, the matching of shapes with high variability between configurations, or undergoing

large deformations. One fit example of such shapes is the human cerebral cortex because

its surface is highly convoluted and varies significantly across individuals. The matching of

human brain surfaces constitutes, therefore, an excellent application for benchmarking ro-

bustness and performance of a new fast and accurate spectral correspondence method

(Chapter 4) (Lombaert et al., 2011a, 2012a). Furthermore, the spatial normalization of brain

surfaces will allow a variability study on the location of several sulcal regions (Lom-

baert et al., 2011a, 2012a) and of several cognitive areas (Chapter 5), as well as an

exploration of the shape of the primary cortical folding (Chapter 5).

2.3.3 Unify Spectral Correspondence and Demons

Objective 3: To unify spectral correspondence with Demons in order to create a joint
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image segmentation and image registration method capable of handling large deformations of

shapes.

Image registration methods currently depend on local iterative approaches driven by up-

date forces derived from intensity metrics. They are limited when strong disparities exist

between images and results in the incapacity to compute local coherent updates between

images. This is often palliated with a rigid alignment of images prior to their registration in

order to have maximal local coherence, however, this does not solve the underlying problem.

It is proposed to create a new registration method based on the Demons algorithm

that performs spectral correspondence instead of using image gradients (Chapter 5).

The new method combines the advantages from both approaches, namely, diffeomorphism,

transformation reversibility, symmetry, and the natural handling of large deformations in-

variant to isometry. Furthermore, this unification effectively creates a joint approach for

image segmentation and image registration.

2.4 General Approach

Methods for shape-normalization, which are essential for the construction of atlases, have

been developed and enabled new variability studies on complex characteristics that lead to

a better understanding of the human anatomical and functional variations of the heart and

the brain. The formulated hypotheses have been verified by the achievement of the research

objectives. This is demonstrated in two ways, firstly by developing new methods for atlas

construction, and secondly by studying their variability.

2.4.1 Atlas Construction

Three new shape normalizing methods relevant to the construction of atlases have been

developed. They permitted the construction of an atlas of cardiac fibers, the spatial nor-

malization of brain surfaces, and settled new limits for the registration of images with large

deformations.

The first objective investigated the practical value of using fast and simple methods to

construct an atlas. It was experimented with cardiac images of diffusion tensors. The average

heart was computed iteratively by evolving a reference heart toward the shape that best

describes all provided hearts. In each iteration, the registrations of all hearts to the evolving
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reference were facilitated by the use of simplified images with diffeomorphic Demons. These

simplified images were generated with a semi-automatic method based on Graph Cuts using

topological constraints. The diffusion images associated with each heart were warped into a

common space to create the first human atlas of the cardiac fiber architecture (Chapter 3)

(Lombaert et al., 2011b, 2012b).

The second objective investigated a new approach to match surfaces of an anatomy hav-

ing a large disparity, with an application on highly convoluted human brain surfaces. The

matching of such surfaces provides, indeed, a well-suited benchmarking environment for the

robustness, the accuracy and the performance of the new spectral approach. The devel-

oped method relies on a spectral representation of a graph derived from the surface that

is invariant to isometry and naturally handles a large disparity between surfaces. Features

helping alignment can be additionally incorporated in a graph in terms of weighting on graph

edges (as differences of feature values) and also on graph nodes (as pointwise information).

The correspondence between surfaces are generated with the nearest neighboring points (a

fast approach) between their associated spectral representations. This new spectral corre-

spondence method improves accuracy while maintaining a fast computation time. Spatial

normalization of several brain surfaces with a variety of shapes was possible and revealed

a minimal error (Chapter 4) (Lombaert et al., 2011a, 2012a). Moreover, the method also

performed successfully with more generic surface meshes, improving, in a broader scope, the

challenge of general mesh correspondence (Lombaert et al., 2012a).

The third objective aimed at introducing a fast image registration method that naturally

handles large deformations. The new method uses diffeomorphic Demons where updates

are computed with spectral correspondence. Properties of both approaches are effectively

combined. Furthermore, the links between spectral methods and segmentation algorithms

bring the intriguing fact that the new, so-called Spectral Demons, method is actually a

joint approach bridging a gap between image segmentation and image registration. The

experiments showed that images of hearts with a large shape disparity could be registered

and segmented correctly and jointly with this new method (Chapter 5).

2.4.2 Variability Study

The construction of atlases and the development of new shape normalization methods en-

abled the possibility for new studies on anatomical and functional variabilities of hearts and
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brain surfaces.

The atlas of the human cardiac fiber architecture is an important contribution to a better

understanding and to a more accurate modeling of the cardiac functions derived from the

fiber architecture. The variability of the fiber architecture is studied across all hearts and

within specific ventricular segments (Chapter 3) (Lombaert et al., 2012b, 2011b,e,d). The

statistical study has been performed using the Log-Euclidean framework, which considers

the space of possible computations on diffusion tensor images. The average fiber angles,

analyzed across several ventricular segments, with their normal variations provide a new

reference in cardiology by advancing specific knowledge on the cardiac fiber architecture

in humans. A study on the laminar organization of the fibers also revealed a complex

variable structure and the possible presence of two populations of laminar sheets. This has

been observed in several myocardial segments of the left ventricle (Lombaert et al., 2011d).

Additionally, preliminary results on a comparative study between a population of healthy

hearts and abnormal hearts suggest that a higher variability of the fiber structure directions

could possibly characterize abnormality of a heart (Lombaert et al., 2011c). These variability

studies and their conclusions demonstrate the relevance of the proposed framework.

The creation of a new fast and accurate method for surface matching based on an im-

proved spectral correspondence, lead to study the variability of several sulci locations on the

brain surface (Chapter 4) (Lombaert et al., 2011a, 2012a). Such study, previously computa-

tionally expensive, showed results concurring with a ground truth data and gave confidence

that the method can be used for further relevant neuroimaging studies. The matching of

brain surfaces with different smoothing levels, representing the course of the brain surface

convolution across the ages, enabled the exploration of the shape of the primary cortical

folding. The results showed that several Brodmann areas (known to be related to specific

cognition) align better on surfaces smoothed with an optimal level, which suggests that

the primary folding and these specific smoothed surfaces have a similar shape around the

Brodmann areas of interest (Chapter 5). This experiment demonstrates that the new spec-

tral correspondence method enables new clinically relevant studies even in the presence of

large disparity in the anatomy. Moreover, it is expected that the unified method using

spectral correspondence within the diffeomorphic Demons framework can be similarly used

for anatomically relevant studies since it showed successful registration of images with large

shape variability.
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METHODS AND RESULTS
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CHAPTER 3 HUMAN ATLAS OF

THE CARDIAC FIBER ARCHITECTURE:

STUDY ON A HEALTHY POPULATION

Herve Lombaert1,4, Jean-Marc Peyrat1, Pierre Croisille2, Stanislas Rapacchi2,

Laurent Fanton2, Farida Cheriet4, Patrick Clarysse2, Isabelle Magnin2, Hervé Delingette1,

Nicholas Ayache1

Presentation

This chapter presents the article “Human Atlas of the Cardiac Fiber Architecture: Study

on a Healthy Population” (Lombaert et al., 2012b) submitted to IEEE TMI (Transac-

tions on Medical Imaging), sent on June 27th, 2011, revised on July 1st, 2011, and accepted

for publication on March 23rd, 2012. Two initial articles (Lombaert et al., 2011e,b) have

been published in the conference ISMRM (International Society for Magnetic Resonance

in Medicine) held in Montreal, QC, in May 2011, as well as in the conference FIMH (Func-

tional Imaging and Modeling of the Heart) held in New York, NY, in May 2011. The FIMH

paper has received the Best Paper Award. Additionally, further studies on the cardiac

atlas (Lombaert et al., 2011c,d) have been published in the STACOM Workshop (Statis-

tical Atlas and Computational Models of the Heart) of the conference MICCAI (Medical

Image Computing and Computer Assisted Intervention) held in Toronto, ON, in September

2011. The objective of this article is to develop a new automated framework in order to con-

struct the first human atlas of the cardiac fiber architecture. This is a joint work between
1INRIA, Sophia Antipolis, France; 2CREATIS, Lyon, France; 3Siemens Molecular,

Lyon, France; and 4École Polytechnique, Montreal, Canada.

Abstract

Cardiac fibers, as well as their local arrangement in laminar sheets, have a complex spatial

variation of their orientation that has an important role in mechanical and electrical cardiac

functions. In this paper, a statistical atlas of this cardiac fiber architecture is built for the

first time using human datasets. This atlas provides an average description of the human

cardiac fiber architecture along with its variability within the population. In this study, the

population is composed of 10 healthy human hearts whose cardiac fiber architecture is im-

aged ex vivo with DT-MRI acquisitions. The atlas construction is based on a computational
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

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





Figure 3.1: Construction of the morphological atlas : From the acquired images, the my-
ocardium and the blood masses are segmented as described in Section 3.2.2. The images are
then aligned and deformed toward a reference image. The registration is performed using
Non-rigid Symmetric Diffeomorphic Log-Demons as explained in Section 3.2.2. The atlas
is constructed iteratively by averaging acquired images in the average shape of the atlas as
explained in Section 3.2.2.

framework that minimizes user interactions and combines most recent advances in image

analysis: Graph Cuts for segmentation, Symmetric Log-domain Diffeomorphic Demons for

registration, and Log-Euclidean metric for diffusion tensor processing and statistical analy-

sis. Results show that the helix angle of the average fiber orientation is highly correlated to

the transmural depth and ranges from −41◦ on the epicardium to +66◦ on the endocardium.

Moreover, we find that the fiber orientation dispersion across the population (±13◦) is lower

than for the laminar sheets (±31◦). This study, based on human hearts, extends previous

studies on other mammals with concurring conclusions and provides a description of the

cardiac fiber architecture more specific to human and better suited for clinical applications.

Indeed, this statistical atlas can help to improve the computational models used for ra-

diofrequency ablation (RFA), cardiac resynchronization therapy (CRT), surgical ventricular

restoration, or diagnosis and follow-ups of heart diseases due to fiber architecture anomalies.
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Figure 3.2: Construction of the statistical atlas of the human cardiac fiber architecture.
All acquired tensors are warped using the transformation found during the construction of
the morphological atlas. With the average tensor and its covariance matrix, the statistical
analysis is carried on. The tensor field illustrations show tractographies generated with
MedINRIA.

3.1 Introduction

Cardiovascular disease is a leading cause of death in developing countries. The understanding

of the cardiac muscle structure and functions is essential for the diagnosis and the treatment

of many heart pathologies. The cardiac fiber architecture, a complex organization of the

myocardium fibers (Streeter et al., 1969; LeGrice et al., 1995), determines various cardiac

mechanical functions (Costa et al., 2001), cardiac electrophysiology patterns (Hooks et al.,

2002), and remodeling processes (Wu et al., 2006). The assessment of structural variability

is important for a better understanding of the human heart physiology (Cirillo, 2009; Cirillo

et al., 2010) and for a more accurate modeling of the heart. Such models with a complete

description of the fiber architecture can be used for clinical applications. For instance, the

planning of radiofrequency ablation (RFA) (Relan et al., 2011) or cardiac resynchronization

therapy (CRT) (Sermesant et al., 2011), with respectively the localization of the zone to

ablate and the positioning of the pacing electrodes, can be optimized using electro-mechanical

models of the heart whose fiber structure is a key information for more accurate simulations

and predictions.

The fibrous nature of the heart has been known for centuries, Harvey reported as early
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Figure 3.3: Average geometry and fiber orientations with (upper left) the average shape of
the myocardium, (upper right) short axial view from top, (lower left) apical view from foot,
(lower right) long axial view from front. The r,g,b color of the tracked fibers indicates the
x,y,z components of the local orientation of the fiber.

as 1628 in De Motu Cordis (Harvey, 1628) the functional role of the cardiac fibers. In the

modern era, Streeter (Streeter et al., 1969) suggested that the cardiac fibers are organized

as nested surfaces. Further studies on the cardiac fiber architecture also revealed common

features among species (Bronzino, 1995). The fibers, locally organized as laminar sheets,

appear to be consistently structured as two counter wound spirals wrapping around the heart

clockwise on the epicardial surface and counterclockwise on the endocardial surface (Streeter

et al., 1969; LeGrice et al., 1995). The helical myocardial band of Torrent-Guasp (Torrent-

Guasp et al., 2005) is another model (triggering controversial discussions (von Segesser,

2005)) that hypothesizes the existence of a single muscular band folding onto itself to form

the whole heart. Nevertheless, cardiac fiber studies mainly focus on the local orientation

of fibers with their angle on the tangent plane and on the horizontally normal plane of

the epicardium called respectively the helix and the transverse angles. In humans, the
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Figure 3.4: Average fiber orientation seen on a short axis slice. The left ventricle is on the
foreground and the right ventricle on the background. The cylinders indicates the direction of
the first eigenvector in the average diffusion tensor field. Color indicates the local orientation
of the fiber. The transmural variation is visible in the left ventricle and in the midwall. The
vertical papillary muscles are visible in darker blue.

variability of the cardiac fiber architecture was studied using tedious work on histological

slices (Greenbaum et al., 1981), and thus hard to assess completely in 3D. So far, more

detailed cardiac fiber architecture has been mainly speculated from studies on other species

(Nielsen et al., 1991).

The cardiac fiber architecture of single human hearts have already been visualized and

studied using DT-MRI (Zhukov and Barr, 2003; Rohmer et al., 2007; Seemann et al., 2006).

However, due to an extreme rarity of healthy human hearts (they are rather transplanted

than used for research), no statistical study has yet been performed on humans. With an

access to a unique post-mortem human dataset (Frindel, 2009; Frindel et al., 2009; Rapacchi

et al., 2010), the presented work aimed at building, for the first time, a statistical atlas of

the human cardiac fiber architecture from 10 healthy ex vivo hearts imaged with DT-MRI.

This work is an extended version of preliminary results (Lombaert et al., 2011b). Here, the

method is fully explained and we provide an extensive statistical study on the fiber variability

as well as a refined analysis of the transmural distribution of the fiber helix and transverse

angles.

The atlas construction and the population variability study are performed using a refined
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Figure 3.5: Dataset consisting of 10 healthy ex vivo human hearts. On the left, the b=0 images
acquired in the DTI studies. In the middle, segmented myocardium (in blue) with left (in
dark gray) and right (in light gray) ventricular chambers. On the right, tractographies of a
few fibers that illustrates the fiber orientation (computed with MedINRIA, where coloring
indicates the local fiber orientation).
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version of the computational framework proposed by Peyrat et al. (Peyrat et al., 2007). The

method has been automated and adapted to process the available images, which are at a

lower resolution than in (Peyrat et al., 2007). It is described in details for reproducibility and

can easily be reused for studies that includes a large number of hearts. Firstly, we present

the strategy for the construction of the atlas eased by the use of a more recent registration

method, the Symmetric Log-demons (Vercauteren et al., 2008; Mansi et al., 2010). The

registration is also guided by a segmentation step involving minimal user interaction using

Graph Cuts (Boykov and Jolly, 2000) to cope with topological issues that could occur with

a basic thresholding on images with lower resolution than in (Peyrat et al., 2007). Secondly,

we use the same statistical framework on diffusion tensors as in (Peyrat et al., 2007) to

analyze the variability of the fiber architecture. Thirdly, we present the main contribution:

the provision and analysis of a human statistical atlas, performed both globally over the

whole myocardium and locally within several myocardial segments. Common features of the

cardiac fiber architecture along their variabilities are shown for the first time in a population

of healthy human subjects. Finally, we discuss possible improvements of our method and

give perspectives on our results.

3.2 Material and Methods

The dataset and its acquisition protocol, consisting of anatomical b= 0 images and their

associated DT-MRI tensor fields, is first presented. The transverse anisotropy in each tensor

field provides confidence for the presence of a secondary fiber structure (i.e., the laminar

sheet). The method constructing the DT-MRI atlas is described with the semi-automatic

segmentation of the myocardium followed by the fully automatic groupwise registration of the

anatomical images (Fig. 3.1), and with thereafter the warping of the tensor fields (Fig. 3.2).

Finally, the statistical framework on diffusion tensors is explained. It provides an average

representation (Fig. 3.3 and 3.4) of the cardiac fiber architecture as well as its variability in

terms of fiber and laminar sheet orientations.

3.2.1 Data Acquisition

The hearts were explanted within 24 hours after death and ex vivo imaging was performed

without any additional delay. The hearts did not exhibit any patent contracture compared to

what is commonly observed in organs of more than a few days after death. Special care was
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Table 3.1: Characteristics of the human dataset of 10 healthy hearts (Subject weight, height
and age, with myocardial weight, max allowed weight, and septal thickness.).

Subject Weight Height Age Heart Weight (limit) Sex Septal thick.
1 60 Kg 158 cm 74 385 g (420 g) F 12 mm
2 74 Kg 166 cm 47 385 g (444 g) M 14 mm
3 102 Kg 192 cm 17 435 g (521 g) M 10 mm
4 74 Kg 180 cm 47 430 g (444 g) M 11 mm
5 77 Kg 165 cm 27 350 g (425 g) F 11 mm
6 85 Kg 189 cm 21 365 g (473 g) M 14 mm
7 63 Kg 175 cm 20 320 g (406 g) M 12 mm
8 97 Kg 187 cm 21 410 g (506 g) M 11 mm
9 77 Kg 179 cm 21 380 g (450 g) M 12 mm
10 84 Kg 177 cm 50 460 g (473 g) M 10 mm

taken to carefully remove any remaining blood or mural thrombi by flushing the ventricles

with an isotonic solution. The ventricles were then filled with an hydrophilic and isotonic gel

to remove any air and to restore a normal anatomic configuration. Finally, the hearts were

placed in a plastic container filled with the same hydrophilic gel. The posterior wall of the

atria were partially removed to give access to the atria-ventricular valves. The preparation

and handling of the hearts were established with forensic specialists to avoid any additional

delay and any potential changes to the common forensic procedure that was performed after

imaging on the fresh non-fixed entire hearts.

Each heart with its plastic container was placed in a 16 element head coil and was imaged

with a 1.5T MR scanner (Avanto Siemens). The main MRI parameters of the diffusion

weighted EPI sequence (bipolar scheme) are: TE/TR = 69/6500 ms, 6 excitations (with

polarity alternation), voxels of 2× 2× 2 mm3, parallel imaging (GRAPPA with acceleration

factor 2), partial Fourier (6/8), base resolution matrix of 128, BW = 1628 Hz/Px, echo

spacing of 0.7 ms, 12 directions, and b = 1000 s.mm2 with a PSNR = 16.44 dB. The

acquisition protocol is detailed in (Frindel, 2009; Frindel et al., 2009). The b=0 images along

their myocardial masks and illustrative fiber tractographies (generated using a spin glass

model (Fillard et al., 2009)) are shown on Fig. 3.5.

DT-MRI measures the local spatial diffusion within one voxel. The maximal local di-

rection of diffusion, revealed by the primary eigenvector v1 of the diffusion tensor matrix

D, occurs along the main structure, i.e., the fiber, while the secondary eigenvector, v2, is

assumed to lay within the laminar sheet. The tertiary eigenvector, v3, would thus be related
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to the normal of the laminar sheet (illustrated in Fig. 3.6 (a)). Although strong evidences

exist toward this assumption (Helm et al., 2005a,b; Scollan et al., 2000; Tseng et al., 2003),

we first need to ensure that pairs of eigenvectors and eigenvalues are distinguishable and

hold meaningful structural information. The corresponding null hypothesis would imply

transverse isotropy (i.e., equal secondary and tertiary eigenvalues d2 = d3). Rejecting it, by

observing a transverse anisotropy, would give an indication that a secondary structure exists

in the transverse plane of the primary eigenvector. We do so by showing that the eigenvalues

are not equal and that the eigenvectors are locally structured.

Since d2 > d3 > 0, the ratio d3/d2 is defined between 0 and 1 and the mode of the

ratio distribution should be close to one in case of transverse isotropy. The figure 3.7 shows

that even though the distributions of the eigenvalues are very close, the peak of the ratio

distribution d3/d2 is at 0.86 and suggests that the secondary and the tertiary eigenvalues are

not equal. Furthermore, Helm et al. (Helm et al., 2005b; Helm, 2005) explain that in case of

transverse isotropy the secondary and tertiary eigenvectors should rotate randomly around

the principal axis of diffusion. They reject this null hypothesis with a Kolmogorov-Smirnov

(K-S) test where the local distribution of the angle α = cos−1 (|v2 · vn|), between the sec-

ondary eigenvector v2 and a local reference vector vn defined in each myocardial segment, is

not uniform (i.e., testing if α is randomly distributed, or not, on the transverse plane). The

local reference, vn, is fixed and is chosen to be the best orthogonal vector to the set of first

eigenvectors within each AHA segment. Furthermore, the maximal distance between the cu-

mulative distribution Fα(θ) of the angle α and the cumulative distribution θ/π of the uniform

distribution gives a measure of confidence with the R-value: R = maxθ=[0,2π] {|θ/π − Fα(θ)|}
(see (Helm et al., 2005b; Helm, 2005) for more details). The critical R-value Rc = 0.06 is

chosen (Helm, 2005) using the average number of pixels in each AHA segment (1247 pixels),

i.e., if R > Rc, the distribution of the angle α can be considered non-uniform. The table 3.2

shows for all AHA segments of all hearts R-values with a significance level of 1% consistently

well above Rc = 0.06 (away from the uniform distribution) which give another indication

that the diffusion is transversely anisotropic, i.e., there is a secondary structure in the human

fiber architecture.
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(a) Tensor eigenvectors with respect 
to the fiber and laminar sheet 

(b) Atlas fiber tractography of the 
left ventricle and a short axis slice 

Figure 3.6: Fiber architecture: (a) Illustration of the Tensor eigenvectors, v1,2,3, with respect
to the fiber and the laminar sheet (adapted from (LeGrice et al., 1995)). (b) The transmural
variation of the fiber orientations in the left ventricle is visible in the fiber tractography
(computed with MedINRIA) of the average tensor field.
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Figure 3.7: Transverse anisotropy. (a) Distribution of the eigenvalues for all subjects. (b)
Distribution of the ratio between the third and second eigenvalues, d3/d2, showing a trans-
verse anisotropy for all subjects (i.e., the ratio peak at 0.86).

Table 3.2: R value, confidence that the angular distribution of the 2nd eigenvector around
the 1st eigenvector is not uniform (i.e., transverse anisotropy). Mean value for each AHA
segment with its standard deviation.

AHA R Value AHA R Value AHA R Value
1 0.18 (± 0.10) 7 0.24 (± 0.06) 13 0.25 (± 0.13)
2 0.21 (± 0.10) 8 0.19 (± 0.07) 14 0.18 (± 0.10)
3 0.23 (± 0.09) 9 0.21 (± 0.06) 15 0.23 (± 0.09)
4 0.21 (± 0.10) 10 0.18 (± 0.08) 16 0.22 (± 0.10)
5 0.18 (± 0.12) 11 0.20 (± 0.06) 17 0.23 (± 0.09)
6 0.24 (± 0.06) 12 0.19 (± 0.05)
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3.2.2 Atlas Construction

The statistical atlas is constructed using four steps, illustrated in Fig. 3.1. First, the my-

ocardium of each heart is segmented out on the b=0 image of the DT-MRI acquisition. They

are similar to T2-weighted images providing anatomical information with the advantage of

being acquired and corrected for motion together with diffusion-weighted images (DWI) and

thus aligned with the estimated DT-MRI. Information on the fiber architecture (i.e., any

directional data such as DT-MRI or corresponding DWI) is purposely omitted from the reg-

istration process in order to avoid introducing any bias in the study of the fiber variability.

Second, each myocardium is registered to a reference image using solely the b=0 images and

the myocardium masks. Third, the reference image is deformed toward the morphological

average of all hearts by repeating the second and this third step iteratively until convergence.

Fourth, and last, the resulting deformation fields computed from the registration process are

used to warp all tensor fields to the morphological atlas (Fig. 3.2).

Myocardium Segmentation

Due to the noisy nature of the available images, the boundary between the myocardium and

the surrounding gel can not be captured with a simple thresholding segmentation. This is

in contrast with the canine dataset used in (Helm et al., 2005a,b; Helm, 2005; Sundar et al.,

2006; Peyrat et al., 2007; Peyrat, 2009; Peyrat et al., 2007) where the myocardium was

clearly outstanding from its background. A semi-automatic method has thus been designed

with minimal user interaction in mind. The Graph Cut algorithm (Boykov and Jolly, 2000)

has been chosen for its efficiency and ease of use. The following details are provided for

reproducibility of the results. An underlying 3D graph is constructed from a 3D image and

a global optimal solution partitions the graph into an object and a background. The graph

edges between neighboring pixels, say p and q with intensities ip and iq, are weighted with

wp,q = exp(−(ip − iq)2/2σ2), where σ is a penalizing term (e.g., the standard deviation of

intensity differences). By setting different weights on both directions, boundaries from dark

objects to bright backgrounds (e.g., dark myocardium within bright gel) can be favored (or

vice versa, for bright objects on dark backgrounds). A directional edge from a dark pixel p

to a bright pixel q (i.e., ip < iq) is privileged when its weight is wp→q = λwp,q with λ < 1,

while wq→p = wp,q remains the same. Two special nodes are added in the graph, a source

representing the object and a sink representing the background. The algorithm needs only
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a few seed points, connected to the two special nodes, in the object and in the background.

The Graph Cut algorithm finds a global optimal cut separating the nodes connected to the

source from those connected to the sink, thus segmenting the object from its background.

Fast interactions are also possible to correct any missed segmentation. Further details are

available in (Boykov and Jolly, 2000). In our workflow, the user marks on any 3D slice of a

b=0 image a few points in the left ventricular and in the right ventricular blood pools. From

these marks, three automatic 3D binary segmentations are performed:

• Finding the Heart : A graph is constructed from the whole image and the heart, includ-

ing the blood pool, is isolated from its background using the marked points as object

seeds and using the points (found automatically) lying on a sphere surrounding the ini-

tial marked points (a sphere large enough to be outside the heart) as background seeds.

A boundary from a dark object (the dark myocardium) to a bright object (bright gel)

is privileged with λ = 0.95 when ip < iq.

• Finding the Myocardium: A smaller graph is constructed from the previous heart mask

and the myocardium is outlined from the blood pool using the initial marked points as

background seeds and using the voxels lying on the inner boundary of the heart mask

as object seeds. Here again, edges from dark to bright are privileged with λ = 0.95.

• Differentiating the Ventricles : A graph is constructed from the myocardium mask and

the blood pool is partitioned into the left and the right sides using the initial marked

points in the left and in the right ventricles as object and background seeds. As both

ventricular fillings have similar intensities, directional edges are identical (i.e., λ = 1).

This strategy ensures a topologically valid myocardium mask. Indeed, the first two graph

cuts correspond to the epicardium and the endocardium and isolate the myocardium with

no unconnected pieces while guaranteeing a mask of at least one voxel thick. Holes are thus

not possible across the myocardial wall which is really thin in the right ventricle. From the

generated binary masks, a 3D segmented image is created with four labels: background, left

and right ventricles, and myocardium. The labeled images are shown on Fig. 3.5.

Heart Registration

The pairwise registrations of N hearts, {Ii}i=1,...,N , to a reference image, Iref , give the dif-

feomorphic transformations, {φIi→Iref}i=1,...,N , required for the warping of the tensor fields.
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Fig. 3.1 shows three hearts before and after registration. To obtain a better registration and

a fast convergence, the registration is performed in three steps:

• Ventricle Rigid Alignment : First, the labeled images are reoriented by aligning the

centers of mass of each ventricle. A block matching algorithm (Ourselin et al., 2000)

refines this rigid registration.

• Mask Non-rigid Registration: Second, the aligned labeled images are transformed using

a nonrigid registration (Vercauteren et al., 2008; Mansi et al., 2010).

• b=0 Non-rigid Registration Refinement : Third, and last, the previous transformation

initializes the nonrigid registration of the masked b=0 images where only the myocardial

regions are considered.

The pairwise registrations are performed with the Symmetric Log-domain Diffeomorphic

Demons (Vercauteren et al., 2008; Mansi et al., 2010). In this extension of the Diffeomorphic

Demons (Vercauteren et al., 2009b), the transformation φ is constrained to be in the one

parameter subgroup of diffeomorphisms with stationary velocity field by parameterizing φ

with the velocity field v, such that φ = exp(v). Thus, the Log-domain Diffeomorphic Demons

algorithm can be formulated as an alternate optimization scheme of the following energy with

respect to the velocity fields vc (hidden variable) and v:

E(Iref , Iflo, v, vc) =
1
σ2
i
� Iref − Iflo ◦ exp(vc) �2

+ 1
σ2
x
� log(exp(−v) ◦ exp(vc) �2 + 1

σ2
T
� ∇v �2,

where σi,x,T are penalizing terms, Iref , a reference image, Iflo, a floating image, v, the

velocity field such that Iflo ◦ exp(v) ≡ Iref , and the velocity field vc, a hidden variable whose

exponential is called the correspondence. The optimization of this energy is implemented in

(Vercauteren et al., 2009b) with two consecutive smoothing steps which use two parameters.

Both are widths of smoothing kernels, one for the smoothing of the update field, σKfluid
= 1.4,

and has a fluid behavior, and the second is for the smoothing of the displacement field,

σKdiff
= 1.0, and has an elastic behavior.

Since the Demons algorithm is based on a sum of squared differences (SSD) and applied to

MR images, whose intensities are not standardized, a histogram matching with the reference
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image is performed before each non-linear registration of b=0 images.

We use here the symmetric version of the Log-demons (Vercauteren et al., 2008) where the

registration is independent from the choice of the reference image, i.e., φ−1
Iflo→Iref

= φIref→Iflo .

The forward and backward velocity fields, vIflo→Iref and vIref→Iflo , are computed independently

as detailed previously and then averaged.

The Log-domain Diffeomorphic Demons has the advantage of providing stationary veloc-

ity fields that can be averaged or negated to respectively average and invert corresponding

diffeomorphic transformations (Arsigny et al., 2006a). This property is particularly useful

and efficient in the iterative steps of atlas construction detailed in the following subsection

3.2.2.

Construction of the Morphological Atlas

The construction of the atlas follows Guimond’s et al. method (Guimond et al., 2000) where

the reference heart converges iteratively toward an average heart shape. In practice, only 5

iterations are required and the process is independent to the initial reference heart. At each

iteration (t+1), the reference heart from previous iteration (t), I(t)ref , is recomputed using the

average of all inverse transforms, i.e., I(t+1)
ref = 1

N

�N
i=1 Ii ◦ φ

Ii→I(t)ref
◦ φ

I(t)ref→I(t+1)
ref

to converge

to an average heart shape and intensities. The transformation updating the reference image

is φ
I(t)ref→I(t+1)

ref
= exp

�
1
N

�N
i=1 vI(t)ref→Ii

�
. This can be computed in the Log-domain using the

negated velocity fields: v
I(t)ref→Ii

= −v
Ii→I(t)ref

, where all v
Ii→I(t)ref

’s were previously computed

during the pairwise registration of all hearts to the reference image, thus: φ
I(t)ref→I(t+1)

ref
=

exp
�
− 1

N

�N
i=1 vIi→I(t)ref

�
. All steps and iterations of the atlas construction, the N pairwise

registrations (times the number of iterations), are fully automated with no user interaction

required. This is again in contrast with the method used in (Peyrat et al., 2007) which

required numerous user interaction with manual landmarks positioning.

Tensor Warping

The original tensor fields, {D̃(i)}i=1,...,N , associated with each b= 0 image, are warped to

the converged average heart shape using the final transformations {φIi→Iref}i=1,...,N . Since

diffusion tensors hold directional information, the warping of diffusion tensor fields includes

a tensor reorientation step. Among two most common reorientation strategies (Alexander

et al., 2001), the Finite Strain strategy is preferred to the Preservation of the Principal
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Direction for its preservation of geometric features (Peyrat et al., 2007). With the Finite

Strain strategy, the reorientation of diffusion tensors is defined as the rotational component

R = (AAt)−1/2A of the local linear approximation A = ∇φ−1 of the first derivative of the

inverse transformation φ at each voxel. In the next sections, the warped tensor fields are

referred as {D(i)}i=1,...,N such that D(i) = R · D̃(i) ◦ φIi→Iref ·Rt.

3.2.3 Statistics on Tensor Fields

Statistics on diffusion tensor fields is not straightforward due to the nature of the diffusion

tensor space. Indeed, the diffusion tensor space of symmetric positive definite matrices does

not have a vector space structure with the standard Euclidean metric (Jones et al., 2002).

Among valid metrics proposed in the literature (Pennec et al., 2006), the Log-Euclidean

metric (Arsigny et al., 2006b) is preferred for its simple and fast framework with a closed

form solution. Usual statistics, such as the mean and the covariance, are thus computed

with:

D = exp

�
1

N

N�

i=1

log(D(i))

�
(3.1)

Σ =
1

N − 1

N�

i=1

vec(∆D(i)) · vec(∆D(i))t, (3.2)

where ∆D(i) = log(D(i)) − log(D) and vec(D) = (D11,
√
2D12, D22,

√
2D31,

√
2D32, D33)t

is the condensed form of a diffusion tensor (redundant terms of the symmetric matrix

(Dij)i,j=1,2,3 are gathered). The mean diffusion tensor field, D, is computed from N warped

tensor fields {D(i)}i=1,...,N .

Fig. 3.5 shows the tractography of a few fibers from six subjects. Fig. 3.6 (b) shows the

tractography of the average diffusion tensor field. The variability of the diffusion tensors,

for a particular voxel, is embedded in the covariance matrix, Σ.

The measure of the global variability can be assessed with the trace of the covariance

matrix:

�
Trace(Σ) =

���� 1

N − 1

N�

i=1

�vec(∆D(i))�2 (3.3)
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In the Log-space, ∆D(i) = log
�
D(i)

�
− log

�
D
�
is equivalent to a ratio. The square root

�
Trace(Σ) expresses, therefore, a relative ratio of all diffusion tensors, {D(i)}i=1,...,N , to the

mean D.

The measure of local variability of the cardiac fiber structures relies on the analysis of the

eigenvectors of the mean diffusion tensor, v1,2,3 extracted from D. The standard deviations

of orientation differences, {σθi,j}i,j=1,2,3, between the coupled (vi,vj) axes around vk (i.e., the

variability of how the orthogonal axes (vi,vj) rotates around vk) are computed by projecting

the covariance matrix Σ onto the orthonormal bases {Wi,j}i,j=1,2,3:

σθi,j = arctan

�
1

2(λi − λj)2
[vec(Wi,j)

t · Σ · vec(Wi,j)]

� 1
2

(3.4)

where λ1,2,3 are the tensor eigenvalues in the Log-space, and the orthonormal bases are

defined with:

W2,3 =
�
v3 · v2

t + v2 · v3
t
�
/
√
2

W1,3 =
�
v3 · v1

t + v1 · v3
t
�
/
√
2

W1,2 =
�
v2 · v1

t + v1 · v2
t
�
/
√
2.

The statistics are performed directly on tensors, i.e., eigendecomposition is only necessary

on the average diffusion tensor field. There is thus no need to account for the sign ambi-

guity, which is inherent from the eigenvector extraction (Basser and Pajevic, 2000), when

computing statistics.

The variability of the tensor eigenvalues measures the coherence of the diffusion along the

three principal directions. The eigenvalues of all the tensors are expressed in the Log-space,

{λ(i)
1,2,3}i=1,...,N such that λ = log(d) where d is the eigenvalue in the Euclidean-space. Their

standard deviations σλ1 , σλ2 , and σλ3 , are the projections of the covariance matrix Σ onto

the orthonormal bases W1,1, W2,2, and W3,3:

σλi =
�
vec(Wi)t · Σ · vec(Wi), (3.5)
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where the orthonormal bases are defined with:

W1 = v1 · vt
1

W2 = v2 · vt
2

W3 = v3 · vt
3.

In the Log-space, the standard deviation σλ is a ratio of all eigenvalues expressed in the

Euclidean space, {d(i)}i=1,...,N , relative to their mean d.

3.3 Experimental Results

The statistical study of the human cardiac fiber architecture is presented here from a global

point of view, showing the variability within a population of the whole diffusion tensor, to a

more detailed approach, showing the variability of the principal directions of diffusion.

Due to many external factors, such as the temperature during acquisition (known to af-

fect the diffusion values), the tensor fields have different scalings among all hearts. The his-

tograms of the traces of the tensor matrices show significant disparities among a population.

Therefore, before using them for statistical analysis, all acquired tensor fields, {D̃(i)}i=1,...,N ,

are normalized using the modes of the histograms of the tensor traces for each patient. For

the i th patient:

D̃(i) ← D̃(i)

1
N

�N
j=1 mode

�
Trace(D̃(j))

�

mode
�
Trace(D̃(i))

�

The eigenvectors of the tensors fields remain unchanged with this normalization, and the

eigenvalues are equally scaled in order to be able to compare all tensor fields on a common

reference.

3.3.1 Fiber Variability

The global variability of the tensor field is measured with the square root of the trace of the

covariance matrix (Eq. 3.3). Its histogram shows a peak of variability at 13.2% (Fig. 3.8

(a,b)). It is important to note that this variability also includes acquisition and registration

errors. While certain areas, such as around the apex, might show a higher variability due to
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a less organized fiber structure, other areas, such as the right ventricle, show an increased

variability maybe due to registration errors. Indeed, large deformations in low resolution

images make the registration challenging.

The distributions of the standard deviations of the three eigenvalues are presented on

Fig. 3.8 (b). The primary eigenvalue is less variable than the two other eigenvalues. The

mode of the standard deviations (Eq. 3.5) of the primary eigenvalue from the one of the

statistical mean, expressed in percentage, is σλ1 = 5.35% compared to σλ2 = 6.35% and

σλ3 = 8.69%.

The orientation of the diffusion in human cardiac fibers has a different variability in each

principal direction. The variability around v1, v2, and v3, is measured with the rotation

of the tensor transverse (v2,v3), longitudinal (v1,v3), and equatorial (v1,v2) planes around

their normals. The standard deviations are formulated by Eq. 3.4. These angular variabil-

ities are presented in Fig. 3.9. The dispersion of the fiber orientation, v1, has a standard

deviation of rotation in the tensor longitudinal plane with a mode of σθ1,3 = 11.5◦, and in

the tensor equatorial plane, σθ1,2 = 13.0◦. The variability of the laminar sheet orientation is

described with the rotation of the tensor transverse plane around the fiber. Its standard de-

viation is σθ2,3 = 31.1◦. The laminar sheet structure is, thus, in humans, much more variable

than the fiber structure. This concurs with previous canine studies (Helm et al., 2005a,b;

Peyrat et al., 2007; Gilbert et al., 2007) where the fiber orientation (with σθ1,3 = 7.9◦ and

σθ1,2 = 7.7◦) is more stable than the laminar sheet orientation (with σθ2,3 = 22.7◦).

3.3.2 Transmural Distribution

The variability of the fiber orientation is also analyzed by measuring the distribution of the

helix angle (vertical angle, or helical pitch, of the fiber, Fig. 3.10 (a)) and the transverse

angle (horizontal angle of the fiber, Fig. 3.10 (b)) along the transmural depth. These angles

are defined to range from −90◦ to +90◦. For instance, an helix angle of −90◦ is a fiber

pointing toward the base of the heart, an helix angle of +90◦ is a fiber pointing toward the

apex, and a transverse angle of −90◦ is a fiber pointing toward the ventricular cavity, a

transverse angle of +90◦ is a fiber pointing outward the ventricular cavity.

(i.e., fiber pointing toward the base of the heart) to +90◦ (i.e., fiber pointing toward

the apex). A prolate ellipsoidal model of the heart (Nielsen et al., 1991) is fitted to the

morphology of the statistical atlas. The transmural variation of the fiber orientation is,
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Figure 3.8: Global variability : (a) Variability of the eigenvalues in the statistical atlas of
the tensor fields. The distribution of the primary eigenvalue standard deviations (expressed
in percentage) of all hearts have a mode of σλ1 = 5.35% from the statistical mean. The
second eigenvalues have a mode of σλ2 = 6.35%. The tertiary eigenvalues have a mode of
σλ3 = 8.69%. (b) The histogram of the global variability (

�
Tr(Σ), Eq. 3.3) (expressed in

percentage) of the whole diffusion tensor shows a mode of 13.2%.

thus, easier to measure with the mapped prolate ellipsoidal coordinates. The distributions

are presented in a joint histogram (Fig. 3.10 (c,d)) where the angle distribution, on the

vertical axis, is plotted against all transmural distances, on the horizontal axis.

The helix angle varies globally from −41◦(±26◦) (plus or minus its standard deviation) on

the epicardium to +66◦(±15◦) on the endocardium. The mode of the helix angle is −48◦ on

the epicardium and +64◦ on the endocardium. The range of the helix angle in humans, 107◦,

concurs with the results of a canine study (Peyrat, 2009) that showed a range of 110◦. It

appears to be consistent across the myocardium, as seen on Fig. 3.11, only the apex presents

a drastic difference. The helix angle is strongly correlated to the transmural distance with a

correlation factor of ρ = 0.831, i.e., this suggests a linear dependence between the helix angle

and the transmural location. This correlation also concurs with the findings of the histological

study (Greenbaum et al., 1981) of postmortem human hearts. Their sparse distribution of

helix angles varies from about −40◦ on the epicardium to about +40◦ on the endocardium.



64

Histogram of the fiber orientation variability in degrees 
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Figure 3.9: Standard deviation of the fiber orientation (expressed in degree). Top row of the
images and in the blue histogram: Variability of the laminar sheet orientation, σθ2,3 around
v1, with a mode at 31.1◦. Middle row and in the green histogram: Variability of the fiber
orientation, σθ1,3 around v2, with a mode at 11.5◦. Bottom row and in the red histogram:
Variability of the fiber orientation, σθ1,2 around v3, with a mode at 13.0◦.

The main difference between our results and the ones in (Greenbaum et al., 1981) (human

data) and (Peyrat, 2009) (canine data) is the absence of inflection points in the shape of

the helix angle distribution. This might be due to the low resolution of our dataset. On the

other hand, the transverse angle is less correlated with ρ = 0.286, i.e., it depends less on the

fiber location. The average transverse angles suggest indeed that the fibers are relatively

parallel to the epicardium with an average angle of +7◦(±31◦). The angles appear to be

more stable in the midwall with an average transverse angle of +9◦(±12◦). The transverse

angles are higher on the endocardium with +34◦(±29◦).

The delineation of the myocardium into 17 AHA segments (by the American Heart Asso-

ciation (Cerqueira et al., 2002)) in the left ventricle gives more details in each of these regions.

The angular variability is summarized in Fig. 3.11. The correlation factor of the helix angle

appears to be high across all myocardial segments. The apex (segment 17), however, shows

a low correlation factor of ρ = 0.355. A canine study (Peyrat, 2009) showed similar results

with a coherent helix angle, also with small dissimilarities across the segments.
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Figure 3.10: Transmural variability : (a) Illustration of the helix angle in a myocardial
segment (angle on the tangent plane of the epicardium, in green), (b) of the transverse
angle (angle on the horizontal normal plane, in orange), (c) joint histogram showing the
distribution of the helix angle, varying from −41◦ to +66◦, and (d) the transverse angle,
which shows fibers more parallel to the epicardium. The x axis is the transmural distance
from epicardium (left) to endocardium (right). The y axis is the helix or transverse angle.
The color is the probability distribution of an angle for a particular transmural distance. The
thick blues lines are the average angles across the wall, and the dashed lines are the one-
standard-deviation envelope. The correlation factor between the angle and the transmural
distance is given.

3.4 Limitations

The statistical analysis brings out a challenging task, still unsolved: distinguishing the true

variability of the fiber structure from errors due to acquisition and registration. The sta-

tistical analysis is likely to suffer from several limitations. Starting with the imaging of the

cardiac fibers, the choice of the acquisition protocol affects the image resolution and noise.

It was shown in (Frindel et al., 2007) that among a panel of acquisition protocols applied

specifically to human heart ex vivo DWI with a comparison of different sets of directions
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Figure 3.11: Joint histograms showing the distribution along the transmural depth of (a) the
helix angle and (b) the transverse angle of the human cardiac fibers, from the epicardium
(left side of histogram) to the endocardium (right side of histogram), in the 17 AHA segments
of the left ventricle. The thick blue lines are the average angles across the wall, and the light
gray lines are the one-standard-deviation envelope. The correlation factor between the angle
and the transmural distance is given for each segment.
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and repetitions, the use of 12 directions with 4 repetitions gives for ex vivo the best results

in terms of fiber direction coherence, while only 6 directions are preferred in (Hasan et al.,

2001). Using 48 unique directions might for instance provide a better angular resolution

in addition to a better signal to noise ratio. The imaging protocol described in (Frindel,

2009; Frindel et al., 2009) shows that the peak signal-to-noise ratio during acquisition of

the dataset is 16.44 dB. The variability due to acquisition can be assessed more precisely

by imaging several times the same heart, or with bootstrapping resampling methods (Jones,

2008; Hasan et al., 2992; Pajevic and Basser, 2003) when the number of acquisitions is lim-

ited. Our results include these inherent uncertainties and can be further refined with more

precise acquisition schemes. The variability study can also be limited by a partial volume

effect which is enhanced in the presence of larger voxel sizes. For instance, the myocardium

in our dataset (which has a resolution of 2mm3) appears as 6 or 7 voxel wide. The spatial

resolution was mostly limited due to time constraints. Indeed, the hearts had to be imaged

soon after death within a limited amount of time before being given back for autopsy in its

original state. Additionally, the lack of fixative or any solutions to prevent contracture may

have influenced the fiber architecture. Nonetheless, our framework is independent of the

acquisition protocol and our results can be refined in the future with any improved diffusion

tensor imaging protocol.

The method used to construct the atlas also has limitations. For instance, the segmen-

tation of the myocardium has not been designed to remove the few voxels representing the

fat lying on the myocardium. This is for instance observed in subject 1 (Fig. 3.5) where

darker voxels surrounds part of the myocardium. Another limitation comes from the large

variability in the heart shapes among a population, which makes the registration a challeng-

ing step with the presence of large deformations. This is for example particularly true in

the right ventricular and apical regions. The Diffeomorphic Demons, guaranteeing smooth

direct and inverse deformation fields, were chosen for this reason. Although no ground truth

is available to assess the registration accuracy, the Dice metrics between the myocardium

masks of all subjects and the atlas (defined as the ratio of intersection to addition set:

2 (|S| ∩ |T |) / (|S|+ |T |), with |S| and |T | being mask volumes), which range from 0.86 to

0.88, can provide a certain confidence that there is a good boundary overlap between all

registered hearts and the atlas. Moreover, the statistical study is currently limited (Young,

1978) by the number of available hearts. Since human hearts classified as healthy are ex-
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tremely difficult to obtain, we chose to use the maximal number of hearts available to us.

Our analysis on the variability of the fiber architecture is thus limited by the inherent errors

due to acquisition and registration.

3.5 Discussion and Conclusions

The work reported in this paper provides the first statistical atlas of the human cardiac fiber

architecture that enabled a quantitative analysis of the fiber variability among a healthy

population. The statistical atlas has been constructed from 10 ex vivo hearts with a method

minimizing user interaction. The hearts were nonrigidly registered by purposely omitting any

micro structure information (e.g., fiber orientations) in order to avoid a bias in the statistical

study of the fiber architecture (e.g., similarly to studying the variability of fingerprint lines,

we would not include information on these line orientations, as this is exactly what we

want to measure; we want to see how variable the line orientations are in different regions

and across a population; registering directly these fingerprint lines would in fact remove,

or lessen, any variability in their orientations). The transmural walls were all registered

in a similar manner, all based on the myocardium shapes. The spatial variability of the

fiber architecture were thus preserved in the registered tensor fields. The deformation fields,

obtained while constructing the morphological atlas of the heart, were used to warp all tensor

fields, with the finite strain reorientation strategy, to the atlas reference. Another approach

would have been to warp directly the diffusion-weighted images and reestimate the diffusion

tensor. This approach would have required a strategy for the local deformation of the

gradient orientations which is also not necessarily trivial. A mean tensor field was computed

using the Log-Euclidean metric. The variability of the mean tensor field is expressed in

a covariance matrix. Global statistics on the whole diffusion tensor highlights myocardial

regions of high variability. The diffusion tensors in the compact left ventricular myocardium

remain stable with a global variability of 13.2%. The statistical framework provides means

to study the variability of the eigenvectors in specific directions, where, the fibers are shown

to vary with ±11.5◦ in the v1,3 plane and with ±13.0◦ in the v1,2 plane. Their variability is

coherent across the whole myocardium. The secondary and tertiary eigenvectors, assumed

to be associated with the laminar sheet normal, are, however, less stable compared to the

fiber structure with a variability of ±31.1◦. This concurs with a previous canine study

(Peyrat et al., 2007). Such high variability either shows that the laminar sheet structure is
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less organized than the fiber structure (e.g. the presence of two populations of orthogonal

laminar sheets randomly distributed over a given heart (Helm, 2005; Lombaert et al., 2011d)),

or not be present everywhere. Additionally, the distribution of the actual angular values

of the fiber orientation has been studied across several myocardial segments. The helix

angle spans from −41◦(±26◦) on the epicardium to +66◦(±15◦) on the endocardium. The

angular transmural distribution shows an helix angle highly correlated with the transmural

depth. The histological study of postmortem human hearts (Greenbaum et al., 1981) similarly

observe a transmural correlation of the helix angle. Differences in the shape and in the

variance of the helix angle distribution between our results and the ones in (Greenbaum et al.,

1981; Peyrat et al., 2007) might be due to our coarser resolution. The average transverse

angle shows that the cardiac fibers are relatively parallel to the myocardium epicardium.

The small deviations from the average transverse angle might also be due to an underlying

spiral architecture of the fibers, where fibers tracked initially on the epicardium create a

spiral around the ventricle and find themselves at last to be on the endocardium. This

change might occur in the apical sections where the deviations from zero are more apparent

than in the basal sections.

The statistical study of the fiber architecture which plays a key role in mechanical and

electrical cardiac functions, gives a better understanding of the human heart by providing

the spatial distribution of fiber angles with their variations. These numbers will eventually

be refined with the availability of more ex vivo human hearts and with DT-MRI acquisitions

at higher resolutions. Moreover, the computation of the statistical atlas is simplified with the

developed semi-automatic method. The human statistical atlas will thus be easily refined

with future acquisitions of healthy hearts. Larger multi-population studies involving many

hearts will likewise benefit from our method. For instance, cardiac pathologies could be char-

acterized by comparing the fiber architecture against this atlas of healthy hearts (Lombaert

et al., 2011c). A more appropriate comprehension of the human cardiac fiber architecture is

also relevant to the creation of more elaborate computational models that could for instance

be used for the planning of radiofrequency ablation (RFA) and cardiac resynchronization

therapy (CRT), or to fiber-based surgical treatments (Cirillo, 2009; Cirillo et al., 2010),

which offer a promising perspective to the restoration of failing ventricles. The use of this

human statistical atlas could also ideally improve the diagnosis and the follow-up of cardiac

diseases related to fiber structural defects. With ongoing research in in vivo DT-MRI or in
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Shear Wave Imaging (Lee et al., 2012), extrapolation of sparse in vivo acquisitions with an

accurate human atlas could pave the way for more personalized in vivo imaging (Toussaint

et al., 2010) and cardiac modeling.
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CHAPTER 4 FOCUSR:

FEATURE ORIENTED CORRESPONDENCE

USING SPECTRAL REGULARIZATION – A METHOD FOR

ACCURATE SURFACE MATCHING

Herve Lombaert1,3, Leo Grady1, Jonathan R. Polimeni2, Farida Cheriet3

Presentation

This chapter presents the article ‘‘FOCUSR: Feature Oriented Correspondence using Spectral

Regularization – A Method for Accurate Surface Matching” (Lombaert et al., 2012a) submit-

ted to IEEE PAMI (Transactions on Pattern Analysis and Machine Intelligence), sent on

January 6th, 2012, and currently under revision. An initial article (Lombaert et al., 2011a)

was published in the conference IPMI (Information Processing in Medical Imaging) held

in Irsee, Germany, in July 2011. The objective of this article is to develop a new approach

based on spectral correspondence for brain surface matching. This is a joint work between
1Siemens Corporate Research, Princeton, NJ, USA; 2Martinos Center at Harvard

Medical School, Cambridge, MA, USA; and 3École Polytechnique, Montreal, Canada.

Abstract

Existing methods for surface matching are limited by the trade-off between precision and

computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex

correspondence that uses direct matching of features defined on a surface and improves it

by using spectral correspondence as a regularization. This algorithm has the speed of both

feature matching and spectral matching while exhibiting greatly improved precision (distance

errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to

calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics

of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is

an improved spectral correspondence method that nonrigidly deforms spectral embeddings.

We provide here a full realization of spectral correspondence where virtually any feature can

be used as additional information using weights on graph edges, but also on graph nodes

and as extra embedded coordinates. The full power of FOCUSR is presented in a real case
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scenario with the challenging task of brain surface matching across several individuals. Our

results show that combining features and regularizing them in a spectral embedding greatly

improves the matching precision (to a sub-millimeter level) while performing at much greater

speed than existing methods.

4.1 Introduction

Mesh correspondence is a key step in many applications of computer vision and whose preci-

sion and speed are crucial. It is at the core of studies on shape variability and on object and

motion analysis. In the medical field, precision is essential and a fast method enables investi-

gations on large studies between organs or individuals. The challenge of shape matching is to

find the dense correspondences mapping all points on one surface to their equivalent points

on a second surface. This task becomes particularly arduous when the matching involves

highly convoluted surfaces or two surfaces representing different poses of an articulated ob-

ject. Early solutions (Besl, 1988) to this problem, aligning surface models, were limited to

rigid transformations (Rusinkiewicz and Levoy, 2001), or relied on fiducial markers placed

on the surfaces (Audette et al., 2000; Schreiner et al., 2004). Methods based on deformable

surfaces (Shelton, 2000; Hahnel et al., 2003; Zhang et al., 2008b) could find nonrigid trans-

formations. However, to keep these approaches tractable, prior knowledge on the underlying

deformation between surfaces (Lin, 1999; Blanz and Vetter, 1999), or the use of control points

(Allen et al., 2003; Sumner and Popović, 2004), is often required to restrain the search do-

main. Rather than optimizing for a deformation, other approaches would directly solve for

the correspondence map (Anguelov et al., 2004), avoiding iterative deformations of the sur-

faces. Moreover, these surfaces may be correlated with measurable features other than their

explicit mesh geometry. For example, the method used in FreeSurfer (Fischl et al., 1999),

a leading tool for brain surface reconstruction and matching, uses geometric features such

as cortical curvature and sulcal depth (the depth in the cortical folding pattern) (Lohmann

et al., 2008) to drive the warping of one brain surface into another surface. However, de-

spite its precision, FreeSurfer suffers from a substantial computational burden, taking hours

to compute a correspondence map between typical brain surface models consisting of hun-

dreds of thousands of vertices. Needless to say, the incorporation of additional features is a

convenient aspect for a matching algorithm.

A direct method of matching two surfaces based on features (e.g., the geometry of the
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cerebral cortex in brain matching, or texture intensities for articulated object matching) is

to treat the available features as characteristic signatures which can be used to identify each

vertex within the surface mesh. With these signatures, a vertex on one surface could be

mapped to the vertex on a second surface which most closely resembles the same character-

istic features (e.g., by computing a Euclidean distance between the feature vectors). This

feature matching technique would have the merits of being fast (e.g., computable within

Voronoi cells) and flexible enough to allow any set of features to drive the matching. Unfor-

tunately, this feature matching technique would completely ignore the spatial organization

of the surface vertices and result in a highly non-smooth mapping between the surfaces.

Our approach to the matching problem seeks to preserve the speed and flexibility of direct

feature matching and address the problem of smooth mapping by using an improved spectral

correspondence as a regularization.

Spectral correspondence (Chung, 1997b) utilizes a graph (mesh) spectrum, which is the

set of Laplacian eigenvalues and eigenvectors (illustrated on Fig. 4.1), to produce a vertex

correspondence between two graphs (meshes). The key utility of spectral correspondence in

our context is to provide a spatial regularization on the correspondence map. This regular-

ization is enabled by the fact that the low-frequency eigenvectors (those corresponding to

small eigenvalues) are spatially smooth, as they represent low-frequency harmonics (Grady

and Polimeni, 2010). Put differently, all neighboring nodes will have a small change in the

values of these harmonics, meaning that a correspondence driven by these harmonics will

map neighboring nodes to neighboring locations in the range space. The value of the har-

monics at each vertex are known as the spectral coordinates of the vertex. At its core, our

technique for spectral regularization is to supplement the direct feature matching technique

described above by extending the vertex signature to additionally include the spectral co-

ordinates of each vertex. Matching vertices are revealed with similarities in such extended

signatures. Fortunately, including the spectral coordinates in our matching maintains the

speed and flexibility of the simple technique. We call our method FOCUSR for Feature

Oriented Correspondence Using Spectral Regularization.

Spectral methods have been used in many fields, such as in the segmentation and reg-

istration of shapes in images (Reuter, 2009), in the indexing of structures (Shokoufandeh

et al., 2005), or in the clustering of data (Shi and Malik, 2000; Bengio et al., 2004; Bach

and Jordan, 2004). Their use in shape matching is often limited to hierarchical matching
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(e.g., matchings of limbs in body models, or of large surface areas). Few medical appli-

cations of spectral methods exist and are targeted to brain studies in order to study the

geometrical patterns of the anatomical structures of the brain such as the cortical folds (Ni-

ethammer et al., 2007; Reuter et al., 2009; Shi et al., 2009, 2010) and with the smoothing

of cortical surfaces (Anqi et al., 2006). Spectral coordinates have also been used directly

for graph partitioning (Chan et al., 1995). Umeyama (Umeyama, 1988) and later Scott and

Longuet-Higgins (Scott and Longuet-Higgins, 1991) pioneered the use of spectral methods

for the correspondence problem. Shapiro and Brady (Shapiro and Brady, 1992) compared

ordered eigenvectors of a proximity matrix to find correspondences. Their work served as

a basis for future spectral correspondence methods. Variants include the use of different

proximity matrices using different kernels, the use of the adjacency matrix, shock graphs

(Pelillo et al., 1999; Siddiqi et al., 1999), different normalized Laplacian matrices, or the use

of Multi-Dimensional Scaling (Schwartz et al., 1989; Elad and Kimmel, 2003; Wuhrer et al.,

2009; Bronstein et al., 2006, 2007). Recent surveys covering the use of spectral methods in

the past fifteen years are available in (van Kaick et al., 2011; Zhang et al., 2010). Mateus et

al. (Mateus et al., 2008) proposed an original unsupervised spectral method with an alter-

native to eigenvalue ordering based on eigenvector histograms and refining the eigenvectors

alignment with a probabilistic point matching within the framework of the EM algorithm

(Carcassoni and Hancock, 2003). Jain and Zhang (Jain and Zhang, 2006) approach the

eigenvector alignment problem with a nonrigid deformation based on Thin Plate Splines.

Spectral correspondence has presented several difficulties that act as a barrier to its

widespread adoption. Specifically, when computing the eigenvectors for two surfaces, the

signs of the eigenvectors need to be aligned (the eigenvectors are ambiguous to sign), the

eigenvectors sometimes require reordering (due to near algebraic multiplicity of the eigenval-

ues causing ordering changes of the spectral coordinates). Additionally, spectral matching

methods typically start with a rigid alignment of the eigenvectors to account for translation

and scaling of the spectral coordinates. Small variations however exist in the spectral co-

ordinates (due to non perfect shape isometry, e.g., local expansion and compression within

meshes). There is therefore a need for robust nonrigid point correspondence between spec-

tral coordinates. Furthermore, the use of vertex features has not been fully realized in

previous work on spectral correspondence, which have incorporated these features only to

produce edge weights (measuring changes between neighboring features) rather than as node
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weights (using the features themselves). We address and improve all these aspects of spectral

correspondence while additionally using the spectral coordinates to provide a smooth regu-

larization of the simple feature matching technique. This work makes several contributions

to dense surface matching:

• Extending simple surface feature matching with spectral regularization. The integra-

tion of spectral components in extended signatures alongside feature characteristics

provides a natural means of regularization (i.e., matching extended signatures reveal

matching vertices).

• Nonrigid alignment of the multidimensional embeddings (i.e., of the extended signa-

tures, rather than only the spectral coordinates).

• The weighting of nodes in the graph Laplacian, which controls the influence of each

node during correspondence.

• A global approach to handle automatically the sign ambiguity and the rearrangement

of the graph Laplacian eigenvectors.

After detailing FOCUSR in the next section, we show in controlled experiments that it out-

performs both direct feature matching and conventional spectral correspondence. Firstly, we

demonstrate that nonrigid alignment of the spectral coordinates improves the direct match-

ing method, while showing at the same time that FOCUSR can be used with a variety of

generic meshes. We chose deformed meshes of galloping animals and changing facial expres-

sions matched with their references. The comparisons of the correspondence maps with their

exact ground truth reveal minimal errors. Secondly, we expose the full power of FOCUSR

with the use of additional features and assess its precision with the challenging task of brain

surface matching. Indeed, while the sulcal and gyral folding pattern of the human cerebral

cortex are somewhat stable across individuals, some geometric variability does exist (Hinds

et al., 2008), making the direct use of the folding geometry unsuitable for surface matching.

This application to the problem of brain matching provides a platform for FOCUSR where

the use of additional features available in the brain data—such as cortical Gaussian curva-

ture, sulcal depth, and cortical thickness—can improve the matching precision. We show

that FOCUSR produces results in a fraction of the time required by FreeSurfer while main-

taining the same level of precision. We believe that this large gain in processing speed would
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make possible new brain studies that were previously limited by computational burden, or,

more generally, studies on meshes that wish to use non-standard features for driving the

correspondence.

4.2 Methods

We begin our exposition of FOCUSR by detailing a simple technique for feature match-

ing that does not preserve smoothness of the mapping between surfaces (Fig. 4.2 a). We

then describe how spectral coordinates can be used to regularize feature matching. We re-

examine and improve each step in the spectral correspondence process to overcome previous

limitations with spectral correspondence. The algorithm is summarized in Fig. 4.3. Code

implementation in Matlab is available at http://step.polymtl.ca/~rv101/focusr1.

4.2.1 Direct Feature Matching to Provide Vertex Correspondence

Assume that we have two graphs, G1 = {V1,E1} and G2 = {V2,E2} (with vertices and edges)

such that a correspondence φ : vi ∈ V1 → vj ∈ V2 is desired. Note that we do not require that

|V1| = |V2| or |E1| = |E2| (i.e., meshes can have different sizes and structures). Consequently,

there is no guarantee that the mapping is one-to-one and may not be invertible. We will use

the terms node, vertex and point interchangeably to describe a member of V1 or V2. Given a

set of K features Xi at every node vi ∈ V1, and a set of K features Yj at every node vj ∈ V2,

our goal is to use these features to produce a correspondence φ.

A direct feature matching approach to producing this correspondence would be to set

φ(vi) = min
vj∈V2

||Xi −Yj||, (4.1)

which could be computed quickly by precomputing a Voronoi tessellation of the range space.

Unfortunately, this simple technique has several inadequacies. Specifically, the technique

based on the Voronoi tesselation does not properly account for global changes in the feature

space (e.g., due to a global scaling or translation), nor does it utilize the neighborhood

structure provided by the edge sets in any way (i.e., there is no spatial regularity to the

mapping in the sense that neighbors in the domain are unlikely to remain neighbors in the

range).

1This private link is going public after publication
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Figure 4.1: Two frames from a sequence of a galloping horse, galloping camel, galloping
elephant, head poses, and two human brain surfaces. Each row shows the first five spectral
components (eigenmodes) of a model, given by the eigendecomposition of the graph Laplacian
of the model (eigenmodes have been reordered and their sign adjusted, so both sets are
equivalent). The coloring indicates the value of a spectral component (the eigenmodal value
between −1 and +1) for each vertex over the surface, i.e., the set of color values within a
row corresponds to the 5D spectral coordinates of all vertices.
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(c) Using FOCUSR in its simplest setting(nonrigidly deformated embeddings)

Figure 4.2: Direct matching (coloring indicates correspondence, and links and circles indicate
matching of leg extremities, crosses indicate ground truth) : (a) Finding closest points in
space: this naive correspondence map is computed by finding for each point of model X its
closest point in space of model Y (match X with Y ). This strategy generates an inconsistent
correspondence map. (b) Finding closest points in the spectral domain: the correspondence
map is computed by finding for each point of model X its closest spectral equivalent in
model Y (match X with Y instead of X with Y ). Even though the meshes are not aligned
in space (they are translated), their spectral embeddings (red is X , blue is Y , both use
three eigenmodes for 3D visualization) are almost perfectly superimposed in the spectral
domain. (c) FOCUSR in its simplest setting (with no additional features) : Our method
performs matching in the spectral domain (with lower error over the surface) and improves
the alignment of the spectral embeddings.
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Global changes in the feature space can be accounted for by using a more sophisticated

point correspondence than what is described in Eq. (4.1). Robust Point Matching (Chui,

2003) with a Thin Plate Spline-based transformation is often used for 2D or 3D registration.

However, with this approach the final registration depends on the number and choice of the

control points. A more recent approach to the point correspondence problem is the Coherent

Point Drift (CPD) method (Myronenko and Song, 2009) which is fast and demonstrates

excellent performance. To summarize this method, the registration is treated as a Maximum

Likelihood problem where Gaussian Mixture Model centroids are fit into a point set. There

is no assumption on the global transformation between point sets. Instead, the evolution

of the transformation is constrained with a motion coherence (Myronenko and Song, 2009).

The CPD algorithm offers the possibility to perform matching on a subset of the points

(for increased speed) while computing the transformation in the continuous domain (i.e.,

the continuous transformation, found with only a subsample of V1 and V2, can be applied

on all points of V2 and thus find a dense matching between V1 and V2). Furthermore, each

feature (i.e., each coordinate of Xi or Yj) can be weighted in order to accentuate or reduce

its influence.

Although CPD provides a method to account for global transformation in the feature

space between the two graphs, it is still necessary to incorporate spatial regularity into the

mapping such that neighboring points in V1 map to neighboring points in V2. Note that a

strict neighbor-to-neighbor mapping is only possible when the two graphs are isomorphic.

Since we target a more general scenario, we want to account for neighborhood relationships

by promoting a correspondence that maps nearby nodes in V1 (based on E1) to nearby nodes

in V2 (based on E2). Our strategy for promoting spatial regularization is to supplement Xi

and Yj with the spectral coordinates at nodes vi and vj before applying the CPD point corre-

spondence. The values of the spectral coordinates over a few sample surfaces are illustrated

in Fig. 4.1. The fundamental difference between the use of X and Y as general feature vec-

tors (illustrated with 3D coordinates (x, y, z)) and as spectral coordinates is demonstrated

in Fig. 4.2 b. The low-frequency spectral coordinates are dependent on the geometry of the

surface, and these coordinates are effectively more stable across articulated shapes or highly

deformable shapes, i.e., normalizing these shapes in a same referential. Additionally, they are

known to be spatially smooth (see below) in accordance with the low-frequency harmonics

of an elastic surface (Grady and Polimeni, 2010). In the next section we will review spectral
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Figure 4.3: FOCUSR overview for matching a pair of surfaces. First, we build a graph out
of each surface mesh and set the graph edge weights and graph node weights to construct
the Laplacian matrix. The eigendecomposition of each graph’s Laplacian matrix reveals its
spectral components. Second, we reorder the spectral components by finding the optimal
permutation of components between the pair of meshes. Third, regularization is performed
by matching the spectral embeddings. Finally, corresponding points are found with closest
points in both spectral embeddings, and the final correspondence map is diffused.

coordinates, and demonstrate improvements to traditional methods for solving some of the

difficulties associated with comparing spectral coordinates from two graphs.

4.2.2 Spectral Coordinates

We may define the |V | × |V | adjacency matrix W of a graph in terms of affinity weights

(see (Grady and Polimeni, 2010)), which are derived from a given distance metric dist(i, j)

between two neighboring vertices (vi, vj). The elements of the weighted adjacency matrix

are given by

Wij =






1/ dist(i, j) if ∃ eij ∈ E ,

0 otherwise
(4.2)

The matrix W provides a weighting on the graph edges derived from the given distance

metric. The distance may be derived from the geometry via the vertex coordinates x =

(x, y, z)T embedded in space (e.g., dist(i, j) = �xi − xj�, the distance between nodes vi and
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vj), from feature vectors (e.g., dist(i, j) = �Fi − Fj�, where F = (f (1), . . . , f (K))T for K

features), or both. The more general edge weighting between vertices vi and vj uses the �2

norm between extended vectors:

wi,j = dist(i, j) = �(xi, γFi)− (xj, γFj)� , (4.3)

where (x, γF) is the concatenation of the 3D coordinate values x = (x, y, z)T with the K

feature values F = (f (1), . . . , f (K))T. The K ×K diagonal matrix γ contains the K weights

controlling the influence of each feature. To compensate for the different scalings of the

feature values, each feature vector f (k) is normalized with respect to the range of the 3D

coordinate values x (i.e., feature values are normalized such that min(f (k)) = min(x) and

max(f (k)) = max(x)).

The general Laplacian operator on a graph was formulated in (Grady and Polimeni, 2010)

as a |V |× |V | matrix with the form:

L = G (D −W ) , (4.4)

where D, the degree matrix, is a diagonal matrix defined as Dii =
�

j Wij, and G is the

diagonal matrix of node weights. Typically in spectral correspondence G is set to identity

G = I , or to G = D−1. However, we propose here to replace the default assignment G = D−1

with any meaningful node weighting. In particular, we propose to use a function of feature

magnitudes to establish the (positive-valued) node weighting based on the assumption that

nodes with significant features are of more interest to match precisely (i.e., nodes with large

weight have a greater influence on the spectral correspondence than low-weight nodes). For

example, if half of the nodes in a graph had a large weight and the other half had a small

weight, the Laplacian eigenvectors would closely resemble the eigenvectors of the large-weight

subgraph. The diagonal of matrix G contains the general node weights for each vertex vi:

wi = Gii =
1

di
· 1

K�

k=1

γiρ
�
f (k)
i

� , (4.5)

where di is the node degree (i.e., Dii), γ is the previously mentioned feature weights, and

ρ(·) is a function that enforces positive values (e.g., ρ(f) = f 2 or ρ(f) = exp(f)). The
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denominator in Eq. (4.5) contains the sum of the influences of each feature on vertex vi. We

used ρ(f) = exp (f) to promote correspondence between nodes having the largest feature

components (which we assume indicate greatest significance).

The right eigenvectors of the Laplacian matrix comprise the graph spectrum X = (x(1),

x(2), . . . , x(n))T, where n = |V | is the number of nodes. The values over surfaces for the

five lowest frequency eigenvectors are shown on Fig. 4.1, and illustrates the stability of these

eigenvectors between articulated or highly deformable shapes. Each eigenvector2 x(u) is

a column matrix with n values, and represents a different (weighted) harmonic on a mesh

surface that corresponds to an inherent property of the mesh geometry. This is in comparison

with extrinsic properties such as the spatial location of points (i.e., point coordinates vary

when the model takes a different pose). The n values (x(1)
i , x(2)

i , . . . , x(n)
i ) give the spectral

coordinates of node vi (i.e., a coordinate in a spectral domain). The first eigenvector x(1)

is the trivial (uniform) eigenvector, and the eigenvectors associated with the lower non-

zero eigenvalues (e.g., x(2),x(3)) represent coarse (i.e., low-frequency) intrinsic geometric

properties of the shape. The first of them x(2) is called the Fiedler vector (Chung, 1997b),

while eigenvectors associated with higher eigenvalues (e.g., x(n−1),x(n)) represent fine (high-

frequency) geometric properties. For example, in Fig. 4.1, the values of x(2) increase along

a virtual centerline depicting the global shape of the models (a coarse intrinsic property),

while the values of x(5) depict finer details of the models.

To illustrate why spectral coordinates corresponding to small eigenvalues transition smoothly

and slowly across neighboring nodes, consider the Rayleigh quotient

λ =
xTLx

xTG−1x
=

�
eij∈E wij(xi − xj)2
�

vi∈V
1
wi
x2
i

. (4.6)

The minimum value of λ is the smallest eigenvalue for L. If the minimization of λ over

x is conducted in the space orthogonal to the eigenvector corresponding to the smallest

eigenvalue, then the minimum λ is the second smallest eigenvalue (the Fiedler value, in our

case). Put differently, all of the eigenvectors corresponding to the smallest eigenvalues have

small values of the Rayleigh quotient in Eq. (4.6). Examining the numerator of Eq. (4.6), we

see that neighboring nodes must have a small change in the spectral coordinate (eigenvector)

2In our notation x represents the 3D coordinate in space (i.e., x, y, z), and the superscripted x(i) represents
the ith spectral coordinate (i.e., the ith eigenvector of the graph Laplacian).
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x in order for the corresponding eigenvalue to be small. However, a small edge weight

indicates that the change in x across that edge may be large while still maintaining a small

numerator (and therefore a small eigenvalue). Consequently, the edge weights act to enforce a

smoother change between similar neighbors, but the spatial regularization is more relaxed for

mapping neighboring points which are dissimilar. Examining the denominator of Eq. (4.6),

we see that large node weights have the effect of reducing the influence of the node in the

denominator, effectively pushing the node to take a value that minimizes the numerator (i.e.,

the average of its neighbors). By pushing the node to minimize the numerator, the large

node weight effectively promotes maximal smoothness in the spectral coordinates at that

node.

Consequently, we use the node features to enforce more spatial regularity between similar

neighboring nodes (large edge weight) and to enforce more spatial regularity at unremarkable

nodes (nodes with small feature magnitude and small node weight). Ultimately, this use of

the node features to promote variable spatial regularization is designed to enforce a stronger

correspondence between key nodes (nodes with large feature magnitude) and to enforce

stronger spatial regularity between key nodes. In this manner, the key nodes (which are

similar in the two meshes) are matched strongly, while the remaining nodes are matched to

promote maximal spatial regularity.

4.2.3 Spectrum Ordering

Each node is represented with M � |V | spectral coordinates associated with the M smallest

(non-trivial) eigenvalues, i.e., the embedded representations for meshes X and Y are XM =

(x(2), . . . ,x(M+1))T and YM = (y(2), . . . ,y(M+1))T. Unfortunately, the spectral coordinates

of the two meshes may not be directly comparable as a result of two phenomena. First,

there exists a sign ambiguity when computing eigenvectors, i.e., if Ax = λx (the spectral

decomposition of A) then A(−x) = λ(−x), which requires checking that each corresponding

eigenvector in the two meshes has the same sign. Additionally, as a result of greater algebraic

multiplicity of an eigenvalue, it may be possible that the ordering of the lowest eigenvectors

will change, e.g., if two eigenvectors correspond to the same eigenvalue in both meshes,

then the solver may compute these eigenvectors in one order for the first mesh and in the

opposite order for the second mesh. A graph with an eigenvalue having algebraic multiplicity

greater than one indicates symmetry in the mesh. For large meshes, symmetries (and near
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symmetries) is a common problem and the eigenvectors must be reordered.

Our approach to the eigenvector reordering is to compare spectral coordinates at all

pairs of closest points between the two meshes. To speed up the reordering, all eigenvectors

are subsampled by randomly selecting a subset of N < |V | nodes (we used 500 nodes or

about 0.4% of the vertices in our experiments). The spectral coordinates are normalized to

the range [0, 1]. The pairs of closest points within these subsampled points determine the

correspondence map µ (i.e., vertex vi ∈ V1, on the first mesh, is closest to point vj=µ(i) ∈
V2, on the second mesh). Then, we simply compute for all corresponding points (vi ∈
V1 → vj=µ(i) ∈ V2) the squared difference between the coordinate values x(u)

i and y(v)µ(i). The

differences for all possible pairs of eigenvectors (u, v) are gathered in a M ×M dissimilarity

matrix C. The dissimilarity between eigenvector x(u), on the first mesh, and eigenvector

y(v), on the second mesh, is given by:

C(u, v) =
N�

i=1

�
x(u)
i − y(v)µ(i)

�2
.

The Hungarian algorithm may be used to find an optimal permutation of eigenvectors y(v)

that minimizes dissimilarity. In the same step we can remove the sign ambiguity by calculat-

ing the minimal dissimilarity between all x(u) and y(v), as well as between all x(u) and −y(v).

The cost matrix used in the Hungarian algorithm is thus Q(u, v) = min{C(u, v), C(u,−v)}.
After permutation π, any eigenvector x(u) corresponds with y(π(u)), and its permutation cost

Q(u) is stored for use in the spectral alignment.

To keep the notation simple, in the next sections we assume that the spectral coordinates

have been appropriately reordered and signed (i.e., XM and Yπ◦M will simply be denoted as

XM and YM such that x(u), on the first mesh, corresponds with y(u), on the second mesh).

4.2.4 Nonrigid Spectral Alignment

Once the reordering and sign adjustment of the eigenvectors have taken place, finding the

closest points in the spectral domain between embeddings X and Y generates a smooth

correspondence map (Fig. 4.2). However, these embedded representations contain slight

differences, mostly due to perturbations of the shape isometries such as small changes in

distances where the surface undergoes local expansion or compression between meshes. As

illustrated on Fig. 4.4, nonrigid differences in the spectral embeddings become even more
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(a) Before alignment (b) After alignment

Figure 4.4: Nonrigid alignment of the two spectra corresponding to two brain surfaces. For
visualization purposes, the first three eigenvectors (X(2), X(3), and X(4)) are used as 3D
coordinates (x, y, z). Red and blue are the control points used to align both spectra. Initial
spectra (a) before and (b) after final alignment.

severe in highly convoluted surfaces such as brain cortices. Spectral representations need to

be nonrigidly aligned.

Closest points in these nonrigidly aligned embedded representations would reveal corre-

sponding points in both shapes (i.e., in the M -dimensional space (the spectral domain), if

the point vi ∈ V1 with coordinates XM
i , is the closest point to vj ∈ V2 with coordinates YM

j ,

then vi corresponds to vj). It is at this point where Eq. (4.1) is extended by combining the

spectral coordinates, XM and YM , with the feature vectors, Fx = (f (1)x , . . . , f (K)
x )T for nodes

in model X, and Fy = (f (1)y , . . . , f (K)
y )T for nodes in model Y , to enable spatial regularization

in the correspondence map. The extended vectors of Eq. (4.1) becomes:

X = (cxXM , βFx), (4.7)

Y = (cyYM , βFy), (4.8)

where cx and cy are M ×M diagonal matrices that contain weights influencing each spectral

coordinate, and β is a K × K diagonal matrix containing the weights for each feature (to

emphasize or reflect confidence). Each feature is initially scaled, as in Eq. (4.3), to fit the

values of the Fiedler vector, x(2) (i.e., min(f (k)) = min(x(2)) and max(f (k)) = max(x(2))). The

weights c of the spectral coordinates takes into account the smoothness of an eigenvector

(measured by its eigenvalue λ(u)) and the confidence in the reordering (measured by the
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Figure 4.5: Diffusion of the correspondence map: a) The closest corresponding points on the
spectral embedding might not necessarily be coherent spatially, consequently, b) their spatial
coordinates are smoothed using a mean filter within the neighborhood structure, this moves
the corresponding points to regularized positions (H(yφ(i))), and, c) the final correspondence
map is reset by finding the closest nodes to these regularized positions.

permutation cost Q(u)). Specifically, the weight, c(u), of the uth spectral coordinate is:

c(u) = exp(−(Q(u)λ(u))2/2σ2), (4.9)

where σ is a normalization factor set to

σ = mean
�
Q(u)λ(u)

�
u=1···M . (4.10)

The alignment of these embeddings can be viewed as a nonrigid registration, X = φ(Y).

Fig. 4.4 shows the alignment challenge where the first three spectral components (x(2),x(3),x(4))

are used as 3D (x, y, z) coordinates for visualization purposes. The Robust Point Match-

ing (Chui, 2003) with a Thin Plate Spline-based transformation is often used for 2D or 3D

registration. However, with this approach, the final registration depends on the number

and choice of the control points. We apply the recent Coherent Point Drift method (Myro-

nenko and Song, 2009) which is scalable to N dimensions, fast, and demonstrates excellent

performance in this application.

To increase speed in FOCUSR, we take advantage of the property of the Coherent Point

Drift method that a continuous transformation derived from a subset of the points can be

applied to all nodes of the dense embeddings (i.e., interpolation). In our case, we subsample

X and Y by taking randomly a few points (in our experiments we chose 1% of the total

number of vertices, roughly 1000 points).
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Figure 4.6: Correspondences across animated sequences for a horse gallop (average error
of 1.41%(±0.57%)), a camel gallop (1.42%(±0.65%)), an elephant gallop (0.95%(±0.54%)),
and facial expression changes (0.47%(±0.26%)). Models of all frames are matched with the
first frame. Corresponding points have a unique color across each sequence. Five points
are tracked along the sequence (colored lines) for visualization. Note that no temporal
consistency was enforced (each frame was matched independently with the first frame). Blue
circles show corresponding points along the sequences found with FOCUSR. Blue crosses
show the true corresponding points.

4.2.5 Final Diffusion

After alignment, both embedded representations can be directly compared (X = φ(Y)), i.e.

two points which are closest in the embedded representations could be treated as correspond-

ing points in both meshes. However, the mapping is not guaranteed to be smooth, even after

the CPD alignment. The spectral regularization promotes smoothness of the correspondence

map, but it is possible to have irregularities in the smoothness when the features differ sig-

nificantly between the two meshes. The resulting embeddings warped with the CPD, in the
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Direct Point Matching Direct Spectral Matching FOCUSR

Average error: Average error: Average error:
5.49%(±4.66%) 1.70%(±1.13%) 1.41%(±0.57%)

Average error: Average error: Average error:
10.75%(±9.03%) 2.88%(±1.46%) 1.42%(±0.65%)

Average error: Average error: Average error:
5.15%(±3.63%) 3.22%(±32.30%) 0.95%(±0.54%)

Average error: Average error: Average error:
0.92%(±0.72%) 4.09%(±2.61%) 0.47%(±0.26%)

  
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 %

Figure 4.7: Average relative error distance from the ground truth in each animated sequence
(in percentage between 0% and 5%, e.g., if a mesh is 100 mm, 5% means an average error of 5
mm, the lower percentage the better). Three settings are used: a) Direct matching of closest
points on surfaces, b) direct matching of closest points on rigidly aligned spectral embeddings,
and c) matching using nonrigidly aligned spectral embeddings in FOCUSR. While matching
points in the spectral domain clearly improves correspondence, FOCUSR gets additional
precision by aligning the spectral embeddings. Note that no additional features are used
here in FOCUSR.
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K +M multidimensional space, can contain local spatial incoherence in the correspondence

map (as illustrated in Fig. 4.5 a). Consequently, we include a postprocessing step to enforce

additional smoothness of the correspondence map.

The correspondences obtained after CPD are used to map the second mesh vertices

(target point y in Fig. 4.5 a) to the first mesh vertices (fixed points x in Fig. 4.5 a). The

3D coordinates of these mapped points on the second mesh are now treated as independent

scalars and diffused on the surface of the first mesh (i.e., this moves the points of the second

mesh to positions obeying the (smooth) neighborhood system of the first mesh as illustrated

with points H(y) in Fig. 4.5 b). We used the smoothing method in (Desbrun et al., 1999)

which is similar to the Laplacian smoothing, while other methods could also be used for

this step. At this stage, the points x on the first mesh can be associated with either the

smoothed coordinates H(y) on the second mesh (i.e., vertices of the first mesh could be

matched to coordinates in between the vertices of the second mesh), or with actual points

on the second mesh. In our applications, we matched nodes to nodes, so the latter strategy

is chosen. The correspondence map linking the first mesh to the second mesh is therefore

updated by linking each point in the first mesh with the point in the second mesh which

has the minimum Euclidean distance to the diffused geometric coordinates (shown with the

new map in Fig. 4.5 c). In our experiments, 40 iterations were sufficient to diffuse the point

coordinates. The fourth step in Fig. 4.3 shows a few corresponding points between two brain

surfaces.

4.3 Results

To demonstrate the effectiveness of FOCUSR, we first match in a controlled experiment

with a known ground truth a variety of generic meshes (3 sequences of 50 and 10 frames

of models in various poses, totaling the computation of 160 matchings) and show that the

use of a nonrigid alignment of spectral coordinates improves precision over a simple direct

spectral matching method. We then apply FOCUSR to real data for a clinical application

to brain surface matching in which matching precision is extremely important and where

additional features are known to be meaningful to the accuracy of the alignment. We do so by

processing and analyzing the correspondence of 264 pairs of brain surfaces using 15 different

combinations of features (totaling the computation of 3,960 correspondence maps). This

clinical application reveals the full power of FOCUSR where the introduction of additional
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(a) deformed meshes

(b) Error map when using
simple feature matching

(K = 2)
Average error: 53.11 mm.

(c) Error map when using
spectral coordinates (M = 5)

Average error: 0.35 mm.

(d) Error map for FOCUSR
(K = 2, and M = 5)

Average error: 0.06 mm.

Figure 4.8: Comparison with a synthetic ground truth using one brain hemisphere. (a): The
deformed mesh (colored with its Fielder vector) overlaid with the original vertex positions
illustrated by the blue dots. (b): When using simple feature matching (K = 2,M = 0), the
mean distance error with the ground truth is as expected very high, 53.11 mm. (c): When
using FOCUSR with only spectral components and no additional feature (K = 0,M =
5), the mean distance error is 0.35 mm. (d): When using FOCUSR with both spectral
components and additional meaningful features (K = 2,M = 5), the mean distance error
using this brain hemisphere is 0.06 mm. When iterating this experiment on all hemispheres,
the mean distance error using FOCUSR is 0.07 mm (Note that surfaces are smoothed in
(b,c,d) after correspondence to visualize the errors within the cortical foldings).

features improves the shape matching significantly.

4.3.1 Matching Meshes

We first begin our validation by showing that FOCUSR can find efficiently and precisely a

dense correspondence between generic meshes. We use the data from (Sumner and Popović,

2004) (available publicly3) where animal models have been deformed in various poses. These

meshes were created in (Sumner and Popović, 2004) by transferring the deformation of a

sequence of source meshes to target reference meshes. We use in the dataset the sequence

of a galloping animal for a horse (8,431 vertices, 50 frames), an elephant (21,887 vertices,

50 frames), and a camel (42,321 vertices, 50 frames), all illustrated in Fig. 4.6. We want to

recover the deformations and assess the precision of the correspondences between all models

in a sequence and the reference model. For each gallop animation, the same mesh is deformed,

and all vertices across the sequence maintain a direct one-to-one correspondence with the

reference mesh (i.e., node i of any mesh in the animation corresponds with node i (the same

index value i) in the reference mesh). This gives a ground truth for the correspondence maps

in all animations (i.e., φ(i) = i) on which we can compare our method.

3Meshes available at http://people.csail.mit.edu/sumner/ research/deftransfer
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We quantify precision by measuring the average distance between the locations of cor-

responding points found with FOCUSR and with the ground truth. That is, for all points

vi ∈ V1 in the first mesh matching the points vφ(i) ∈ V2 in the second mesh, the mean

distance error is the average of the distances, 1
N

�N
i ||xi − xφ(i)||, between the real locations

of the corresponding points, xi, and their recovered locations on the second mesh, xφ(i). For

each gallop animation, we computed the correspondence maps of the meshes of all frames

with the reference mesh. Fig. 4.7 shows the average relative distance error for all sequences

when finding the closest points in space, in the spectral domain, and when using FOCUSR in

its simplest setting (i.e, K = 0 in Eq. (4.8)). Mismatches due to nonrigid deformations (e.g.,

articulated limbs of the galloping animals) are the most severe when matching in the spa-

tial domain, while these errors are attenuated when matching occurs in the spectral domain

(about a 60% increase in precision). FOCUSR improves precision over the simple spectral

matching by about 50%.

The relative average distance error in FOCUSR with its standard deviation (expressed

in percentage of the size of a mesh) is for the whole horse gallop animation: 1.41%(±0.57%)

with an average computation time of 44 seconds, for the camel gallop: 1.42% (± 0.65%)

in 79 seconds, and for the elephant gallop: 0.95% (± 0.54%) in 98 seconds (timing were

performed on a 2.8 GHz Intel Pentium 4 using unoptimized Matlab code). We additionally

ran the same experiment on an animation of changing facial expressions (15,941 vertices, 10

expressions) and found a relative average error of 0.47% (± 0.26%) with on average 40 seconds

of computation. All these errors remain relatively small with corresponding points found at

more or less 1% of the size of the mesh from their true locations (e.g., for a mesh of 100 mm,

an error of 1% is a mismatch of 1 mm). Additionally, five points of interest were tracked

along each animation (between the ears, the tail tip, right rear and front paw, and on the

sternum of the animals; and the right ear, left upper eyelid, nose tip, lower lip, and chin of

the head).

By applying a nonrigid alignment of spectral coordinates, FOCUSR exhibits an improved

level of precision (of about 1.4% error) even in the absence of using additional features.

Higher errors often occurs in areas of highly nonrigid deformation, such as skin stretching

(e.g., the side of the horse undergoing expansion and compression while galloping). One

might also argue that displaced areas are not necessarily errors (e.g., the skin could move

freely over a body by a few centimeters when galloping).
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4.3.2 Brain Surface Matching

Brain surface matching is an important topic for neuroimaging studies that requires the

alignment of anatomical landmarks or functional activation across a population. Specifically,

cognitive function can only be studied across individuals when correspondence is made from

one individual to another between activation areas of the brains. The brain morphology

offers the particularity that every individual has a unique folding pattern in their cerebral

cortical hemispheres while, at the same time, many large-scale similarities exist and allow

correspondence between brain surfaces. Moreover, matching brain surfaces allows us to

test the ability of FOCUSR to use extra features, such as the sulcal depth, the cortical

Gaussian curvature, and the cortical thickness, that can potentially improve the precision of

the correspondence beyond conventional spectral correspondence. We utilize the two features

used by the FreeSurfer algorithm to drive alignment, which are the sulcal depth (Fischl et al.,

1999) at each point {s1, s2, . . . , sn} (as calculated by FreeSurfer), and the surface curvature

at each point, {κ1,κ2, . . . ,κn}. FreeSurfer outputs the mean curvature of a mesh, but in

practice our method generated slightly better results when using the Gaussian curvature

estimated with the method described in (Steiner and Morvan, 2003). We thus chose to test

the Gaussian curvature in our feature combinations in order to avoid exploding the number

of feature combinations in our experiments. In addition, FreeSurfer also supplies gray matter

cortical thickness (calculated from anatomical MRI image data (Fischl and Dale, 2000)) at

each point, {t1, t2, . . . , tn}, which we can additionally test as a feature to drive the alignment

with FOCUSR.

To demonstrate the flexibility of FOCUSR to handle different features, different combina-

tions of these three additional features were used in our experiment. Additionally, we inde-

pendently examine the effects of using the features to define only edge weights (in Eq. (4.3)),

only node weights (in Eq. (4.5)), or only as coordinates for matching (in Eq. (4.8)).

Synthetic Deformations

We begin with a synthetic experiment which is designed to demonstrate that FOCUSR

profits from meaningful features to produce a precise alignment. In this experiment, we

synthetically deform a brain surface such that two of the features are preserved and one

feature is distorted. FOCUSR is shown to perform better when the meaningful (preserved)

features are included and worse when the noise feature is included. For our experiment, we
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Table 4.1: Settings used in FOCUSR for the recovery of a synthetic deformation. Check-
marks indicate whether sulcal depth (S), cortical thickness (T), or cortical Gaussian curvature
(C) is used as features, on graph node weights, or on graph edge weights. The synthetic
deformation process did not distort sulcal depth or cortical thickness, but did distort Gaus-
sian curvature. This experiment demonstrates that FOCUSR can profit from incorporating
the meaningful (undistorted) features. The reported error gives the average error distance
between the matched point and the ground truth across all available hemispheres. The use
of FOCUSR without any features (with only spectral components) and the simple feature
matching method are provided for comparison.

Coord. Nodes Edges Error
S T C S T C S T C
� � � � � � 0.14 mm
� � � 0.13 mm
� � � 0.29 mm

� � � 0.50 mm
�� �� � 0.07 mm
(with only spectral components) 0.38 mm

(simple feature matching) 53.02 mm

match one brain hemisphere with a deformed version of itself. The vertex indexing remains

the same in the deformed version. Similarly as the last experiment, the true matching is

thus known (i.e., φ(i) = i). We severely deform one cortical surface model, where for each

point (x, y, z), we apply the transformation z� = (1 + α)z, i.e., a compression in the z-axis

controlled by parameter α (we used α = 0.3), and the transformation x� = x+ βr2/max(r2)

with r2 = x2 + y2, i.e., a radial distortion controlled by parameter β (we used β = 15). This

simulates a deformation due to a drastic change in the head shape. The deformation however

preserves the same mesh topology as it does not introduce any discontinuities or intersecting

faces. Fig. 4.8 illustrates the position of the original hemisphere with the blue dots and the

deformed hemisphere with the colored mesh. The sulcal depth and the cortical thickness

are the same in both cortical meshes. The Gaussian curvature has been recomputed in the

deformed mesh with the method described in (Steiner and Morvan, 2003). Therefore two of

the features (sulcal depth and cortical thickness) are meaningful under this distortion and

one feature (Gaussian curvature) is a distracting noise feature. The goal of this experiment

is to verify if the use of additional meaningful features helps the matching precision and to

measure its improvement.

If we use the simple feature-only correspondence, the error is on average across all hemi-
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spheres 53.02 mm due to the fact that the correspondence map has virtually no mechanism

to promote smoothness. When FOCUSR is used with only spectral components with no fea-

tures (e.g., K = 0 and M = 5), we find for all hemispheres an average error distance of 0.38

mm as shown in the first error map of Fig. 4.8. Most errors appear to be located on the sulci

extrema. By using FOCUSR to drive feature correspondence with spectral regularization,

the error drops to 0.07 mm.

In FOCUSR, the surface features affect the correspondence by using the features as

coordinates in the point matching, and/or, by using the features to set edge weights, and/or

by using the features to set node weights. Now we demonstrate that the greatest precision

for FOCUSR is obtained by using the features in these three ways instead of just one or two

of these ways. Specifically, we iterate through all of the 512 possible combinations (23×3).

Table 4.1 summarizes a few combinations. We tested FOCUSR using both sulcal depth and

Gaussian curvature as additional features. The average error distance across all hemispheres

is in this case 0.14 mm. Adding the sulcal depth as the only additional feature yields an error

of 0.13 mm; adding only the cortex Gaussian curvature yields an error of 0.50 mm; and the

cortical thickness yields an error of 0.29 mm. The best combination of features for FOCUSR

was obtained when using sulcal depth and cortical thickness as additional coordinates and

on graph nodes, and using cortical thickness on graph edges, yielding an error of 0.07 mm.

It is expected that FOCUSR should perform best with these features, since they were not

changed by the synthetic deformation, but the Gaussian curvature was. The error map

on a single hemisphere is shown on Fig. 4.8. The best-performing combination of features

demonstrates an almost perfect matching for FOCUSR.

This experiment shows that by incorporating meaningful features FOCUSR can indeed

improve the matching precision. The weighting functions used here also differs slightly from

the one used in (Lombaert et al., 2011a) which used the exponentials of the additional

features. This experiment confirms that using stable features between two cortices (i.e., the

same sulcal depth and cortical thickness) improves the cortex matching precision.

Performance Evaluation on Real Data

Cortical surface matching is a challenging problem due to the wide variability in gyral mor-

phology and topology between individuals. There is no ground truth available for perfect

brain surface matching across individuals. However, FreeSurfer (Fischl et al., 1999) has been
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Parcel overlaps using FOCUSR
Average overlap: 71% (in 208 sec)

Parcel overlaps using FreeSurfer
Average overlap: 71% (in several hours)

Figure 4.9: In green, good overlap of projected sulcal regions, in red, wrong projection outside
the sulcal regions, and in light blue, missed sulcal regions. (First brain) Correspondences
computed in 208 seconds on average using FOCUSR, while (second brain) FreeSurfer re-
quired several hours (Note that in this visualization surfaces are smoothed to visualize the
correspondence within the cortical foldings).

demonstrated to provide highly precise cortical matchings that closely align cortical areas

across subjects (Hinds et al., 2008) and therefore provides a reliable surrogate for our com-

parison. The delineations of 81 sulcal regions are available for 24 hemispheres (12 subjects).

These sulcal regions were obtained using an automatic parcellation of the cortex (Fischl

et al., 2004) and are considered as our gold standard. Although parcellations of the cortex

into named sulci and gyri are not expected to align between subjects in all cases (except for

the primary folds), they do provide means to compare the two methods. We use correspon-

dence maps generated by FreeSurfer and FOCUSR to project the parcellation areas onto

different brain hemispheres and measure their overlap (illustrated on Fig. 4.9). To process a

mesh of 135,000 vertices, FreeSurfer has a varying processing time which is currently on the

order of several hours, while the time required by FOCUSR is on the order of 3–4 minutes.

To process all our 264 possible pairs of left and right brain hemispheres, FOCUSR required

on average 208 seconds (on a 2.8 GHz Intel Pentium 4 using unoptimized Matlab code).

With reduced meshes of 20,000 vertices, FOCUSR performed in 19 seconds. The primary

computational burden of the algorithm is the final diffusion of the correspondence map. This

final step requires the smoothing of the matched mesh, which currently takes 84 seconds on

average in Matlab. The total time to perform all our 264 correspondences using FOCUSR

was 14 hours on a single computer, a substantial advantage compared to the several weeks

required by FreeSurfer. Each overlap ratio is defined by the ratio of set intersection to set



96

9 10 18 23 24 26 41 42 45 47 59 80
0

20

40

60

80

100

Sulcal Regions

R
e
g
io

n
 o

ve
rl
a
p
 (

%
)

 

 
Features Only (K=2)

Spectral Only (M=5)

FOCUSR (K=2,M=5)

FreeSurfer

Figure 4.10: Average overlap ratios of the twelve largest sulcal regions on the right hemi-
sphere over 264 matchings. (Dark blue) FOCUSR with features only, sulcal depth and
cortical Gaussian curvature (i.e., K = 2, M = 0): 0.48%± 0.28% overlap. (Cyan) FOCUSR
with spectral components only (i.e., K = 0, M = 5): 55.18% ± 9.09% overlap. (Yellow)
FOCUSR with features (sulcal depth and cortical Gaussian curvature) and spectral com-
ponents (i.e., K = 2, M = 5): 71.11% ± 5.98% overlap. (Red) FreeSurfer’s overlap ratios
(requiring weeks of computations): 70.95% ± 7.27% overlap. FOCUSR only required 14
hours to perform all 264 matchings and is strongly correlated with FreeSurfer (correlation
coefficient of ρ = 0.897). The error bars show the standard deviation of each overlap ratio.

union. Fig. 4.10 shows the overlap ratios for the twelve largest sulcal parcellations1 using

FOCUSR and FreeSurfer. The results of FOCUSR are correlated to FreeSurfer’s overlaps

with a correlation coefficient of ρ = 0.897.

From Fig. 4.10, we can see that FOCUSR closely matches the performance of FreeSurfer

when using a similar feature set (sulcal depth and cortical curvature) to drive the corre-

spondence (71.16% overlap for FOCUSR versus 70.95% overlap for FreeSurfer). In contrast,

the pure feature matching or the use of FOCUSR with only spectral components produces

results with a much lower precision (effectively null at 0.48% overlap). We now demonstrate

that using features purely for edge or node weights (or purely as feature coordinates) also

produces suboptimal results.

1Sulcal regions: 9 (G frontal middle), 10 (G frontal middle), 18 (G occipit temp med Lingual part), 23 (G
parietal inferior Supramarginal part), 24 (G parietal superior), 26 (G precentral), 41 (Medial wall), 42 (Pole
occipital), 45 (S central), 47 (S cingulate Main part and Intracingulate), 59 (S intraparietal and Parietal
transverse), 80 (S temporal superior).
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Table 4.2: Different combinations of features with spectral correspondence (three modes: as
matching coordinates, to define edge weights or to define node weights) demonstrate that
using all three combination modes (as we advocate in FOCUSR) gives the best performance.
Additionally, different combinations of three features, sulcal depth (S), cortical thickness (T),
or Gaussian curvature (C), demonstrate that using sulcal depth and cortical curvature in
FOCUSR provides performance most similar to FreeSurfer (as expected since it relies on
similar features). In comparison, FreeSurfer’s overlap ratios are 72.03% in the left hemi-
spheres, and 70.95% in the right hemispheres. The experiment was performed over all 264
pairs (from 12 brains), averaged across the twelve largest parcels

Coord. Nodes Edges Overlap Overlap
S T C S T C S T C Left Right

55.11% 55.18%
� � � 70.79% 70.57%
� � � � � � 70.77% 70.60%
� � � � � � 70.77% 70.42%
� � � � � � � 70.73% 70.66%
� � � � � � � 69.65% 70.12%
� � � � � 70.67% 70.65%
� � � � � 65.51% 66.84%
� � � � � 70.67% 70.58%
� � � � � � � � � 70.74% 70.41%
� � � 71.10% 71.16%
� � � 55.25% 56.77%

� � � 55.28% 56.67%
� � � � � � 71.18% 71.11%
� � � � � � 69.64% 70.15%

Testing with Multiple Configurations

We first analyze the matching performance using different configurations of the same features

used by FreeSurfer, namely sulcal depth and cortical curvature. In a second step, to demon-

strate the flexibility of FOCUSR, we introduce a different feature not used by FreeSurfer and

tested several combinations of features to see whether any of these combinations performs

better than FreeSurfer. Additional features were incorporated in FOCUSR using Eq. (4.8),

Eq. (4.3), and Eq. (4.5), with γ = 1.2 and β = 0.2 (the description of the behavior of these

parameters are described in (Lombaert et al., 2011a)). Overall, fifteen different combinations

of additional features were used. For each combination, we ran FOCUSR on the 132 pairs

(n(n− 1) with n = 12 brains) of left brain hemispheres and on the 132 pairs of right brain

hemisphere (totaling 3,960 matchings, 264× 15). The results are summarized in Table 4.2.
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In comparison, FreeSurfer performs with an average overlap ratio for the largest parcels of

72.03%(±8.52%) in the left hemispheres (the variation is the standard deviation of all over-

lap ratios), and 70.95%(±7.27%) in the right hemispheres. Fig. 4.10 shows three relevant

combinations.

• The first combination shown on Fig. 4.10 demonstrates the poor performance of the

direct feature matching method where FOCUSR uses no spectral coordinates as de-

scribed in Section 4.2.1 (i.e., M = 0, matching is a simple feature comparison using

sulcal depth and cortical Gaussian curvature (K = 2) as used in Eq. (4.1)). The aver-

age overlap ratio on the largest parcels is effectively null at 0.38%(±0.19%) in the left

hemispheres (0.48%(±0.28%) in the right hemispheres).

• The second combination shows FOCUSR using no features and only spectral compo-

nents (K = 0 and M = 5). The average overlap ratio on the largest parcels is only

55.11%(±10.73%) in the left hemispheres (55.18%(±9.09%) in the right hemispheres).

• The third combination shows the full power of FOCUSR where it uses spectral com-

ponents alongside sulcal depth and cortical curvature features, which are the same

features driving the correspondence in FreeSurfer. The overlap ratio is as high as

71.18%(±7.63%) in the left hemispheres (71.11%(±5.98%) in the right hemispheres).

This is almost a perfect match with the overlap ratios in FreeSurfer (72.03% in the left

side, and 70.95% in the right side).

FOCUSR is, in the left and right cortices, equivalent with FreeSurfer’s overlap ratios

(71.18% vs. 72.03% in the left side, and 71.16% vs. 70.95% in the right side). It is important

to note that there is no perfect combination of features to drive the correspondence. Our

experiment shows that certain combinations perform better on particular parcels than on

others. The best combination of extra features thus depends on which sulcal region of the

brain should be matched. This finding concurs with a similar conclusion in (Yeo et al.,

2010b).

Dependence on the Number of Spectral Coordinates

In the previous section we demonstrated that it is optimal to use features to derive edge

weights, node weights and as explicit feature coordinates. We now examine the dependence
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Figure 4.11: Robustness of FOCUSR to the number of eigenvectors used as spectral coordinates.
When no eigenvector is used (M = 0, i.e., direct feature matching), the correspondence is weak,
whereas the performance becomes stable after just three eigenvectors are included. The performance
is measured with the overlap ratios of sulcal regions as used previously.

of the performance on the number of eigenvectors used as spectral coordinates by running the

previous experiment with a varying number of eigenvectors. When no spectral regularization

is used (i.e., direct feature matching with M = 0 eigenvectors), the algorithm relies solely on

feature coordinates. As expected, the performance is weak. The plot in Fig. 4.11 shows, for

the twelve largest parcels, indeed a low overlap ratio of 0.38% in the left hemispheres (0.48%

in the right side) when using pure feature matching, sulcal depth and cortical Gaussian

curvature, with no spectral coordinates (i.e., M = 0). The performance improves quickly

when eigenvectors are used (i.e., M > 0) to spatially regularize the feature matching. These

spectral coordinates provide additional means of discrimination during the optimization of

the correspondence map. FOCUSR gains no further significant improvement in quality after

M > 3. Essentially, this result demonstrates that the primary purpose of the spectral

coordinates is to provide a spatial regularization, which is achieved by using only the lowest-

frequency eigenvectors.

4.4 Discussion and Conclusions

This paper presents a novel method, based on spectral correspondence, for the challenging

task of precise surface matching. Current methods, most of which are iterative and control

local deformations of surfaces, are dependent on the extrinsic mesh geometry. They find their

limitations when matching articulated or highly deformable shapes. With such challenges,

additional information (e.g., texture, anatomical information, or landmark positions) can

help in finding a better correspondence. For example, this is the strategy that FreeSurfer
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(Fischl et al., 1999) relies on to match brain surfaces. Spatial regularization becomes crucial

in these methods. It is clear from our experiments that direct feature matching, with no

spatial regularization (i.e., M = 0) exhibits very poor performance. We decided to improve

this strategy by using a spectral regularization of the feature matching method and to im-

prove spectral matching by using a nonrigid alignment. The space of regularization (i.e.,

the spectral domain) is dependent on inherent properties of the mesh geometry. This mod-

ified strategy would free our method from the limitations of matching articulated or highly

deformable shapes. Spectral methods provide a natural means of regularizing solutions at

speeds of several orders of magnitude faster than current methods and are independent of the

mesh extrinsic geometry. Our method can implicitly incorporate additional features to drive

precise correspondence and it exploits the smoothness of the lowest-frequency harmonics of a

graph Laplacian to regularize the correspondence map. Present day spectral correspondence

methods are not fully realized and provide matchings that are not yet reaching a clinical

level of precision. Currently, only intrinsic geometry can be embedded on graph edges and no

additional information can be used. We provide a full realization of spectral correspondence

where virtually any feature can be used as additional information as weights in graph edges,

but also on graph nodes and as extra embedded coordinates with little or no computational

expense. Furthermore, rigid transformations, or older point matching methods based on

Thin Plate Splines are used (Jain and Zhang, 2006) and are difficult to extend beyond 3D

(Sprengel et al., 1996) to multidimensional feature space.

In its simplest form, FOCUSR is an improved spectral correspondence method that

utilizes nonrigid point registration. We showed in our first experiment that a nonrigid

alignment of the spectral coordinates improves significantly (by about 50%) the matching

precision over a direct spectral matching. Its has been demonstrated with a variety of generic

models (various galloping animals and heads of varying facial expressions) that the error

from a known ground truth is minimal (with 1.4% relative distance error for our matched

models). The full power of FOCUSR is presented in our second set of experiments, a real-

world scenario with the challenging task of brain surface matching across several individuals.

We use FOCUSR with different combinations of additional features, such as sulcal depth,

cortical Gaussian curvature, and cortical thickness, to improve the matching precision. The

fast speed of our method allowed us to compute and analyze 3,960 correspondence maps

(which is prohibitively expensive for FreeSurfer). When no regularization is used (e.g.,
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K = 2 features and M = 0 spectral components), the correspondence generates a poor

overlap ratio of 0.48% in the largest sulcal regions. When FOCUSR is used in its simplest

form with no additional feature (e.g., K = 0 features and M = 5 spectral components),

the overlap ratio is 55%. The performance of FOCUSR is improved by using additional

information (e.g., K = 2 features and M = 5 spectral components), and the overlap ratio

increases to a level above 71% (versus 55% when using only spectral components). Our

method is effectively equivalent to FreeSurfer’s level of precision (which is also around 71%)

when aligning sulcal regions. However, the vast increase in speed (with a total processing

time of 208 seconds on average for meshes of 135,000 vertices) and the added flexibility

when using additional information gives new perspectives to previously computationally

prohibitive experiments. New features (e.g., anatomical or functional features extracted

from various data sources) can be quickly tested and evaluated to see if they improve cortex

matching. Quick parameter sweeps can be performed to isolate the best parameter value sets.

These computationally intensive experiments can help us to understand what features are

consistently correlated with brain areas across individuals and what their role are during the

development of the cortical folding pattern. Furthermore, the computational time could be

significantly improved with a reimplementation in C++ and with parallel programming for

critical sections such as the eigendecomposition (e.g., LAPACK implementations on CUDA-

enabled GPUs). Approximation methods for matrix eigendecomposition such as the Nyström

approximation (Fowlkes et al., 2004), the Gaussian projection (Halko et al., 2011), or the

differentiable QR decomposition (Bach and Jordan, 2004) could be used for additional speed

up in processing time.

Spectral regularization promotes the smoothness of the correspondence map, but does

not guarantee it. Better relaxation schemes, such as the Relaxation Labeling used in (Zheng

and Doermann, 2006), might improve the matching precision. It is also important to con-

sider which weighting function to use and to see how generalizable the parameter values are

with a larger sample set. The use of different surface metrics (Liu et al., 2009) can be a

promising area to investigate. The algorithm, as with other spectral methods, is also not

symmetric (i.e., φi→j �= φ−1
j→i). The CPD alignment does not guarantee symmetry of the

resulting transformation (i.e., the computed correspondence map matching nodes from mesh

X to mesh Y might not be the same as the inverse correspondence map matching nodes from

mesh Y to mesh X). Further improvement of the method will be toward achieving a better
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regularization of the correspondence map and to guarantee symmetry of the correspondence

map. Nevertheless, FOCUSR already presents several clear advantages over present day

methods for mesh correspondence and, in particular, conventional spectral matching. It

provides a fast and precise solution for general mesh correspondence that can handle articu-

lated or highly deformable surfaces, and creates a method that can implicitly use any set of

additional features to drive improved precision.
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CHAPTER 5 SPECTRAL MATCHING METHODS

Presentation

The first part of this chapter (Sec. 5.2 and 5.3) is based on a recent work on the exploration

of the shape of the primary cortical folding. It is based on a close collaboration between

Siemens Corporate Research, Princeton, NJ, USA; Martinos Center at Harvard

Medical School, Cambridge, MA, USA; and École Polytechnique, Montreal, Canada.

The second part of this chapter (Sec. 5.4) is partly based on two articles recently submitted to

top conferences (with a double-blind review process) in computer vision and in medical image

processing. Due to their dual-submission policy, journal versions could not be produced

until their publication later in the year. The objective of the submitted papers is to capture

large shape variability in a novel registration method and in a novel framework for atlas

construction. These submitted articles are a joint work between INRIA, Sophia Antipolis,

France; Siemens Corporate Research, Princeton, NJ, USA; and École Polytechnique,

Montreal, Canada.

5.1 Introduction

This chapter proposes new original investigations that are built on top of the findings from the

previous two chapters. As a brief reminder, Chapter 3 presented a new framework for atlas

construction based on the conventional Demons algorithm. It allowed the creation of the first

human atlas of the cardiac fiber architecture and studied the variability of cardiac fibers in

humans. In addition, this human atlas also served as a basis for an extra study on the cardiac

laminar sheets, presented in Appendix A, as well as for a preliminary comparative study

between healthy and abnormal hearts, provided in Appendix B. The proposed framework

showed its limitations when the images had high shape variability. To this effect, a different

strategy has been explored in order to address the limitations associated with methods using

a local optimization approach. For instance, Chapter 4 presented a new approach based

on spectral matching, named FOCUSR, for finding correspondences between objects and

organs of high shape variability. This method prevents the optimization from being trapped

in trivial local minima (a major limitation of conventional approaches based on gradient-

descent) by utilizing spectral representations in a new global feature matching technique.
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From these findings, new studies and new methods are now presented in order to investigate

and demonstrate the relevance of using spectral matching methods for atlas construction.

In the first sections of this chapter, FOCUSR is used in practical applications. Firstly,

the correspondences computed with FOCUSR are used to construct an atlas of human brain

surfaces, and its principal modes of shape variations are briefly studied in order to charac-

terize the shape of the human brain surface. Secondly, the shape of the primary cortical

folding is explored by analyzing the alignment of smoothed brain surfaces. This preliminary

exploration is relevant to studies on the human brain development as the human cerebral

cortex undergoes an extreme convolution from being totally smooth in a fœtus to highly

convoluted in the teenage years. These two additional applications (the study on the varia-

tions of the brain surface and the exploration of the primary folding) show that an improved

spectral approach can be used for relevant clinical studies. On the other hand, this second

developed method, FOCUSR, was designed for surfaces and is not directly applicable to

images. Therefore, finally in the last sections of this chapter, a new approach for image

registration, named the Spectral Demons , is presented in order to capture very large shape

variations between images. The underlying Demons framework is additionally extended to

perform groupwise registrations. This yields a new framework for atlas construction that,

when combined with the Spectral Demons , is capable of using images with high shape vari-

ability. This new approach based on spectral matching addresses, therefore, the limitation

of the first developed framework. In the following sections, each new topic is presented by,

firstly, describing the underlying method, and secondly, presenting the results.

5.2 Atlas of Brain Surfaces

FOCUSR, developed in Chapter 4, has been shown as a fast method for brain surface match-

ing. We now show that it can be used to compute an average shape of the brain surface

(construct its atlas) and study its variability. Moreover, in order to illustrate a practical

use of FOCUSR, the principal modes of shape variations are analyzed with a dataset of 16

brain surfaces. This study provides in fact the necessary tools for using FOCUSR in concrete

applications for shape analysis.
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Figure 5.1: Dataset of 16 brain surfaces showing a large variability of shapes. (top) Lateral
view, (bottom) Medial view. Each square in the background grid is 2 centimeters wide. The
color represents the mean curvature of the surface.

5.2.1 Average and Principal Modes of Variations

Let us consider a set of N brain surfaces {si}i=1..N , where si is a column vector representing

the ith surface model with the coordinates of all its M vertices, si = (x1,x2, . . . ,xM)T (with

coordinates x = (x, y, z), si has, therefore, the size 1 × 3M). In order to construct an

atlas, all brain surfaces are matched with a reference brain sref where the correspondence

map φi between one brain si and the reference sref is computed with FOCUSR. All points

of the reference brain have, therefore, a corresponding point in each of the brain surfaces,
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sref �→ φi(si). Let us now construct the 3M ×N matrix:

S = (φ1(s1),φ2(s2), . . . ,φN(sN)) , (5.1)

where each column represents a brain surface and where each row has the coordinates of all

corresponding points across the dataset.

The average brain surface, s̄, is computed by averaging the coordinates of all correspond-

ing points, i.e., by taking the mean of each row in S:

s̄ =
1

N

N�

i=1

φi(si) (5.2)

or in matrix notation: s̄ = 1
N S 1, where 1 = (1, 1, . . . , 1)T is a column vector of N ones.

Note that FOCUSR directly gives a correspondence map between two surfaces without using

an underlying deformation model. Statistics on the shape variations is, therefore, performed

directly on the surface point positions. This is in contrast with statistical methods (Kendall,

1984; Durrleman et al., 2009b; Durrleman, 2010) that analyze the deformation with complex

Riemannian structures representing displacements or velocity fields.

It must be remembered that the positions of all corresponding points do not vary inde-

pendently in the dataset. Indeed, the position of a point may be partially correlated with

the positions of other points, for instance, if one point varies along a certain direction across

the dataset, there is a high change that its neighbors will vary similarly, or that, in fact, any

point located elsewhere may also have a certain correlation with its spatial variation. The

study of these shape variations consists of finding the principal modes of variation, which is

made with the Principal Component Analysis (PCA) of a global covariance matrix of point

coordinates. The 3M × 3M covariance matrix is build with:

C = (S − s̄)(S − s̄)T . (5.3)

The eigendecomposition of this covariance matrix Σ = UΣUT gives the main variations

ui (an eigenvector is a column of U) in a 3M dimensional space, often referred as the

shape space (Cootes et al., 1995). All shapes can be represented in this shape space with a

projection of si on the orthogonal space U .
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However, the eigendecomposition of the 3M × 3M matrix C may be prohibitively ex-

pensive when the number of points is large. The rank of the matrix C is also limited by

the number of samples in the dataset, which means that at most N − 1 non-trivial eigen-

vectors may be computed (there are only N linearly independent samples in the dataset).

Fortunately, these first N eigenvectors can be computed by decomposing a smaller matrix:

L = (S − s̄)T (S − s̄) (5.4)

The size of L is much smaller, N×N , which makes its eigendecomposition much tractable,

i.e., L = V ΛV T where each column vi of V is an eigenvector of size N . It is shown in (Turk

and Pentland, 1991) that (S − s̄) vi is also an eigenvector of C. It is, therefore, much more

efficient to decompose L and use ui = (S− s̄) vi than trying to directly decompose C (which

is often too large, hence too costly). Each eigenvector ui provides the ith mode of shape

variation in the dataset.

5.2.2 Results and Discussion

The atlas is constructed with the dataset used in Chapter 4. It consists of 16 brain surfaces

with a high shape variability and is presented on Fig. 5.1). For instance, brain #6 has a more

spherical appearance than other samples, while brain #5 has a more elongated appearance

than other samples.

The reference shape is arbitrarily chosen to be the first brain of the dataset. All other

brains are subsequently matched against this reference by using FOCUSR and the com-

puted correspondences across the dataset are gathered in the matrix S. Once matching is

performed, the average brain surface can be computed with Eq. (5.2), while the principal

modes of shape variations in the dataset are extracted by decomposing L as detailed earlier.

The results are presented on Fig. 5.2 where the first three principal modes are illustrated by

exaggerating each variation. More precisely, a series of synthetic brain surfaces are generated

with s̄+α ui where α varies from -40 to +40 millimeters. From these series of synthetic sur-

faces, we can observe that the primary mode of variation captures a global scaling along the

long axis of the brain, that the secondary mode of variation captures a global scaling on the

sagittal plane, and that the tertiary mode of variation captures a more complex deformation

on the brain surface. The less important modes of variations capture finer deformations on
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Figure 5.2: First, second, and third principal modes of variations in the dataset of brain
surfaces. (top) Lateral view, (bottom) Medial view. (background squares are 2 centimeters
wide). The color represents the gradual displacements of points in millimeters. The principal
mode of variation appears to capture scaling along the long axis of the brain, the second
mode of variation appears to capture scaling on the sagittal plane of the brain, while the
tertiary mode of variation shows a more complex variation of the brain surface.

the cortical folding pattern. For instance, Fig. 5.3 shows finer details in the last non-trivial

modes (the 14th and 15th modes).

Additionally, the projection of each brain surface onto the first and second mode of

variations gives a representation of the dataset in a 2D shape space, i.e., the shape coordinates

(2 scalars) of each brain surface are computed with the dot products (si · u1)/(�si��u1�),
and (si ·u2)/(�si��u2�). This 2D representation is presented in Fig. 5.4. For instance, it can

be seen that brain #6 is indeed more spherical than other samples (it is at the same time

the less elongated and the less flattened sample of the dataset).
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Figure 5.3: The least principal modes of variations in the brain dataset. (top) Lateral view,
(bottom) Medial view The 14th and 15th modes shows complex deformations of the cortical
folding, however, this analysis is not able to find the shape of the primary and secondary
cortical folding.

However, the analysis of the principal modes of variations is not capable of studying

the shape of the primary cortical folding pattern. In fact, none of the 16 modes revealed

what may appear as the primary folding of the brain surface. It is now proposed to analyze

different smoothing schemes of the brain surface, which may reveal the shape of this primary

cortical folding.

5.3 Shape of the Primary Cortical Folding

The human cerebral cortex undergoes an extreme convolution in the early stage of the brain

development (it is actually smooth in a human fœtus), with first the primary cortical folding

(which is thought to have a stable pattern in a population), followed by the secondary

and eventually the tertiary cortical folding throughout the development years (which are

known to be variable across a population (Ono et al., 1990; Welker, 1990)). The process of

estimating the shape of the primary folding from a fully developed cortex is still unknown.

To do so, the location of Brodmann areas (Brodmann, 1909), often associated with specific

cognitive functions, can be studied since these areas are believed to form in different stages
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Figure 5.4: Projection of each brain surface on the first two dimensions of the shape space
(each shape has 2 coordinates along the first and second principal modes of variations). It
is possible to observe the distribution of brains with varying degrees of elongation (on the
x -axis) and of flattening (on the y-axis).

of the brain development (Conel, 1939, 1967). In fact, the location of Brodmann areas that

are formed earlier may be more stable on a surface representing the primary cortex folding.

Here, we study the hypothesis that by smoothing the cortical surface, an optimal level can

be found where certain Brodmann areas align better. This optimal smoothing may reveal

the shape of the primary folding. In order to find this optimal level, we use FOCUSR to

match brain surfaces with different types and varying degrees of smoothing. The next section

briefly presents the smoothing methods, followed by the results showing the projections of

Brodmann areas on the optimal smoothed cortical surface.
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5.3.1 Mesh Smoothing

Three different types of smoothing method have been chosen. Each of these methods update

the mesh point positions, X, with different behaviors:

Mean Filter : The mesh point coordinates are updated with the average positions of the

neighboring points. The update is defined with: X ← D−1(W+I )X, where I is the identity

matrix, D is the degree matrix of (W + I ), and W is the adjacency matrix defined with

the triangular structure of the mesh (Wi,j = 1 if points xi and xj are in the same triangle,

0 otherwise). This method relies on Euclidean distances and provides a very simple method

of smoothing.

Heat Kernel Smoothing : The second method uses a heat kernel smoothing (Chung et al.,

2005). The mesh point positions are updated using the convolution of the heat kernel:

X ← Kσ �X, where σ is a diffusion time. The kernel Kσ is isotropic with respect to geodesic

distances on the underlying manifold. This is achieved by using the eigenfunctions of the

Laplacian representation of the mesh. The heat kernel Kσ(p, q) is analytically given as:

Kσ(p, q) =
�∞

j=0 e
−λjσψj(p)ψj(q), where λj and ψj are respectively the jth eigenvalue and

the jth eigenvector of the surface Laplacian matrix. This method is therefore more suited to

highly folded surfaces such as the cortex.

Curvature Flow : The third method smooths the mesh using a volume preservation

constraint along a curvature flow constraint (Desbrun et al., 1999). Rather than using a

diffusion process, a curvature flow drives the evolution of the point positions. The update

is defined with: X ← (I − λK)−1X, where λ is a diffusion coefficient, and K is a matrix

representing the curvature normals. This method preserves geometric features such as the

volume and the curvature in areas of constant curvatures.

In order to translate the parameters of each method into an equivalent kernel size (how

to relate the different parameters of the smoothing methods), a Dirac signal is smoothed on

a flat plane (a regular triangular lattice) with all three smoothing methods (Fig. 5.5). The

kernel size is estimated by measuring the diffusion of the Dirac signal (i.e., the standard

deviation of the diffused signal).
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(a) Dirac signal (b) Smoothed signal

Figure 5.5: Estimating the kernel size of a smoothing method. (a) Original Dirac signal on
a flat mesh. (b) Estimating the equivalent kernel size of the smoothing method with the
standard deviation of the diffused signal. Red, green, and blue levelsets are respectively the
1σ, 2σ, and 3σ isolines.
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Figure 5.6: Optimal level of smoothing. (a) Mean filter smoothing, with best overlap ratios
between iterations 100 and 300 (at 160, the equivalent kernel size is σ = 6.43mm). (b)
Heat kernel smoothing, with no clear optimality (σ = 6.43mm at diffusion time 0.08).
(c) Curvature flow smoothing, with best overlap ratios at iteration 125 (corresponding to
σ = 6.43mm). Overlap ratios are the number of pixels (in %) of a Brodmann area that have
at least 80% of chances to be in the same area in all other brains). Peaks in overlap ratios
suggest that certain areas align better on smoother cortices (whose shape might be closer to
shape of the primary foldings).
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5.3.2 Results and Discussion

The exact localization of a cortical Brodmann area is difficult to obtain (requiring a metic-

ulous histological study on the brain). We relied on predictions generated with FreeSurfer,

which have already been shown to be accurately located for the visual cortex area V1 (Hinds

et al., 2009). Our dataset consists of 16 cortex surfaces with predictions on the location of

areas V1, V2, BA1, BA2, BA3a, BA4a, BA6, BA44, BA45, and MT, totaling 10 Brodmann

areas. For each cortex and for each smoothing method, we generated 20 meshes with an

increasing level of smoothing. The correspondence maps between all pairs of cortices are

generated with FOCUSR (a total of 14,400 matching, 16 × (16 − 1) × 20 × 3). Five hours

were required with FOCUSR using 50 quad-core computers, while FreeSurfer would have

required weeks of computation.

For each level of smoothing, the projection of Brodmann areas across all brains onto a

reference brain creates probabilistic maps (i.e., the map tells if a Brodmann area aligns well

at each vertex). As a measure of alignment quality, we measure the overlap ratio of a region

(defined by the ratio of set intersection to set union) that finds a match on at least 80% of all

other brain surfaces (i.e., the overlap ratio tells how well a Brodmann area overlaps across

all brains). We iterate the process by changing the reference brain and take the average

of all these overlap ratios. Fig. 5.6 shows the evolution of the overlap ratios for all three

smoothing methods when the level of smoothing is increased from 0 mm to 14 mm (i.e.,

the size of the spread of a diffused Dirac signal, explained in sec 5.3.1, is equivalent in all

methods and varies from 0 mm to 14 mm). An optimal level of smoothing seems to appear

in Fig. 5.6 with parameters equivalent to using a kernel size of 6.43 mm.

Mean Filter : The alignment of Brodmann areas BA1, BA2, BA4a, BA44, BA45, BA6,

and MT is better when it is performed on surfaces of smoothing levels between 100 and 300

iterations, which correspond to kernel sizes between 4.82 mm and 8.85 mm (at 160 iterations,

the equivalent kernel size is 6.43 mm).

Heat Kernel Smoothing : The alignment of Brodmann areas when using this method does

not show a clear improvement in the overlap ratio when smoothing the meshes (a kernel size

of 6.43 mm corresponds to the algorithm diffusion time of 0.08 which shows no optimal

smoothing)

Curvature Flow : Brodmann areas, in particular areas BA1, BA2, BA3a, BA4a, BA44,

BA45, BA6, and MT, overlap better on meshes smoothed with fixed diffusion coefficient of
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λ = 1 and 125 iterations, which also corresponds to a kernel size of 6.43 mm.

Fig. 5.7 shows the probabilistic maps (showing all Brodmann areas) at an optimal level

and Fig. 5.8 shows the average shape of the cortical surfaces smoothed with all three methods

using parameters equivalent to a smoothing kernel of size 6.43 mm.

Since several Brodmann areas (BA1, BA2, BA3a, BA4a, BA44, BA45, BA6, and MT)

align better on surfaces smoothed with this optimal level, we might be in position to speculate

that the primary cortical folding around these areas have, consequently, a shape similar to

this optimally smoothed surface. When observing other areas, such as the visual cortex, V1

and V2, the lack of an optimal smoothing level could also mean that the folding convolution

in these areas is more stable (i.e., a less variable process) during the brain development.

For instance, a consistent relationship has already been suggested between area V1 and

the surrounding cortical folding on a fully developed brain (Hinds et al., 2008). A third

smoothing method using a heat kernel could not lead to a clear conclusion, and shows that

several smoothing methods need to be tested in future experiments.

All these findings require further investigation; in particular, even though two of our

tested smoothing methods demonstrated an optimal level of smoothing, other smoothing

methods (Yu et al., 2007) and curvature measures (Pienaar et al., 2008) need to be tested.

More cortices should also be included in the study. However, we showed that FOCUSR can

be an attractive solution to such study necessitating a large number of cortex matchings. We

believe that FOCUSR can open new doors in neuroscience by relieving studies limited by a

heavy computational burden. This experiment is one example and provides basic tools for

future studies on the human brain development. Nevertheless, FOCUSR has proved itself

as a fast and efficient surface matching method that is capable of capturing very large shape

variability, however, it is not directly applicable to images. The next section introduces for

the first time a spectral matching approach for non-parametric image registration.

5.4 Spectral Demons for Atlas Construction

Image registration is a building block in many applications in computer vision and medi-

cal imaging, including the construction of atlases. Current methods in the state-of-the-art

uses a Euler-Lagrangian approach, i.e., iterative methods (surveyed in (Crum et al., 2004)),

however, their underlying update schemes rely on forces derived from image gradients and

are, therefore, fundamentally limited by their local scope (e.g., gradients are null in texture-
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Figure 5.7: Projection of Brodmann areas V1, V2, BA1, BA2, BA3a, BA4a, BA6, BA44,
BA45, and MT from 16 matched cortices onto a reference cortical mesh smoothed with
curvature flow at the optimal smoothing level. Coloring is the probability of each point to
belong to the Brodmann area.

(a) Original mesh (b) Mean filter (c) Heat kernel (d) Curvature flow

Figure 5.8: Average of the cortical surfaces using the optimal smoothing levels (equivalent
kernel size of σ = 6.43mm). (a) Original mesh (highly convoluted). Mesh smoothed: (b)
with the mean filter (160 iterations), (c) with the heat kernel (diffusion time of 0.08), and
(d) with a curvature flow (125 iterations). Coloring is the mean curvature.

less areas and the optimization is undermined by local minima). The typical response is to

use a multilevel scheme to capture larger deformations in a higher resolution; however, this

response does not fundamentally solve the local scope of update schemes based on image

gradients.

In order to capture complex large deformations, we introduce a new approach for im-

age registration based on a direct feature matching technique that has a global scope due

to simple nearest-neighbor searches in a multi-dimensional space comprising information

on image texture (e.g., pixel intensities), space (e.g., Euclidean coordinates of pixels) and
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on global image geometry. For the latter, the graph spectral representations used in FO-

CUSR will enable the capture of large and complex deformations. Our new direct feature

matching technique provides a geometric component with a global scope that can be used

for image registration, i.e., the nearest-neighbor search finds correspondences with the best

compromise in image similarity, spatial regularity and geometric similarity. Furthermore,

our direct feature matching technique is used within a diffeomorphic framework such as the

efficient symmetric Log-Demons algorithm (Vercauteren et al., 2007, 2008). Therefore, the

new method, called Spectral Demons, enables a symmetric and diffeomorphic registration

of images undergoing large and complex deformations.

Besides the development of the Spectral Demons algorithm, a new framework for at-

las construction is also created with the extension of the symmetric Demons to perform

groupwise registration. This new simultaneous (groupwise) registration approach enables

the construction of the atlas in parallel, during the registration process (rather than with

a series of sequential pairwise registrations (Guimond et al., 2000)). We provide two forms

of our groupwise registration framework that we name the Groupwise Log-Demons (GL-

Demons, faster and suited for local nonrigid deformations), and the Groupwise Spectral

Log-Demons (GSL-Demons, slower but capable of capturing very large deformations).

In the next sections, we describe our new direct feature matching, and show how it can be

used within a diffeomorphic image registration framework before presenting the groupwise

extensions. The results evaluate the capability and robustness of the Spectral Demons to

register images with highly non-local deformations as well as demonstrate how the two forms

of the new groupwise framework can construct atlases from highly deformed images.

5.4.1 Spectral Demons

We begin our methodology with our simple and direct feature matching technique followed

by how spectral representations are built for images and how they are used within a diffeo-

morphic framework for image registration.

Direct Feature Matching

Image registration warps a moving imageM toward a fixed image F through a transformation

φ that maps points from F toM (i.e., features F(·), such as point coordinates x(·) = (x, y) or

image intensity I(·), match those in the transformed features M(φ(·)), or simply F �→ M◦φ).
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A direct approach for feature matching would find the point correspondence with a nearest-

neighbor search in the feature space (e.g., with a Voronoi tessellation or a k-d tree) such

that φ(i) = argminj∈M �F(i) − M(j)�2 (e.g., if point j ∈ M has the closest intensity from

the one of point i ∈ F , then φ(i) = j). Obviously, matching 1D features such as image

intensity would result in a highly unsmooth mapping lacking any spatial regularity (points

with the closest intensities might be far apart in the images). Spatial regularity can be

introduced by incorporating Euclidean coordinates in the feature space where points now

have the extended coordinates F = (αiIF ,αsxF ) and M = (αiIM ,αsxM) (with weights αi

and αs). A nearest-neighbor search in such extended space effectively provides similarity

in pixel intensity and closeness in space between corresponding pixels and minimizes the

similarity criterion:

Sim(F,M,φ) = (IF − IM◦φ)
2 +

α2
s

α2
i

�xF − xM◦φ�2 (5.5)

However, such method lacks geometric information from the images (how to naturally

match objects in different poses?) and does not produce a diffeomorphic mapping (a one-

to-one mapping is not guaranteed). Each issue is addressed below.

Spectral Correspondence

The spectral representation of shapes (Chung, 1997a; Grady and Polimeni, 2010; Umeyama,

1988; Scott and Longuet-Higgins, 1991; Shapiro and Brady, 1992; Jain and Zhang, 2006;

Mateus et al., 2008; Lombaert et al., 2011a) has the strong property of being invariant to

isometry, i.e., corresponding points between shapes in different poses would share the same

spectral coordinates (or signature) even if they are far away in space (e.g., a point on a nose

tip has a geometric description that is unique even if moved in space). By adding these

spectral coordinates in our feature space, we enforce an intrinsic geometric consistency in

our matching technique.

Spectral Graph Theory From the pixels of IΩ (the portion of an image I bounded by a

contour Ω), the connected undirected graph G = (V ,E ) is constructed with the vertices V

representing pixels and the edges E defined by the neighborhood structure of these vertices.

Such graph can be represented with its adjacency matrix W in terms of affinity weights

(Grady and Polimeni, 2010) where high weights are given to edges within a region of uni-
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Figure 5.9: The eigenmodes of the graph Laplacian are used as geometric descriptors. They
remain stable under complex deformations (i.e., invariant to isometry). The lower eigen-
modes describe coarse geometric properties, while higher eigenmodes describe finer details
in the images (the image contours are overlaid on the eigenmodes).

form intensities and low weights are given to edges crossing region boundaries, e.g., Wi,j =

exp (−(I(i)− I(j))2/2σ2) /�x(i)−x(j)�2 if (i, j) ∈ E and 0 otherwise (parameter σ depends

on the image noise and is set, without being limited, to σ = mean{|I(i)− I(j)|}(i,j)∈E ). The

(diagonal) degree matrix D provides the total weighting of all edges connected to each vertex

(Dii =
�

j Wi,j) and the Laplacian matrix is defined by L = D −W . Here, we consider the

general Laplacian operator on a graph L = G−1(D −W ) (Grady and Polimeni, 2010), i.e.,

a |V |× |V | sparse matrix where G is the (diagonal) node weighting matrix, e.g., G = D.

Spectral Coordinates The graph spectrum (Chung, 1997a) computed from the de-

composition of the Laplacian L = XTΛX comprises the eigenvalues (in increasing order)

Λ = diag(λ0,λ1, . . . ,λ|V|) and their associated eigenvectors X =
�

X (0),X (1), . . . ,X (|V|)� (X is

a |V | × |V | sparse matrix where each column X (·) is an eigenvector). The first eigenvector

X (0) is the stationary distribution (related to the expected return time of a random walker).

The following eigenvectors associated with the non-zero eigenvalues are the fundamental

modes of vibrations of the shape (with free ends) depicted by IΩ (in a Riemannian sense).

We thus prefer the term eigenmode since they are effectively functions over IΩ, i.e., they can

be visualized as images. As an example, a generic image (Lena has been chosen arbitrarily) is

decomposed and each of its eigenmodes is shown in Fig. 5.9. The eigenmodes of lower modal
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frequencies are harmonics depicting coarse geometric properties of IΩ while those associated

with higher eigenvalues depict finer geometric details in IΩ. Moreover, the oscillations at a

modal frequency λ occur around nodal sets (where the eigenmodal values equal 0) that reside

on prominent demarcations of the shape geometry. For instance, graph-based segmentation

methods (e.g., (Shi and Malik, 2000; Meila and Shi, 2000)) rely on the nodal set of X (1),

called the Fiedler vector (Chung, 1997a), to find a binary partition of an image. The number

of half waves in these oscillations (or the number of extrema in the eigenmodal values) is

also given by the algebraic multiplicity of their eigenvalue, nλ.

In our approach (summarized in Alg. (5)), we consider the first k eigenmodes of lower

modal frequencies X (1..k) (i.e., the strongest intrinsic geometric descriptors). Their compo-

nents represent the k-dimensional spectral coordinates X in a spectral domain1 where each

point i has the coordinates X (i) =
�

X (1)(i),X (2)(i), . . . ,X (k)(i)
�
(a truncated line of matrix

X). The spectral representation X has the strong property of being invariant to isometry,

i.e., if F and M are images of the same object in different poses, equivalent points would

share similar coordinates X F and X M . We use this property to improve our direct feature

matching by extending Eq. (5.6) with these spectral coordinates (weighted with αg). A

nearest-neighbor search between F = (αiIF ,αsxF ,αgX F ) and M = (αiIM ,αsxM ,αgX M)

provides similarity in intensity, space and in intrinsic geometric characteristics, effectively

minimizing:

Sim(F,M,φ) = (IF − IM◦φ)
2 +

α2
s

α2
i

�xF − xM◦φ�2 +
α2
g

α2
i

�X F − X M◦φ�2, (5.6)

where X M◦φ are the spectral coordinates of the corresponding points in the transformed

image M ◦ φ.
The choice of the number of spectral components k = nλ1 is motivated by the Colin de

Verdière’s number (Tlusty, 2010) which is in this case the multiplicity of the Fiedler vector

nλ1 and is also related (Tlusty, 2010) to the maximal dimension of a space in which the

graph G can be mapped (i.e., the eigenspace of the Fiedler eigenvalue reveals the principal

symmetries in IΩ and, nλ1 ≤ 2 in 2D, nλ1 ≤ 3 in 3D). More complex symmetries in the cyclic

or dihedral group could be considered with a higher k, but is not required in our method.

1In our notation x is the Euclidean coordinates (e.g., x, y, z in 3D) and superscripted X (u) is the uth

component of the spectral coordinates X
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Rearrangement of the Spectra Unfortunately, the spectral coordinates X F and X M of

points in F and M may not be directly comparable as a result of two phenomena. Firstly,

there is a sign and scaling ambiguity between corresponding eigenmodes (if X (·) is an eigen-

mode of L, so is −αX (·)) which requires a sign check and a scaling correction between X F

and X M . Secondly, the order of the eigenmodes is undefined within an eigenspace (if two

eigenmodes X (u),X (v) share the same eigenvalue, their order (u, v) may differ between two

images). The order is additionally perturbed with imperfections in isometry (near-symmetry

creates close but not equal eigenvalues and may change order between images). We rearrange

the spectral coordinates using two new simple heuristics.

The first issue is addressed by scaling the values of each eigenmodes in order to fit

the range [−1;+1]. The nodal set (where X (·) = 0) is thought to remain on a prominent

geometric feature (an axis of symmetry in a Riemannian sense) and should not be changed.

We scale thus the positive values (where X (·) > 0) with X (·)+ ← X (·)+/max{X (·)+} and

the negative values (where X (·) < 0) with X (·)− ← X (·)−/min{X (·)−}. The second issue is

addressed by finding the optimal permutation π such that X
(·)
F and X

π◦(·)
M correspond with

each other. The Hungarian algorithm (also used in (Mateus et al., 2008; Lombaert et al.,

2011a)) minimizes the following 2D dissimilarity matrix:

C(u, v) =

�
1

|IΩ|
�

i∈IΩ

�
X

(u)
F (i)− X

(v)
M (i)

�2
+

����
�

i,j

�
h

X (u)
F

F (i, j)− h
X (v)

M
M (i, j)

�2

(5.7)

The first term is the difference in eigenmodal values between the images and, the second

term measures the dissimilarities between the joint histograms h(i, j) (a 2D matrix where

the element (i, j) is the joint probability of having at the same time a pixel with intensity

i and eigenmodal value X (·) = j). The sign ambiguity can be removed by using, instead,

the dissimilarity matrix Q(u, v) = min{C(u, v), C(u,−v)}. To keep the notation simple, in

the next sections, we assume that the spectral coordinates have been appropriately signed,

scaled and reordered.

The ordered spectral coordinates provide our geometric component in our new direct

feature matching. We now briefly review how diffeomorphism can be achieved for image

registration.
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Algorithm 5 Spectral Correspondence

Input: Images F , M .
Output: Correspondence c mapping F to M
• Compute general Laplacians LF , LM .
L = D−1(D −W ), where
Wij = exp

�
−(I(i)− I(j))2/2σ2

�
/�x(i)− x(j)�2

Dii =
�

j Wij,
• Compute first k eigenmodes of Laplacians
• Reorder X M with respect to X F (Eq. (5.7))
• Build embeddings:
F = (IF ,xF ,X F ); M = (IM ,xM ,X M)

• Find c mapping nearest points F �→ M

Diffeomorphic Registration

The minimization of Eq. (5.6) does not guarantee a one-to-one mapping between points

(only closest points are assigned and undefined correspondences are possible). Such property

however exists in classical methods for diffeomorphic registration such as the Log-Demons

algorithm (Vercauteren et al., 2007). Arising from the theory of Lie groups, a diffeomorphic

transformation φ (on a Lie group structure) is related to the exponential map of a velocity

field v (a Lie algebra), i.e., φ = exp(v). In the case of stationary velocity fields, a practical

and fast approximation is possible with the scaling-and-squaring method (Vercauteren et al.,

2007) (Alg. (6)). As an aside, the inverse of the transformation is simply φ−1 = exp(−v).

The Log-Demons framework alternates, similarly to the Maxwell’s demon, between the

optimization of a similarity term, e.g., Sim(F,M ◦ exp(v)) = (IF − IM◦exp(v))2, and a reg-

ularization term, e.g., Reg(v) = �∇v�2, through the introduction of a hidden variable (the

correspondences c) which allows a small error between alternations, e.g., dist(c,φ) = �c−v�.
Moreover, invariance to the order of the input images is possible with the symmetric ex-

tension of the algorithm (Vercauteren et al., 2008, 2009a). The energy of the symmetric

Log-Demons can be written:

E(F,M, exp(c), exp(v)) =1
2α

2
i (Sim (F,M ◦ exp(c)) + Sim (F ◦ exp(−c),M))

+ α2
xdist(c, v)

2 + α2
TReg(v), (5.8)

where the Euler-Lagrangian updates are computed directly on the stationary velocity field v

and consist of the average of the forward and backward updates uF→M , uM→F mapping F to
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Algorithm 6 Exponential φ = exp(v)
Input: Velocity field v.
Output: Diffeomorphic map φ = exp(v).

• Choose N such that 2−Nv is close to 0
e.g., such that max ||2−Nv|| ≤ 0.5 pixels

• Scale velocity field φ ← 2−Nv.
for N times do

• Square φ ← φ ◦ φ.
end for

Algorithm 7 The Log-Demons Framework
Input: Images F , M and initial velocity field v
Output: Transformation φ = exp(v) from F to M

repeat

• Find updates uF→M mapping F to M ◦ exp(v)
• Find updates uM→F mapping M to F ◦ exp(−v)
• Average updates: u ← 1

2 (uF→M − uM→F ).
• Smooth updates: u ← Kfluid � u
• Update velocity field: v ← log (exp(v) ◦ exp(u))

(approximated with v ← v + u)
• Smooth velocity field: v ← Kdiff � v.
until convergence

M ◦ exp(c) and, M to F ◦ exp(−c) such as (see (Vercauteren et al., 2007) for more details):

uF→M = − IF − IM◦φ

�∇IM◦φ�2 + α2
x|IF − IM◦φ|2

∇IM◦φ. (5.9)

In the first step, the transformation φ is fixed and the updates are computed (optionally

smoothed with a kernel Kfluid, e.g., Gaussian with σfluid). In the second step, the velocity

field is updated v ← v + u (optionally smoothed with the a kernel Kdiffusion, e.g., Gaussian

with σdiffusion, see (Cachier et al., 2003)). The general symmetric diffeomorphic Demons

framework is summarized in Alg. (7).

Spectral Demons

At this stage, we have described two methods. The first (the direct feature matching tech-

nique, Eq. (5.6)) can capture large deformations between images but does not guarantee

diffeomorphism and symmetry. The second (the Demons algorithm, Eq. (5.8)) offers these

properties but suffers from the local scope of the update forces derived from the image

gradient (Eq. (5.9)). Both methods can benefit from the incorporation, with very little

modifications, of our spectral correspondence approach in the Log-Demons framework.

The so-called Spectral Demons algorithm takes advantage of the efficient diffeomorphic

framework offered by Alg. (7) and finds the correspondences between images F and M using

our global spectral approach in place of using local gradient-based updates. To be more

precise, the first two steps of Alg. (7) (originally computing updates with Eq. (5.9)) now

perform spectral correspondence between images F and M ◦ exp(v) using Alg. (5) (and

respectively between M and F ◦ exp(−v)). This modification enables large jumps in each

iteration where points are moving toward their isometric equivalent even if they are far away

in space. This virtually enables the capture of very large deformations (with invariance to
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Fixed Moving Registered 

Figure 5.10: Implicit image segmentation by partitioning the images with the nodal sets of
the first and second eigenmodes. Image contours are overlaid for visualization.

isometry) between images as well as a faster convergence of the algorithm. The underlying

energy being minimized has the form of Eq. (5.8) where its similarity term is expressed with

Eq. (5.6).

Multilevel Scheme A multilevel scheme is also possible with the Spectral Demons where

large deformations are assumed to be related with coarse geometric information. Spectral

updates can thus be safely used in a lower resolution level, while finer details and local

deformations remain computed in the higher levels of resolutions using the classical update

forces based on the image gradient. This multilevel scheme keeps the computation of the

eigenmodes tractable. On the same note, the computation of the eigenmodes can be used

with the efficient Lanczos method (used by Matlab) (Lehoucq et al., 1997) which has a

running time of O(n
√
n) +O(n2) (Shi and Malik, 2000), where n is the number of pixels in

IΩ, while spectral matching can be performed with a k-d tree which is built in O(n log2 n)

and queried in O(log n).

Note on Image Segmentation The Laplacian eigenmodes have been demonstrated

to have important properties in the field of spectral graph theory (Chung, 1997a; Shi and

Malik, 2000; Luxburg, 2007; Grady and Polimeni, 2010) by providing a probabilistic foun-

dation (Meila and Shi, 2000; Robles-Kelly, 2005) for graph-based segmentation methods.

In particular, the Normalized Cut problem (Shi and Malik, 2000) finds a segmentation x

by minimizing xTLx
xTDx (revealed by the Fiedler vector of the normalized Laplacian D− 1

2LD− 1
2

(Meila and Shi, 2000)). Spectral Demons considers the more general Laplacian operator L
and effectively exploits for registration the same global image description used by Normal-
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ized Cuts for segmentation, i.e., eigenmodes of the (general) Laplacian operator are used

for image registration. Since the Fiedler vector is an inherent part of our algorithm, binary

segmentations of images come at no extra cost by taking either the positive or negative val-

ues of the Fiedler vector, X (1)+ or X (1)− . For example, the implicit segmentation of Lena’s

image, shown on Fig. 5.10 (with overlaid image contours), was obtained with the nodal sets

of the first and second eigenmodes (positive values of the Fiedler vector gave warmer colors,

negative values gave cooler colors, see also 1st and 2nd eigenmodes on Fig. 5.9). Nodal sets

of higher frequency eigenmodes may additionally reveal important geometric features for

meaningful segmentation, however, an exhaustive experimental study on the segmentation

aspect of our registration method goes beyond the scope of this thesis.

5.4.2 Groupwise Demons

The atlas is defined as mentioned earlier, with a set of N images {Ii}i=1..N nonrigidly aligned

to their average shape Ĩ. Our new shape averaging framework extends the symmetric Log-

Demons algorithm (Vercauteren et al., 2008) and can use classical gradient-based updates

(GL-Demons) or an improved spectral matching for groupwise registration (GSL-Demons).

The Log-Demons algorithm (Alg. (7)) is slightly modified such that convergence is toward

an average shape instead of the fixed image. Eq. (5.8) is modified accordingly to become:

E(F,M, c, v) = α2
iSim(F �,M �) + α2

xdist(c, v)
2 + α2

TReg(v), where (5.10)

Sim(F �,M �) = (F � −M �)2, dist(c, v) = �c− v|�, and Reg(v) = �∇v�|2

The similarity term incorporates diffeomorphism and symmetry with F � = F ◦ exp(−c)

and M � = M ◦ exp(+c). Both images F � and M � effectively converge toward an average

shape Ĩ = F ◦ φ−1 + M ◦ φ (similar to the approaches in (Avants and Gee, 2004a; Bossa

et al., 2007)).

Our groupwise framework is based on Guimond’s et al. approach (Guimond et al., 2000)

where they construct the average image Ĩ sequentially by alternating between pairwise reg-

istrations (i.e., fixing a reference image) and updates of the average image (i.e., transforming

the reference image). Our novelty is to directly compute Ĩ in parallel with simultaneous

(groupwise) registrations (illustrated in Fig. 5.11). To do so, Eq. (5.10) is extended to in-

corporate N velocity fields that warp all images {Ii ◦ exp(ci)} toward the average image Ĩ.
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Figure 5.11: Groupwise Demons: Si-
multaneous registration of 4 images
(blue circles) toward a reference im-
age that evolves in the space of dif-
feomorphisms (manifold). The refer-
ence image converges to the average
shape (middle red circle).

The new groupwise framework is summarized in Alg. (8) and the underlying energy is:

E(Ĩ , {Ii, ci, vi}) =
1

N

N�

i=1

�
α2
iSim(Ĩ , Ii ◦ exp(ci)) + α2

xdist(ci, vi)
2 + α2

TReg(vi)
�

(5.11)

The reference image can be optionally generated with weighted contributions from all

images (e.g., weights different than 1/N in order to remove outliers). The minimization of

all similarity terms, {Sim(Ĩ , I �i)}, causes all warped images to become similar to the reference

image and the sum of all velocity fields is brought to a minimal value at convergence. Similar

to the convergence of (Guimond et al., 2000), the Groupwise Demons framework effectively

brings the reference image toward the barycenter of all images. The average image is simply

generated with Ĩ = 1
N

�N
i=1 Ii ◦ exp(ci).

Groupwise Spectral Log-Demons

The update schemes based on image gradients and on spectral correspondence can be used

in the Groupwise Demons framework. The Groupwise Log-Demons (GL-Demons) algorithm

uses update forces derived from image gradients and is well suited for images with local

nonrigid deformations, while the Groupwise Spectral Log-Demons (GSL-Demons) algorithm

uses spectral correspondences as update forces (i.e., u is found with Alg. (5)) and is better

suited for large and highly nonlocal deformations. GSL-Demons enables large jumps during

the construction of the atlas where points move toward their isometric equivalents even if

they are far away in space. The atlas construction can handle very large deformations and

convergences in fewer iterations (typically 5 iterations are sufficient). The energy has the

same form of Eq. (5.11) and uses the similarity term of Eq. (5.6).
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Algorithm 8 Groupwise Demons Framework

Input: N images with initial reference (e.g., Ĩ = I1)
Output: Transformations φi = exp(vi) mapping Ĩ to Ii

Average shape is Ĩ = 1
N

�N
i=1 Ii ◦ exp(vi)

repeat
for i = 1 → N do
• Find updates ui ← mapping(Ĩ , Ii ◦ exp(vi)).

(mapping() differs in GL and GSL-Demons)
• Smooth updates: ui ← Kfluid � ui.

(convolution of a Gaussian kernel on ui)
• Update velocity fields: vi ← log (exp(vi) ◦ exp(ui))

(approximated with vi ← vi + ui).
• Smooth velocity fields: vi ← Kdiff � vi.
end for
• Get reference update: uref = − 1

N

�N
i=1 vi

• Update velocity fields: vi ← vi + uref.
• Update reference: Ĩ ← 1

N

�N
i=1 Ii ◦ exp(vi).

until convergence

Figure 5.12: Pairs of images used in the synthetic experiments (Lena, heart, baseball player).
Each left image is a fixed image, each right side is a moving image generated with a random
deformation of at most 25 pixels (difficulties in red). These transformations provide our
ground truth.

Multilevel Scheme

Moreover, large and complex deformations can be captured in a low resolution level with

GSL-Demons, improving thus the processing time, while the remaining small and local defor-

mations can be recovered with GL-Demons in higher resolutions. This multilevel approach

keeps the computation of the eigenmodes tractable.



127

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

Demons 

Spectral Demons 

Energy 

Iterations 
Iteration 1 Iteration 2 Iteration 5 Iteration 15 Final 

D
em

on
s 

Sp
ec

tr
al

 D
em

on
s 

Figure 5.13: Comparison of the iterations in the Log-Demons and the Spectral Demons (our
method) within the same resolution level. The update forces (indicated with the arrows and
scaled for visualization) have a local scope with the Log-Demons and a global scope with
the Spectral Demons . This global scope allows a faster convergence while the Log-Demons
remains in a local minimum.

5.4.3 Results and Discussion

We now evaluate the performance of the Log-Demons (our benchmark) and Spectral Demons

(our method) by registering images with large and highly nonlocal deformations. In our

controlled experiments, the full power of the Spectral Demons can be appreciated with drastic

deformations of the images. Accurate measurements, with known ground truth, are used

to evaluate the improvements in registration accuracy with respect to the Log-Demons . We

additionally provide a real application where two human brains are registered.

In a second set of experiments, GL-Demons and GSL-Demons are evaluated by con-

structing atlases of images with large deformations. We verify, in a controlled experiment,

convergence toward an average shape, as well as in a real experiment, the construction of a

3D atlas of cardiac images.

Controlled Experiments

In the first controlled experiment, we evaluate the fundamental difference between the update

schemes of the Log-Demons and Spectral Demons . To do so, we analyze the convergence

rate of both algorithms and, since we are not interested here in their final performance, we

compare them within the same level of resolution. The algorithms use the same parameter

set (σfluid,diffuse = 1,αx = 1, k = 2,αg = 0.05,αs = 0.15,αi = 0.8). We register the images

on Fig. 5.12 (Lena has size 1282, the heart is 752 and the baseball player is 110× 75). Each
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MSE=0.0024 (±0.0173) 

MSE=0.0047 (±0.0291) MSE=0.0057 (±0.0346) 
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Figure 5.14: Final registrations for (top row) Multilevel Log-Demons with 4 levels, (middle
row) Spectral Demons with 1 level, (bottom row) Multilevel Spectral Demons with 4 levels.
The fixed image is in blue and misalignments of the registered image are in red. The mean
square differences of intensities are reported along their standard deviations. Log-Demons
is limited in areas of high deformations, while Spectral Demons can capture these large
deformations.

moving image is generated with random diffeomorphic deformations φtruth with displacements

of at most 25 pixels, i.e., we take the exponential map of a random velocity field generated

with 15 random displacements (control points randomly located) diffused across the image

(Gaussian smoothing σ = 10 pixels). Notably, Lena’s hat, her neck and, the player’s arm are

the highest registration challenges, while the cardiac image (a 2D slice of an MRI) shows a

papillary muscle (red circle on Fig. 5.12) severely deformed and almost fully collapsed (the

muscle forms, however, a dent in the image and provides a signature that Spectral Demons

can understand). The iterations of the Log-Demons and Spectral Demons are compared in

Fig. 5.13. It shows that within the same level of resolution, the update forces computed with

spectral correspondence are coherent spatially and geometrically, i.e., points move toward
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Figure 5.15: Differences (in pixels) between computed transformations and ground truth
for (top row) Multilevel Log-Demons , (middle row) Spectral Demons and, (bottom row)
Multilevel Spectral Demons . The fixed images are overlaid on the error maps. The Multilevel
Spectral Demons decreases the error by 60% from the Multilevel Log-Demons .

their geometric equivalent, however the update forces derived from the image gradient lack

any global information on the shape geometry and put the Log-Demons into an erroneous

local minimum.

The use of a multilevel scheme allows the Log-Demons to capture larger deformations

(Fig. 5.14) but does not change the inherent local scope of its update forces. For instance,

Log-Demons even with 4 levels of resolution ultimately fails in recovering the extreme de-

formations on the anterior side of the heart, while Spectral Demons without a multilevel

scheme can successfully register the whole myocardium with a 71% improvement in perfor-

mance (mean square differences (or MSE) of intensities with ground truth from 19.9×10−3 to

5.7×10−3). The performance is further improved when 4 levels are used (down to 2.4×10−3

MSE, or a 88% improvement in the heart registration). Similar results are observable with

the other images. Lena’s hat, her neck and, the player’s arm are successfully registered using
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Figure 5.16: Robustness to deformation and noise. a) Deformations of Fig. 5.12 are amplified
to a max of 40 pixels (image size is 1282, deformed samples on top). The transformation
differences with ground truth (y-axis in pixels) are smaller with Spectral Demons (blue) than
with Log-Demons (red). b) Gaussian noise is used (samples around the hat area). Spectral
Demons looses advantage after σ > 0.075, however even with a lower error, Log-Demons
stops moving when increasing noise (error is similar with untransformed images (controls, in
green)), whereas Spectral Demons continues to recover large deformations.

the Spectral Demons with respectively 73% improvement over Log-Demons in Lena’s image

and 63% in the baseball image.

Additionally, the quality of the computed registration maps φ is evaluated in terms of

difference of displacements (in pixels) with the ground truth �φ− φtruth�. The Log-Demons

results in registration maps (Fig. 5.15) with larger errors in high deformation areas (e.g.,

Lena’s hat or neck), whereas the Spectral Demons results in a smoother registration map

with significantly less errors (62% less) in these same areas.

The cost of the global scope offered by Spectral Demons is increased computation time.

For instance, on Lena’s image, 50 iterations requires 108.49 seconds with Log-Demons and

201.43 seconds with Spectral Demons ; on the heart image, 21.01 seconds with Log-Demons

and 41.03 seconds with Spectral Demons ; and on the baseball player’s image, 42.06 seconds

with Log-Demons and 102.17 seconds with Spectral Demons . We used unoptimized Matlab

code on a Core 2 Duo, 2.53GHz. We now evaluate the robustness to deformation and noise

of the Spectral Demons algorithm and show its applicability to real medical images.

Robustness to Deformation The Spectral Demons ’ robustness to deformation is eval-

uated on Lena’s image by exaggerating the previous synthetic transformation from φ0 =
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exp(0v) (zero displacements) to φ2 = exp(2v) (creating a maximal displacement of 40 pixels,

see samples on Fig. 5.16). The performance is evaluated with the transformation differences

(in pixels) from the ground truth. Both Log-Demons and Spectral Demons perform with sub-

pixel accuracy on deformations below 20 pixels, however they differ with larger deformations

where our method shows a greater robustness, e.g., with a deformation of 40 pixels (more

than 30% of the image size) the average transformation error is 5.9 pixels with Log-Demons

and 1.6 pixels with Spectral Demons (a 73% decrease).

Robustness to Noise The analysis on the robustness to noise reveals the current lim-

itations of both algorithms. An increasing Gaussian noise is added to Lena’s image, from

σ = 0 to 0.25 (samples on Fig. 5.16). Spectral Demons performs better with noise σ < 0.075,

however the comparison with control images (the unregistered noisy images) reveals that

Log-Demons stops transforming the images when noise is increased (due to trapping in a

local minimum). For instance, Fig. 5.16 shows that when using Log-Demons with noise

σ = 0.13, the registered image is similar to its initial state, while Spectral Demons , even

though with a larger average error (6.8 pixels versus 3.7 pixels), continues to recover large

deformations (see the hat area on Fig. 5.16). With noise σ > 0.2, the corrupted images

become problematic for Spectral Demons (graph edge weights are almost null and may need

a different heuristic weighting), whereas Log-Demons is almost immediately trapped in a

local minimum.

Registration of Medical Images

The performance of the Spectral Demons is evaluated in a medical application with the

registration of brain MR images from the Internet Brain Segmentation Repository (IBSR,

http://www.cma.mgh.harvard.edu/ibsr, our images are 643 volumes). The brain presents

a wide variety of shapes and internal structures across individuals. While the cerebral cortex

is particularly convoluted and is the focus of many specific surface matching techniques

((Fischl et al., 1999; Yeo et al., 2010a; Reuter, 2009; Lombaert et al., 2011a)), the registration

of internal components in the brain, such as the white or gray matter, requires a volumetric

approach. We chose two individuals that have lateral ventricles with different sizes (Fig. 5.19,

the moving image shows a longer ventricle). We evaluate the registration accuracy with the

overlap of the provided manual segmentations of the white and gray matter (measured with

the Dice metric defined as the ratio 2(A∩B)/(|A|+ |B|) with 1 being an optimal overlap) as

http://www.cma.mgh.harvard.edu/ibsr
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Fixed Moving 
(Original) 

Registered Moving 
(Demons) 

Registered Moving 
(Spectral Demons) 

Difference (MSE) with Fixed 29.0 (±51.3) x10-3 20.8 (±37.7) x10-3 19.9 (±36.2) x10-3 

Dice metric white matter 0.6515 0.7126 0.7166 

Dice metric gray matter 0.6931 0.7572 0.7784 

Figure 5.17: Registration in 3D between two brains from healthy subjects using Log-Demons
and Spectral Demons (both with 4 levels). While observations show apparently similar results
(ventricles are circled), the mean square differences of intensities (MSE) between the fixed
and registered images reveal an increase of 4% in accuracy and precision when using Spectral
Demons . The Dice metrics of the white and gray matter (measuring segmentation overlaps)
also increase with Spectral Demons .

well as with the mean squared differences of pixel intensities between the fixed and registered

images. The original (unregistered) setting has a Dice metric of 0.65 in the white matter and

0.69 in the gray matter. Both algorithms (using 4 levels) increase the overlap of the white

and gray matter to respectively above 0.71 and 0.75, with a slight advantage to the Spectral

Demons , however the comparison of the mean squared differences of intensities reveals a

4% improvement in accuracy and precision when using Spectral Demons (from 29.0 × 10−3

error in the original setting, decreasing to 20.8× 10−3 with Log-Demons and to 19.9× 10−3

with Spectral Demons). This experiment showed that Spectral Demons offers an improved

performance in a real application when registering medical images.

The computation and the current implementation show again that there is room for im-

provements with our method. With downsampled images of size 323, 50 iterations require

108.49 seconds with Log-Demons and 201.43 seconds with Spectral Demons . Notably, mem-

ory becomes problematic with our unoptimized Matlab code as volumes beyond 323 require

the decomposition of Laplacian matrices larger than 323 × 323 (although extremely sparse,

our current code is not optimized for such large matrices).
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Note on Computational Efficiency

A fast Spectral Demons algorithm could find a widespread use in many medical applica-

tions where speed is non negligible, notably, in interventional imaging where faster and more

accurate registration and fusion of images would help the clinicians to understand what is

happening inside a patient and would, therefore, help them guide their tools accordingly.

The improvement of the computational efficiency of the Spectral Demons can be addressed

through several strategies. Firstly, the algorithm could be changed to avoid a spectral decom-

position in each iteration. For instance, similar to the levelset frameworks where its distance

transform is reinitialized once every few iterations, the initial eigenmodes of the Spectral

Demons could be reused and warped during a few iterations before being reinitialized. This

is a valid scheme since the underlying graphs of the images in two successive iterations are

assumed isometric, i.e., their Laplacian matrix should theoretically have the same set of

eigenvalues and eigenmodes, and in practice, small image perturbations between iterations

may slightly change the eigenmodes and could, therefore, be assumed negligible between a

few iterations. Secondly, the spectral decomposition could benefit from approximation ap-

proaches. For instance, the Nyström method (Drineas and Mahoney, 2005) removes random

lines and columns of the Laplacian matrix before the decomposition and approximates them

later; therefore, the computation of the eigenmodes is faster due to this smaller Laplacian

matrix. Moreover, the sparsity of the Laplacian matrix as well as the order of its lines

and columns could be rearranged in order to yield a more efficient decomposition (Li et al.,

2011). Thirdly, the current implementation could greatly benefit from the use of compiled

programming languages, e.g., C++, or parallel computing, e.g., GPU. The Spectral Demons

algorithm, besides being more accurate than the conventional Demons, has, therefore, the

potential of being computationally efficient.

Construction of Cardiac Atlases

After showing and discussing the fundamental differences and substantial improvements

of the Spectral Demons algorithm with conventional Log-Demons , its use within the new

groupwise framework is presented. More precisely, the construction of atlases is evaluated

with images exhibiting large deformations. In a synthetic experiment, convergence toward an

average shape is verified with both groupwise variants, the GL-Demons and GSL-Demons

framework. The parameters are, therefore, similar in both variants: σfluid,diff = 1,αx =
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Figure 5.18: Groupwise registration of 10 images deformed randomly (100 trials, 1 sample
on top row, with known ground truth) using GL-Demons and GSL-Demons, Left) Best and
worst atlases (based on Dice metric among 100 trials) demonstrating the capability of the
GSL-Demons to handle large deformations, a) Average Dice metric with ground truth, b)
Intensity difference between average shape and ground truth, c) transformation error with
ground truth. GSL-Demons converges faster toward the average shape.
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Figure 5.19: Atlas of ex vivo hearts (isosurfaces are shown) using a) GL-Demons (4 levels,
showing failure in the right ventricle), b) GSL-Demons (1 level), c) and GSL-Demons (4
levels, with correct right ventricle). GSL-Demons capture successfully large deformations.
Jacobian determinants (axial planes) show that spectral matching capture smooth and large
deformations while gradient-based updates capture local deformations.
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1, k = 5,αg = 0.1,αs = 0.2,αi = 0.7 in 2D). In a second experiment, both frameworks are

tested with real cardiac images that exhibit a high shape variability (parameters: σfluid,diff =

0.75,αx = 1, k = 5,αg = 0.25,αs = 0.35,αi = 0.4 in 3D).

Synthetic deformations Convergence and capture of large deformations are now eval-

uated. N/2 velocity fields v are generated randomly using 15 control points with random

locations in the image and random displacements of at most 15 pixels (20% of the im-

age size) that are diffused over the image. Their forward and background transformations

(exp(v) and exp(−v)) are applied to an initial image I0, holding thus the average shape to

I0 (establishing our ground truth). Since we compare the convergence and its rate, and not

the final performance, the multi-level scheme (which should be used in real applications) is

not applied. Fig. 5.18 shows the groupwise registrations of 10 random hearts (2D 75 × 75

images) through 100 trials (a total of 1000 hearts). The average Dice metric (measuring the

overlap) between all computed average shapes and I0 as well as the intensity errors (MSE)

reveal that the reference shape (defined arbitrarily as one of the 10 images) evolves toward

the ground truth (i.e., Dice increases and MSE decreases). Moreover, the N deformation

fields become closer to the ground truth during registration. The striking difference in the

convergence rates shows the full power of GSL-Demons (less than 5 iterations are required)

while GL-Demons might not converge with such large deformations (we stopped the algo-

rithms after 200 iterations). Time-wise, 35 iterations take 194 seconds with GSL-Demons,

and 53 seconds with GL-Demons (using unoptimized Matlab code on a 2.53GHz Core 2

Duo). GSL-Demons shows a better performance with high deformations than GL-Demons.

Cardiac Atlases We now evaluate the construction of atlases with organs of high shape

variability. Ex vivo hearts are particularly challenging to register as they present a high

variability in fixture poses due to flabby ventricular walls. The human ex vivo DTMRI

dataset (Rapacchi et al., 2010; Lombaert et al., 2011b) provides good candidates to evaluate

our algorithms. We use four hearts (b = 0 images of size 643) that were excluded in the

construction of the human atlas (Lombaert et al., 2011b) due to their hypertrophy and highly

deformed shapes (see Fig. 5.19). GL-Demons (with 4 resolution levels) fail in recovering the

shapes of the right ventricles, while GSL-Demons successfully constructs the atlas even with

1 level of resolution (downsampled images at size 283). As a comparison, 35 iterations takes

40 minutes in Matlab with GSL-Demons and 9 minutes with GL-Demons. Using GSL-
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Original and Registered Sequence (3D+t MRI) 
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Figure 5.20: Atlas (average shape) from 11 frames of a 3D+t cardiac MRI sequence. (Left)
Original 3D frames before and after groupwise registration (contraction/expansion is cor-
rected). (Right) Computed atlas with the average shape (only the GSL-Demons version is
shown). The intensity error (between all registered frames and the atlas) is reduced by 30%
with GSL-Demons.

Demons with 4 resolution levels reduce the intensity error (MSE) by half (from 10.8 to

5.08). Moreover, the Jacobian determinants of the transformation fields show that the large

and highly non-local deformations are successfully captured with the spectral-based update

scheme (high and smooth Jacobian in Fig. 5.19 b) while local deformations are captured

with the gradient-based update scheme in the higher levels of GSL-Demons (Fig. 5.19 c). A

second cardiac atlas (Fig. 5.20) is constructed from a 3D+t MRI sequence (11 frames of 643

with high systolic deformations on frame 6) as an example to show that GL and GSL-Demons

can be successfully used on denser images and not only on segmented hearts. The study

of the in vivo cardiac motion is undermined with registration challenges. Both algorithms

performing successfully perform a groupwise registration, even with systolic configurations

(frame 6).

5.5 Conclusion

In this additional chapter, we have extended the use of spectral methods to construct atlases

in two manners. Firstly, FOCUSR, the surface matching method developed in Chapter 4,

has been shown capable of constructing atlases in concrete applications. For instance, an

atlas of the human cerebral cortex has been constructed from 16 brain surfaces. The atlas

reveals the average shape of the human cortex and allows a shape analysis of the princi-

pal modes of variations across the dataset. Secondly, in order to explore the shape of the

primary cortical folding, which is relevant to studies on the brain development, FOCUSR
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has been used to align a large number of cortices with varying degrees of smoothing. In

fact, the speed advantage of FOCUSR allowed the matching of 14,400 pairs of brain sur-

faces, which would have been prohibitively expensive with current brain matching methods

in the state-of-the-art. These experiments on brain surfaces provided basic tools for future

studies on shape analysis as well as preliminary results on the exploration of the primary

cortical folding pattern. Lastly, the direct feature matching technique and the spectral rep-

resentations developed in FOCUSR served as basis to a fundamentally new approach for

image registration. This new approach can be used within classical frameworks such as the

Log-Demons , yielding in this case the Spectral Demons algorithm. It is capable of capturing

very large, complex and highly non-local deformations between images, in fact, displace-

ments of more than 30% of the image size were recovered and the registration accuracy even

showed an improvement of 73% over the conventional Log-Demons algorithm. This substan-

tial improvement is rendered possible by the spectral representation, which captures a global

geometric description of the underlying Riemannian structure of images. This is in contrast

with classical approaches for image registration, which rely on update schemes limited by

the local scope of forces derived from image gradients. Additionally, the Demons algorithm

has been extended to perform groupwise registration in parallel with the computation of

the average shape, i.e., the atlas is constructed during the registration process. This new

groupwise framework is versatile enough to be used with any variant of the Demons algo-

rithm, including our newly developed Spectral Demons , which yields the Groupwise Spectral

Demons (or GSL-Demons). The conducted experiments used 1000 random hearts severely

deformed and showed that the computation of atlases converges toward an average shape.

We additionally showed that GSL-Demons could construct an atlas for a challenging dataset

of ex vivo hearts with high shape variability.

To summarize, this chapter provided additional material based on spectral correspon-

dence. It showed that FOCUSR can be used to quickly construct atlases of brain surfaces

(enabling consequently new studies previously limited by computational burden), and that

spectral representations can also be used with images in order to construct atlases of organs

with very large deformations. The next chapter provides a general discussion that establishes

links between the tools developed in the thesis.
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PART III

CONCLUSIONS
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CHAPTER 6 GENERAL DISCUSSION

The previous chapters aimed at answering a few limitations of existing methods for atlas

construction. Two aspects were specifically studied, a) how to automate the atlas construc-

tion and b) how to handle very large deformations in a dataset. The general methodology

established three research objectives that led to several original tools and frameworks for

atlas construction. Firstly, an automated framework was developed in order to analyze the

cardiac fiber architecture, secondly, a new approach for finding correspondences that involves

spectral matching has been investigated, and thirdly, these new findings allowed the creation

of an original framework for accurate image registration that is capable of handling very

large deformations. The development of these new tools, summarized in Fig. 6.1, are now

discussed in the following sections with a global perspective on their general advances made

in the state-of-the-art of surface matching and image registration, as well as with a focus

on their implications and limitations. Additionally, these new methods and frameworks are

shown to be more than a series of individual tools. The general discussion highlights the

general trends arising from their development, and also relates them with previous work.

6.1 Surface Matching

6.1.1 Spectral Correspondence with FOCUSR

Two types of medical data have been studied during the thesis: surfaces and images. Surfaces

are particularly adapted for modeling, for instance, membranes, valves or organ boundaries.

These examples may, however, undergo complex deformations or shape variability that may

render their matching difficult, and this is no exception to cerebral cortical surfaces studied

in this thesis. Historically, surface correspondences were found by slowly deforming their

models until being matched (Terzopoulos et al., 1987; Terzopoulos, 1980; Mcinerney and

Terzopoulos, 1996). These active models are often limited by the local scope of the forces

guiding their control points. This limitation led to the development of FOCUSR in Chap-

ter 4, which is fundamentally different than classical approaches for surface matching since

it avoids the difficult deformation of models and rather aims at directly establishing corre-

spondences between surfaces. This is in comparison with FreeSurfer (Fischl et al., 1999) or

Spherical Demons (Yeo et al., 2010a), leading solutions for brain surface matching, which
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Figure 6.1: Improvements made during the thesis. Spectral Matching has been improved by
introducing an original direct feature matching technique that can incorporate virtually any
information capable of helping matching. It is implemented by FOCUSR (Chapter 4) for
brain surface matching and by Spectral Demons (Chapter 5) for image registration. Both
algorithms allow consequently the capture of very large shape variability. Additionally,
two new frameworks for atlas construction provide new contributions in the state-of-the-
art. The first framework allowed the construction of a human atlas of the cardiac fiber
architecture, while the second framework enables the computation of the average shape
during the registration process and can incorporates the previous Spectral Demons algorithm
in order to build atlases with very large shape variability.

finds correspondences on inflated brain surface models. These solutions, although accurate,

have a prohibiting computational cost associated with the inevitable handling of surface

distortions during their inflation.

The originality of FOCUSR in brain surface matching remains in its use of global geo-

metric descriptors captured with spectral graph representations. This underlying idea has,

in fact, been investigated in the past (van Kaick et al., 2011; Zhang et al., 2010) but has

never been successfully used for dense surface correspondence. For instance, only hierarchi-

cal structures are matched in (Reuter, 2009; Leordeanu and Hebert, 2005; Shi et al., 2010),

i.e., correspondences are established between large areas and not at the vertex level. Since
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FOCUSR uses similar graph spectral representations, it may resemble other spectral match-

ing methods such as (Mateus et al., 2008; Carcassoni and Hancock, 2003; Jain and Zhang,

2006), however, there are several major differences. Notably, FOCUSR improves spectral

correspondence with an efficient nonrigid deformation of spectral graph representations. This

is, for instance, different than previous spectral approaches (Mateus et al., 2008) that sim-

ply rely on a rigid transformation or (Jain and Zhang, 2006) that are constrained by their

choice of nonrigid deformation model. The basic principle of FOCUSR is also different than

conventional approaches since it establishes correspondences with a direct feature matching

technique that can use virtually any additional information capable of helping matching.

Spectral representations are, in fact, used as regularization in a multidimensional feature

space. This different approach enables dense surface correspondence at the vertex level and

is one explanation on why the results of Chapter 4 showed a substantial improvement in

accuracy over a simple spectral matching approach. Furthermore, additional information

may also be incorporated in FOCUSR as weighting on graph nodes. This original weighting

strategy may be beneficial for all spectral graph matching methods since vertices can be

efficiently activated or deactivated depending on the application, e.g., graph node weighting

can be derived from pointwise measurements or can model vertex relevance from specific

statistics.

Additionally, FOCUSR was used in Chapter 5 to construct an atlas of the human cerebral

cortex. The variability of the cortical folding pattern, studied in (Ono et al., 1990; Welker,

1990), and of functional areas, studied in (Fischl et al., 1999; Lohmann et al., 2008), are

still not fully understood in humans. Their studies typically require a prohibitively large

number of surface matching, however, the speed advantage of FOCUSR is beneficial for such

neuroimaging studies and enables new experiments such as the ones conducted in Chapter 5

on the anatomical and functional variability of the cortical surface.

6.2 Image Registration

The tools developed during the thesis also addressed the registration of images and more

precisely of cardiac MRI images. Three main approaches have been elaborated: the use

of simplified images within a conventional registration framework, the application of the

new spectral approach to medical images, and a joint approach for registration and shape

averaging in order to construct atlases.
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6.2.1 Framework for Atlas Construction

The first approach for image registration is presented in Chapter 3. It elaborates a new

framework for atlas construction where image registration is facilitated with an initial label-

ing of major cardiac structures. These simplified images enable the automation of the atlas

construction and minimize user interaction. This is in contrast with previous frameworks

(Helm et al., 2005b; Peyrat et al., 2007) that often assume a high contrast of images, and

where simple thresholding of pixel intensities is generally sufficient. The labeling of im-

ages is computed with a developed method based on Graph Cuts (Boykov and Jolly, 2000),

that respects the topology of cardiac structures (i.e., the myocardial wall contains no hole).

Furthermore, the registration is simplified since these labeled images prevent the alignment

of ambiguous configurations of images (i.e., information is digested in images to a few la-

bels, facilitating correspondences between images). The alignment of the internal structures

within each label is performed with an additional nonrigid registration of a masked image of

the myocardium. This two-level strategy for registration ensures, therefore, that the coarse

and large deformations are handled by the alignment of simplified images, and that the fine

deformations are handled with a final registration based on image intensity. Moreover, the

new framework also improves the previous approach used with a canine dataset (Helm et al.,

2005b) by using a more up-to-date registration algorithm. The symmetric Demons algorithm

(Vercauteren et al., 2008, 2009a) was chosen, as it is well adapted for averaging shapes.

The new framework has been applied to the construction of the first human atlas of

the cardiac fiber architecture, which is relevant to the study of various cardiac mechanical

functions (Costa et al., 2001), of cardiac electrophysiology patterns (Hooks et al., 2002), and

of remodeling processes (Wu et al., 2006). The results showed that the variability of the fiber

structures in humans concurs with studies on other species such as on dogs (Helm et al.,

2005a,b; Helm, 2005; Sundar et al., 2006; Peyrat et al., 2007; Peyrat, 2009; Gilbert et al.,

2007), goats (Geerts et al., 2002) and rats (Bishop et al., 2009). A preliminary experiment in

Appendix B also shows that the fiber architecture may characterize certain cardiomyopathies.

Additionally, the supplemental study in Appendix A suggests that two populations of laminar

sheets may appear in several myocardial segments. These findings may be compatible with

the intriguing and controversial (von Segesser, 2005) theory of the Torrent-Guasp model

(Torrent-Guasp et al., 2005) that considers the whole cardiac myocardium as a single band

folding onto itself, i.e., this folding might explain the presence of two configurations of fiber
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structures.

6.2.2 Spectral Demons

The second method, developed in Chapter 5, introduces a fundamentally new approach

for image registration. It is based on the direct feature matching technique elaborated in

Chapter 4 with FOCUSR. As mentioned earlier, the underlying spectral representations

(Scott and Longuet-Higgins, 1991; Shapiro and Brady, 1992) of this approach enable the

capture of large deformations between images, i.e., matching is facilitated because objects

with significantly different configurations would still share similar spectral representations.

The developed algorithm, named Spectral Demons , benefits from using spectral correspon-

dence (Mateus et al., 2008; Carcassoni and Hancock, 2003; Jain and Zhang, 2006) since

very large deformations are naturally handled. The global geometric description provided

by spectral representations actually contrasts with the local nature of the forces underlying

conventional approaches for image registration. Although elegant mathematical frameworks

(Beg and Khan, 2006; Bossa et al., 2007; Durrleman et al., 2009b, 2008, 2011) and compu-

tationally efficient frameworks (Cachier et al., 2003; Vercauteren et al., 2007, 2008) exist in

the literature, these forces are often derived from image gradients whose local scope limits

the registration to local deformations, i.e., the optimization remains local even in a mul-

tilevel scheme. The use of a spectral correspondence approach within these conventional

registration frameworks provides, in fact, a missing link between image registration and

the capture of very large and highly non-local deformations. For instance, by extending the

Demons algorithm (Thirion, 1998; Vercauteren et al., 2009a), the results showed that Spectral

Demons substantially improves the matching accuracy over the conventional approach. The

cost of such improvement is, however, an increased computational burden due to the spec-

tral decomposition, i.e., computing eigenvectors is more costly than approximating image

gradients.

6.2.3 Groupwise Registration

The third approach for image registration is presented in Chapter 5. It extends the Log-

Demons algorithm to perform groupwise registration. In typical approaches for atlas con-

struction (Guimond et al., 2000; Helm et al., 2005b), the shape averaging process is indeed

limited by sequential pairwise registrations, i.e., it alternates, until convergence, between i)
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the registration of each image with a reference and ii) the transformation of the reference

image. The new approach, named the Groupwise Demons framework, computes the shape

average during the registration process and removes, therefore, the need of the previous alter-

nation scheme. A joint approach for image registration and shape averaging is also proposed

in (Avants and Gee, 2004a; Bossa et al., 2007), however both methods use more complex

diffeomorphic frameworks (Beg et al., 2005; Beg and Khan, 2006; Bossa et al., 2007) that

may be slow and limited to local deformations.

This new groupwise framework is declined in two variants. The first version, named

the Groupwise Log-Demons (or GL-Demons), extends the symmetric Log-Demons to use

multiple images, while the second version, named the Groupwise Spectral Log-Demons (or

GSL-Demons), extends the Spectral Demons algorithm. The results showed that GSL-

Demons is more robust to shape variations than GL-Demons and can construct cardiac

atlases with only 5 iterations. This faster convergence rate compensates, therefore, for the

increased computational burden inherent to the spectral decomposition. Moreover, when

deformations between images become significantly large, conventional approaches based on

image gradients remained often trapped in local minima (Joshi et al., 2004; Avants and

Gee, 2004a; Marsland et al., 2003; Guimond et al., 2000), whereas GSL-Demons correctly

captured very large deformations.

6.3 Common Trends of the Developed Methods

The handling of large shape variability is a recurrent concern when matching medical data.

The typical response found in the literature (Zitova, 2003; Crum et al., 2004) is to use a

Euler-Lagrangian approach where complex deformations of objects are handled with small

and tractable updates of an iterative transformation.

All the developed methods discussed in this chapter are capable of finding correspon-

dences between organs with significant shape variability. One interpretation is that these

methods take advantage, in one form or another, of a global aspect in their optimization

schemes. For instance, the direct feature matching technique, used in both FOCUSR and

Spectral Demons , is in fact a global optimizer since it finds best nearest-neighbors in a multi-

dimensional feature space. Moreover, spectral representations, used again in both FOCUSR

and Spectral Demons , are effectively global geometric descriptors, since they provide unique

signatures between corresponding points and render matching much less sensitive to de-
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formation. Additionally, even though the framework developed in Chapter 3 is based on

conventional Demons, and therefore, inherently limited by the local scope of its gradient de-

scent optimizer, the labeling of the simplified images captures as well a global description of

organs by providing the locations of its main components. Overall, the investigation of these

different strategies provides new contributions on how to find and exploit global descriptions

of images and surfaces.

From a global perspective, these new tools actually close a loop between a) the first set of

tools, developed in Chapter 3, that highlights the challenges in registering images with very

large deformations, b) the second set of tools, developed in Chapter 4, that captures very

large deformations between surfaces but were not applicable to images, and c) the third set

of tools, developed in Chapter 5, that comes back on treating images by allowing a natural

construction of atlases from images with very large deformations.

6.4 General Limitations

Notwithstanding the advantages of each individual contribution with their identified ex-

tents, there remain general limitations that were not fully investigated. A few of them were

previously identified in the thesis and are now discussed in order to find their general impact.

Complete framework: Perhaps, the most important limitation of the developed tools

is that they are not proposing a completely automatic framework for atlas construction.

Indeed, they still depend on a preliminary segmentation before constructing the atlas. This

process remains a separate step that still requires user interaction. However, as noticed

during the development of Spectral Demons , segmentation may naturally arise from spectral

graph theory. Further links between spectral correspondence and segmentation were not

investigated and may lead to a complete framework where automatic segmentation is an

inherent part of the atlas construction.

Partial data: Additionally, there is a strong assumption in spectral methods that the

graphs being matched must represent complete, or similar, objects, i.e., the topology must

be equivalent across graphs. The developed tools are, therefore, currently not adapted to

handle occlusions or missing parts since they may change topology and global shape. Such

problems may occur when, for instance, imaging devices have a limited field of view, e.g., the

left, or right part of the heart may be omitted in images or organs may not be completely

visible during acquisitions.
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Computational burden: From a practical point of view, the developed spectral meth-

ods are currently burdened with the inevitable spectral decomposition. Even though they are

compensated with a fast convergence rate and the capability of handling very large defor-

mations, this computational burden may be problematic for their widespread use in medical

context where very large datasets are the norm, and where fast registration is required,

notably in interventional imaging.

Multimodal data: Moreover, the developed tools are designed for specific types of

data, i.e., they can match either surfaces or images, but not both. The current formalism

of the tools does not allow for multimodal data to be registered. To this effect, the strategy

of using spectral representations may lead to a fundamentally new similarity measure that

would be independent of the type of used data. Spectral representations describe indeed

the global geometry of data and, with further improvements, may be matched regardless of

the type of data, either surfaces, images, both, or any other type of data expressible with

graphs.

Spatio-temporal data: On the same line, another important general limitation remains

in the fact that spatio-temporal data (e.g., 3D+t images) is not considered as a whole but as

separate data fixed in time. The temporal aspect is, therefore, ignored in the developed tools

and prevents a natural description of global characteristics over space and time. Such proper

characterization may be relevant to study, for instance, the variability in growth or motion.

This would require investigations on how to model adequately spatio-temporal data with

graphs, and above all, how to decompose them into meaningful spectral representations.

Functional studies: On a different note, the tools developed in the thesis enabled new

findings relevant to cardiology and neurology, however, the investigation did not go further

by using these findings for modeling or improving comprehension of complex cardiac or neural

functions. For instance, the complete description of the cardiac fiber architecture could be

used to simulate and predict cardiac mechanics or electrophysiology, which are active fields

of research and directly relevant for diagnostics, treatments, and follow-ups.

From these identified general limitations, it is clear that further work remains to be

done; nevertheless, the contributions of this thesis make an important step toward a better

understanding of human anatomy. This general discussion provides ground for promising

future research studies, from which the most important ones are recommended in the next

chapter.
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CONCLUSION

This thesis has addressed the general problem of atlas construction by exploring particu-

lar problems associated with the shape variability of complex characteristics of the human

anatomy. The literature, reviewed in Chapter 1, highlighted the challenges of finding corre-

spondences between highly deformed images and also revealed the current limitations of the

state-of-the-art. During the thesis, a set of tools has been developed in order to normalize

measurements of complex characteristics. More precisely, the methodology in Chapter 2

led to, in a first step (Chapter 3), a new automated framework for atlas construction that

enabled new studies on the complex cardiac fiber architecture, in a second step (Chapter 4),

a new improved surface matching method based on spectral correspondence that enabled

studies on the anatomical and functional variability of the brain surface, and in a third step

(Chapter 5), a fundamentally new approach for image registration based on the findings

from the earlier steps. The results and contributions from these research objectives have

been discussed individually as well as from a global perspective where light is shed on their

current limitations in Chapter 6. The main findings are briefly reminded in Fig. 7.1 and

Fig. 7.2, where they are categorized in two groups. The first set of contributions are new

methods that address the problem of constructing complex atlases, while the second set

of contributions are results from variability studies on the constructed atlases. The next

sections now establish the main recommendations based on the contributions found in the

thesis.

Recommendations and Perspectives

The new methods developed during the thesis improve the construction of atlases by captur-

ing larger deformations between images. Their advantages and disadvantages were discussed

in Chapter 6. Here, their limitations are addressed through four major recommendations,

which give the main lines and main research questions for future work.

Complete Spectral Framework for Atlas Construction

Recommendation 1: Improve the Groupwise Spectral Log-Demons algorithm to be a com-

plete automatic framework for atlas construction.
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Figure 7.1: Establishing links between the main findings of the thesis (new methods in blue,
new clinical findings in green). Firstly, an automated framework has been developed using
conventional Demons and allowed the construction of the first human atlas of the cardiac
fiber architecture (i.e., this answers the first research question). Secondly, a new approach
based on a direct feature matching technique that incorporates spectral representations has
been developed in order to capture a large shape variability (i.e., this answers the second
research question). Two implementations has been done, FOCUSR for surfaces, and Spectral
Demons for images, and additionally, a groupwise registration framework has been developed
in order to construct more precise cardiac atlases.

The first objective led to the development of a complete framework for atlas construction,

including three main steps: segmentation, registration and shape averaging. The two last

objectives of the thesis led to the creation of a new framework for atlas construction where

registration and shape averaging are performed within the same process, however, segmenta-

tion still need to be done beforehand. How to create a complete framework for atlas

construction based on the Spectral Demons? It has been found that there are strong

links between the Spectral Demons algorithm and graph-based image segmentation methods.

In fact, their underlying energies are even similar. The segmentation aspect of the Spectral
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New Tools for Spatial Normalization

Automated framework for atlas con-
struction — A complete framework where
hearts are segmented and registered in order
to compute their average shape.

FOCUSR — A new method for matching
brain surfaces as well as general meshes with
high shape variability.

Spectral Demons — A fundamentally new
approach for image registration where very
large deformations can be captured.

Groupwise Log-Demons — A new frame-
work for atlas construction where the aver-
age shape is computed during the registra-
tion process.

Groupwise Spectral Log-Demons —
The previous framework improved with the
new spectal approach in order to construct
atlases with very large deformations.

New Results on Human Anatomy

First human atlas of the cardiac fiber
architecture — The atlas provides the av-
erage structures of the fiber architecture
with their normal variations.

Variations of the cardiac fibers — Lo-
cal and global descriptions of the fiber direc-
tions.

Variations of the cardiac laminar
sheets — Local and global descriptions of
the laminar structures.

Comparison with healthy and abnor-
mal hearts — The fiber architecture may
be related to abnormality.

Exploration of the primary cortical
folding — Smoothing the surface of a devel-
oped brain may reveal the primary cortical
folding pattern.

Figure 7.2: Summary of the key contributions categorized as new methods for spatial nor-
malization and new results on human anatomy.

Demons algorithm could be, therefore, further studied in order to yield a joint segmentation

and registration method. Using this enhanced Spectral Demons algorithm in the groupwise

demons framework could lead to a complete framework for atlas construction where segmen-

tation, registration, and shape averaging are all interlinked and could potentially ensure an

improved spatial consistency in the atlas.

Fast Spectral Demons

Recommendation 2: Develop a new optimization scheme for Spectral Demons where

spectral decomposition is efficiently utilized.

The Spectral Demons algorithm and its groupwise extension have been shown to have a

substantial improvement in accuracy when large deformations are present between registered
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images. However, the main limitation is an increased computational burden due to a costly

spectral decomposition. How to overcome the computational burden of the Spectral

Demons algorithm? A fast Spectral Demons algorithm could find a widespread use in

many medical applications where speed is non negligible, notably, in interventional imaging

where faster and more accurate registration, as well as fusion, of images would help clinicians

to understand what is happening inside a patient and would, therefore, help them guide

their tools accordingly. The improvement of the computational efficiency of the Spectral

Demons can be addressed through several strategies. Firstly, the algorithm could be changed

to avoid a spectral decomposition in each iteration. For instance, similar to the levelset

frameworks where its distance transform is reinitialized once every few iterations, the initial

eigenmodes of the Spectral Demons could be reused and warped during a few iterations before

being reinitialized. This is a valid scheme since the underlying graphs of the images in two

successive iterations are assumed isometric, i.e., their Laplacian matrix should theoretically

have the same set of eigenvalues and eigenmodes, and in practice, small image perturbations

between iterations may slightly change the eigenmodes and could, therefore, be assumed

negligible between a few iterations. Secondly, the spectral decomposition could benefit from

approximation approaches. For instance, the Nyström method (Drineas and Mahoney, 2005)

removes random lines and columns of the Laplacian matrix before the decomposition and

approximates them later; therefore, the computation of the eigenmodes is faster due to

this smaller Laplacian matrix. Moreover, the sparsity of the Laplacian matrix as well as

the order of its lines and columns could be rearranged in order to yield a more efficient

decomposition (Li et al., 2011). Thirdly, the current implementation could greatly benefit

from the use of compiled programming languages, e.g., C++, or parallel computing, e.g.,

GPU. The Spectral Demons algorithm, besides being more accurate than the conventional

Demons, has, therefore, the potential of being computationally efficient.

Spectral Matching for Partial and Multimodal Data

Recommendation 3: Improve spectral matching methods in order to handle partial and

multimodal data such as truncated surface and occluded images.

The development of the spectral methods in this thesis did not address the problem of

partial data and multimodal data. More precisely, surfaces and images are treated sepa-
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rately with FOCUSR and Spectral Demons , which assume no truncation in surfaces and no

occlusion in images. However, in many real scenarios, computed surface models of organs

may require truncation with arbitrary boundaries (e.g., surface imaging of scoliotic trunks

usually shows no arms, legs or head), occlusions may appear in images (e.g., X-Ray imag-

ing often shows occlusions from lead protective covers), and sometimes both types of data

may need to be registered (e.g., matching the surface model of an organ within its related

MRI volume). Furthermore, ablations may also create similar limitations when a missing

area changes significantly the organ topology. How can spectral matching methods

handle partial and multimodal data? To this effect, three strategies can be explored.

Firstly, the registration process may minimize an energy where missing data is modeled as

a separate variable. For instance, similar to (Mateus et al., 2008), points with no signifi-

cant correspondence could be labeled as being unmatched and a cost function could ensure

spatial regularity of the missing areas. Local affine schemes (Seiler et al., 2011) could also

ensure additional spatial regularity. Secondly, user interaction may provide additional infor-

mation for the registration. For instance, a user could indicate the missing areas or pairs

of corresponding points. The computation of eigenmodes, or more generally of geometric

descriptors, could take into consideration such user inputs. One possible approach may be

inspired from the Heat Kernel Signature (Sun et al., 2009; Bronstein and Kokkinos, 2010),

where, for instance, the geometry could be described by heat propagation patterns generated

from corresponding points selected by the user. Thirdly, multimodal data may be matched

by developing a common similarity measure based on spectral representations of data. In-

deed, spectral representations finds a global shape description regardless of the type of data

as long as it is expressible with a graph, and may be consequently used to find correspon-

dences between surfaces and images. This recommendation may, therefore, improve spectral

methods to handle naturally partial and multimodal data.

Improved Cardiac Electromechanical Models

Recommendation 4: Use the new findings on the human cardiac fiber architecture to build

new accurate electromechanical models of the heart.

The construction of the first human atlas of the cardiac fiber architecture enabled a vari-

ability study of the fiber structures and of the laminar structures. A complete description of
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the average fiber architecture with its normal variation has been provided in three dimen-

sions across several myocardium segments. Since the fiber architecture plays a key role in

electrophysiology and in complex mechanics of the cardiac tissue, the results found in this

thesis are significant contributions in the understanding of cardiac anatomy and functions

in humans. From these results, a research question naturally arises: How to create new

accurate and precise models of various cardiac electromechanical functions from

the human atlas found in this thesis? Such models would advance studies on wave

propagation in ventricular tissue, defibrillation, cardiac resynchronization, and in general

simulations of electrophysiological interventions (Trayanova, 2011). One strategy would be

to reuse the human atlas of the fiber architecture in existing finite element models of the

heart (Sermesant et al., 2006, 2003, 2008; Sermesant, 2003; Vadakkumpadan et al., 2012).

Electro-mechanical models could, therefore, benefit from an accurate description of the hu-

man cardiac fiber architecture.

Summary

The original findings of the thesis with concrete recommendations for future work are sum-

marized on Fig. 7.3. New tools were developed to address the current limitations of shape

normalization. The first research objective led to the construction of the first human at-

las of the cardiac atlas, establishing concrete advances in specific knowledge of the cardiac

anatomy. This atlas gives new perspectives for future electromechanical models of the heart

and opens new doors for simulation and interventional tools. The subsequent research ob-

jectives led to the development of a fundamentally new registration approach where very

large deformations between surfaces or images can be naturally captured. The new meth-

ods, FOCUSR and the Spectral Demons algorithm, were, in fact, found to be particularly

relevant to neuro and cardiac imaging, but remain general enough for virtually any applica-

tion that uses surface or image registration. These spectral methods could further benefit

from improvements in computational efficiency and, on the theoretical point of view, from

demonstrating additional links with graph-based segmentation methods. This may lead to

a complete framework for atlas construction where segmentation, registration, and shape

averaging are all interlinked. This thesis provided, therefore, new grounds for research and

applications of shape normalization tools that may potentially have an impact on establishing

diagnostics, and on planning and performing interventions.
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Figure 7.3: Organization of the key contributions and perspectives for future work. a) FO-
CUSR for surface matching, leading to an improved version handling partial data and that
may be capable with multimodal data; c) Spectral Demons algorithm for image registra-
tion with large deformations, also leading also to a version handing partial and multimodal
data, and that could further benefit for faster approaches; c) aGroupwise Demons frame-
work for atlas construction, leading to a complete atlas framework with the development of
an interlinked segmentation, registration and shape averaging method; and d) a human at-
las of the cardiac fiber architecture, leading to more accurate electromechanical models
of the heart.
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Ourselin, S., Roche, A., Prima, S. and Ayache, N. (2000). Block matching: a general

framework to improve robustness of rigid registration of medical images. MICCAI. 557–

566. 21, 57

Pajevic, S. and Basser, P. J. (2003). Parametric and non-parametric statistical analysis of

DT-MRI data. Journal of Magnetic Resonance, 161, 1–14. 67

Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern

Recognition, 26, 1277–1294. 15

Paragios, N., Mellina-Gottardo, O. and Ramesh, V. (2004). Gradient vector flow fast geo-

metric active contours. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26, 402–407. 16

Park, H., Bland, P. H., Hero, A. O. and Meyer, C. R. (2005). Least biased target selection

in probabilistic atlas construction. MICCAI, 8, 419–426. 33

Park, H., Bland, P. H. and Meyer, C. R. (2003). Construction of an abdominal probabilistic

atlas and its application in segmentation. IEEE Transactions on Medical Imaging, 22,

483–492. 33

Pelillo, M., Siddiqi, K. and Zucker, S. W. (1999). Matching hierarchical structures using

association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21,

1105–1120. 29, 74

Pennec, X., Fillard, P. and Ayache, N. (2006). A Riemannian framework for tensor comput-

ing. International Journal of Computer Vision, 66, 41–66. 35, 59

Periaswamy, S. and Farid, H. (2003). Elastic registration with partial data. Second Interna-

tional Workshop on Biomedical Image Registration. Philadelphia, PA. 30

Periaswamy, S. and Farid, H. (2006). Medical image registration with partial data. Medical

Image Analysis, 452–464. 30



183

Perona, P. and Freeman, W. (1998). A factorization approach to grouping. Lecture Notes

in Computer Science, 1406, 655–?? 17

Petitjean, C. and Dacher, J.-N. N. (2011). A review of segmentation methods in short axis

cardiac MR images. Medical image analysis, 15, 169–184. 15

Peyrat, J.-M. (2009). Comparison of cardiac anatomy and function: statistics on fibre ar-

chitecture from DT-MRI and registration of 4D CT Images. Ph.D., Nice Sophia Antipolis

University. 31, 55, 63, 64, 142, 202

Peyrat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E. R. and

Ayache, N. (2007). A computational framework for the statistical analysis of cardiac

diffusion tensors: application to a small database of canine hearts. IEEE Transactions on

Medical Imaging, 26, 1500–1514. 31, 33, 51, 55, 58, 59, 62, 68, 69, 142, 202, 204, 211

Peyrat, J.-M. M., Delingette, H., Sermesant, M., Pennec, X., Xu, C. and Ayache, N. (2008).

Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons.

MICCAI. vol. 11, 972–979. 25

Peyrat, J.-M. M., Delingette, H., Sermesant, M., Xu, C. and Ayache, N. (2010). Registration

of 4D cardiac CT sequences under trajectory constraints with multichannel diffeomorphic

demons. IEEE transactions on medical imaging, 29, 1351–1368. 25

Pham, D. L., Xu, C. and Prince, J. L. (2000). A survey of current methods in medical image

segmentation. Annual Review of Biomedical Engineering, vol. 2. 315–338. 15

Pienaar, R., Fischl, B., Caviness, V., Makris, N. and Grant, P. E. (2008). A methodology

for analyzing curvature in the developing brain from preterm to adult. Int. J. Imaging

Syst. Technol., 18, 42–68. 114

Pluim, J. P., Maintz, A. B. and Viergever, M. A. (2003). Mutual-information-based regis-

tration of medical images: a survey. IEEE transactions on medical imaging, 22, 986–1004.

28

Pohl, K. M., Fisher, J., Grimson, W. E., Kikinis, R. and Wells, W. M. (2006). A bayesian

model for joint segmentation and registration. NeuroImage, 31, 228–239. 30



184

Pohl, K. M., Fisher, J., Levitt, J. J., Shenton, M. E., Kikinis, R., Grimson, W. E. and Wells,

W. M. (2005). A unifying approach to registration, segmentation, and intensity correction.

MICCAI, 8, 310–318. 30
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lation. Ph.D., Université de Nice Sophia Antipolis. 152

Sermesant, M., Chabiniok, R., Chinchapatnam, P., Mansi, T., Billet, F., Moireau, P., Peyrat,

J. M., Wong, K., Relan, J., Rhode, K., Ginks, M., Lambiase, P., Delingette, H., Sorine,

M., Rinaldi, C. A., Chapelle, D., Razavi, R. and Ayache, N. (2011). Patient-specific

electromechanical models of the heart for the prediction of pacing acute effects in CRT:

A preliminary clinical validation. Medical Image Analysis. 47



188

Sermesant, M., Delingette, H. and Ayache, N. (2006). An electromechanical model of the

heart for image analysis and simulation. IEEE Trans Med Imaging, 25, 612–625. 152

Sermesant, M., Forest, C., Pennec, X., Delingette, H. and Ayache, N. (2003). Deformable

biomechanical models: Application to 4D cardiac image analysis. Medical Image Analysis,

7, 475–488. 152

Sermesant, M., Peyrat, J.-M. M., Chinchapatnam, P., Billet, F., Mansi, T., Rhode, K.,

Delingette, H., Razavi, R. and Ayache, N. (2008). Toward patient-specific myocardial

models of the heart. Heart failure clinics, 4, 289–301. 152

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts.

Proceedings of the National Academy of Sciences of the United States of America, 93,

1591–1595. 16

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods. Cambridge University

Press, second edition. 17

Sezgin, M. and Sankur, B. (2004). Survey over image thresholding techniques and quantita-

tive performance evaluation. Journal of Electronic Imaging, 13, 146–168. 14

Shannon, C. (1948). A mathematical theory of communication. Technical report, Bell

System. 27

Shapiro, L. and Brady, J. (1992). Feature-based correspondence: an eigenvector approach.

Image and Vision Computing, 10, 283–288. 29, 74, 117, 143

Shelton, C. R. (2000). Morphable surface models. IEEE International Journal of Computer

Vision. vol. 38, 75–91. 72

Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation. International Con-

ference on Computer Vision and Pattern Recognition. IEEE Computer Society, 731–737.

18, 19, 30

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 22, 888–905. 18, 19, 29, 30, 73, 119, 123



189

Shi, Y., Dinov, I. and Toga, A. W. (2009). Cortical shape analysis in the Laplace-Beltrami

feature space. Proceedings of the International Conference on Medical Image Computing

and Computer Assisted Intervention (MICCAI). 208–215. 29, 74

Shi, Y., Sun, B., Lai, R., Dinov, I. and Toga, A. W. (2010). Automated sulci identification

via intrinsic modeling of cortical anatomy. Proceedings of the International Conference on

Medical Image Computing and Computer Assisted Intervention (MICCAI). 49–56. 29, 74,

140

Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K. and Zucker, S. W. (2005). Indexing

hierarchical structures using graph spectra. , IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27, 1125–1140. 29, 73

Siddiqi, K., Shokoufandeh, A., Dickinson, S. J. and Zucker, S. W. (1999). Shock graphs and

shape matching. International Journal of Computer Vision, 35, 13–32. 29, 74

Siegel, R. E. (1976). Galen on the Affected Parts: Translation from the Greek Text With

Explanatory Footnotes. S Karger Pub. 1

Silver, M., Gotlieb, A. I. and Schoen, F. R. (2001). Cardiovascular Pathology. Churchill

Livingstone, third edition. 203, 210

Simpson, I. J., Woolrich, M. W., Groves, A. R. and Schnabel, J. A. (2011). Longitudinal

brain MRI analysis with uncertain registration. MICCAI, 14, 647–654. 35

Sinop, A. K. and Grady, L. (2007). A seeded image segmentation framework unifying graph

cuts and random walker which yields a new algorithm. Computer Vision, 2007. ICCV

2007. IEEE 11th International Conference on. IEEE, 1–8. 19

Skrinjar, O. and Tagare, H. (2004). Symmetric, transitive, geometric deformation and inten-

sity variation invariant nonrigid image registration. Biomedical Imaging: Nano to Macro,

2004. IEEE International Symposium on. IEEE, 920–923 Vol. 1. 27

Smith, G. E. (1907). A new topographical survey of the human cerebral cortex, being an

account of the distribution of the anatomically distinct cortical areas and their relationship

to the cerebral sulci. Journal of anatomy and physiology, 41, 237–254. 8



190

Smith, N., de Vecchi, A., McCormick, M., Nordsletten, D., Camara, O., Frangi, A. F.,

Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M. W., Schulze, W. H. W.,

Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J., Hunter, P., Weese,

J., Lehmann, H., Chapelle, D. and Rezavi, R. (2011). euHeart: personalized and integrated

cardiac care using patient-specific cardiovascular modelling. Interface Focus, 1, 349–364.

31

Smith, N. P., Hunter, P. J. and Paterson, D. J. (2009). The cardiac physiome: at the heart

of coupling models to measurement. Experimental Physiology, 94, 469–471. 31

So, R. and Chung, A. (2009). Multi-level non-rigid image registration using graph-cuts.

Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Con-

ference on. IEEE, Washington, DC, USA, 397–400. 18

So, R. W. K. and Chung, A. C. S. (2010). Non-rigid image registration by using graph-

cuts with mutual information. Image Processing (ICIP), 2010 17th IEEE International

Conference on. IEEE, 4429–4432. 18

So, R. W. K. and Chung, A. C. S. (2011). Learning-based non-rigid image registration

using prior joint intensity distributions with graph-cuts. IEEE International Conference

on Image Processing. 709–712. 18

So, R. W. K., Tang, T. W. H. and Chung, A. C. S. (2011). Non-rigid image registration of

brain magnetic resonance images using graph-cuts. Pattern Recogn., 44, 2450–2467. 18

Sommer, S. (2011a). Accelerating multi-scale flows for LDDKBM diffeomorphic registration.

GPUCV workshop at ICCV. 499–505. 24

Sommer, S. (2011b). Anatomy in Curved Space Non-linear Modeling of Deformation and

Shape for Medical Imaging. Ph.D., Department of Computer Science, University of Copen-

hagen. 35

Sommer, S., Lauze, F., Nielsen, M. and Pennec, X. (2011a). Kernel bundle EPDiff: Evolution

equations for Multi-Scale diffeomorphic image registration. Scale Space and Variational

Methods in Computer Vision. 677–688. 24



191

Sommer, S., Nielsen, M., Lauze, F. and Pennec, X. (2011b). A multi-scale kernel bundle for

LDDMM: towards sparse deformation description across space and scales. Information

processing in medical imaging : proceedings of the ... conference, 22, 624–635. 24

Song, S. M. and Leahy, R. M. (2002). Computation of 3-D velocity fields from 3-D cine CT

images of a human heart. IEEE Transactions on Medical Imaging, 10, 295–306. 22

Soundararajan, P. and Sarkar, S. (2001). Analysis of MinCut, average cut, and normalized

cut measures. Proc. Third Workshop Perceptual Organization in Computer Vision. 17, 18

Soundararajan, P. and Sarkar, S. (2003). An in-depth study of graph partitioning mea-

sures for perceptual organization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25, 642–660. 17, 18

Spielman, D. A. (2010). Algorithms, graph theory, and linear equations in laplacian matrices.

PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS

2010 (ICM 2010). 2698–2722. 19

Sprengel, R., Rohr, K. and Stiehl, H. S. (1996). Thin-plate spline approximation for image

registration. Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for

Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE. vol. 3,

1190–1191. 23, 100

Steiner, D. C. and Morvan, J. M. (2003). Restricted Delaunay triangulations and normal

cycle. Proceedings of the Symposium on Computational Geometry. 312–321. 92, 93

Streeter, D. (1979). Gross Morphology and Fiber Geometry of the Heart, American Physiol-

ogy Society, vol. 1. 61–112. 4

Streeter, D. D., Spotnitz, H. M., Patel, D. P., Ross, J. and Sonnenblick, E. H. (1969). Fiber

orientation in the canine left ventricle during diastole and systole. Circulatory Research,

24, 339–347. 5, 47, 48, 201, 209

Studholme, C. (1999). An overlap invariant entropy measure of 3D medical image alignment.

Pattern Recognition, 32, 71–86. 28

Studholme, C. and Cardenas, V. (2004). A template free approach to volumetric spatial

normalization of brain anatomy. Pattern Recogn. Lett., 25, 1191–1202. 33



192

Studholme, C., Hill, D. L. G. and Hawkes, D. J. (1995). Multiresolution voxel similarity

measures for MR-PET registration. Y. Bizais, C. Barillot and R. Di Paola, editors, Pro-

ceedings of Information Processing in Medical Imaging. Kluwer Academic Publishers, Ile

de Berder, France, vol. 3, 287–298. 27
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APPENDIX A VARIABILITY OF

THE CARDIAC LAMINAR STRUCTURE

Herve Lombaert, Jean-Marc Peyrat, Laurent Fanton, Farida Cheriet, Hervé Delingette,

Nicholas Ayache, Patrick Clarysse, Isabelle Magnin, Pierre Croisille

Presentation

This appendix presents the article “Variability of the Human Cardiac Laminar Structure”

(Lombaert et al., 2011c) published in the STACOM Workshop (Statistical Atlas and Com-

putational Models of the Heart) of the conference MICCAI (Medical Image Computing and

Computer Assisted Intervention) held in Toronto, ON, in September 2011. The objective of

this article is to further study the variability of the laminar structure of the cardiac fibers

in humans. This is a joint work between INRIA, Sophia Antipolis, France; CREATIS,

Lyon, France; and École Polytechnique, Montreal, Canada.

abstract

The cardiac fiber architecture has an important role in electrophysiology, in mechanical

functions of the heart, and in remodeling processes. The variability of the fibers is the focus

of various studies in different species. However, the variability of the laminar sheets is still

not well known especially in humans. In this paper, we present preliminary results on a

quantitative study on the variability of the human cardiac laminar structure. We show that

the laminar structure has a complex variability and we show the possible presence of two

populations of laminar sheets. Bimodal distributions of the intersection angle of the third

eigenvector of the diffusion tensor have been observed in 10 ex vivo healthy human hearts.

Additional hearts will complete the study and further characterize the different populations

of cardiac laminar sheets.

A.1 Introduction

The heart is a complex muscle that is composed with myocardial fibers organized as laminar

sheets (Streeter et al., 1969; LeGrice et al., 1995). The cardiac fiber structures have an

important role in electrophysiology (Hooks et al., 2002) and in mechanical functions (Costa

et al., 2001) of the heart. The understanding of the cardiac fiber architecture is essential for

better diagnosis and treatment of many cardiac pathologies. The fibrous nature of the heart
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has been known for centuries, tracing back to as early as 1694 (van Leeuwenhoek, 1694),

but has been limited to tedious histological studies (Nielsen et al., 1991). The cardiac fiber

structure can now be imaged with diffusion tensor magnetic resonance imaging (DT-MRI)

(Basser et al., 1994; Hsu and Henriquez, 2001), however the variability of the fiber structure

in humans is still not well known (due to the very limited number and the value of post-

mortem healthy human hearts) and is largely speculated from studies on other species (dogs

(Helm et al., 2005a,b; Helm, 2005; Sundar et al., 2006; Peyrat et al., 2007; Peyrat, 2009;

Gilbert et al., 2007), goats (Geerts et al., 2002), and rats (Bishop et al., 2009)). Recently,

Lombaert et al. (Lombaert et al., 2011b,e) constructed a statistical atlas of the human

cardiac fiber architecture and assessed its variability. The fiber structure is shown to be

more stable than the laminar sheet structure. They hypothesized that the higher variability

of the laminar sheet could be due to the presence of two or more populations of laminar sheets

(Helm, 2005). Helm et al. studied the variability of the cardiac laminar sheet in (Helm et al.,

2005b). Using 7 canine hearts, they observed a bimodal distribution of intersection angles

(i.e., two populations of laminar sheet structure) in most myocardial segments of the left

ventricle.

We present here the preliminary results of a study on the variability of the cardiac laminar

sheet structure in humans. The methods used to construct and analyze the statistical atlas

are briefly described. Next, the results show the angular variability, from the average healthy

heart, of the the laminar sheet normal. The complexity of the laminar sheet structure is

revealed thereafter by analyzing the distribution of the intersection angle of the laminar

sheet normal. The distributions suggest the possible presence of two populations of laminar

sheets in several myocardial segments of the left ventricle.

A.2 Material and Method

A.2.1 Dataset

The human dataset (Frindel et al., 2009; Rapacchi et al., 2010) consists of 10 healthy ex vivo

human hearts acquired during forensic autopsies. The excised hearts were placed in a plastic

container and filled with non destructive hydrophilic gel to maintain a diastolic shape. The

images have been acquired on a 1.5T MR scanner (Avanto Siemens), all within 24 hours after

death and prior to the examination by the pathologist, with a bipolar echo planar imaging
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Figure A.1: Atlas Construction: (1) From the acquired images, the myocardia are segmented.
(2) Images are then aligned and registered nonrigidly toward a reference image. (3,4) The
atlas is constructed iteratively by averaging acquired images in the average heart shape.
Variability of the laminar sheets : (A) The directions of the laminar sheet normals are com-
pared with the atlas for each heart, and (B) the probability distribution of the intersection
angle is analyzed.

using 4 repetitions of 12 gradient images. The diffusion-weighted images, from which are

estimated the diffusion tensors, are of size 128x128x52 with an isotropic resolution of 2 mm.

All cases are from extra cardiac sudden deaths, and the hearts are classified as healthy after

controlling their weight, wall thickness, and subsequent pathology examination (Silver et al.,

2001).

A.2.2 Atlas Construction

The statistical atlas is constructed using four steps, all fully described in (Lombaert et al.,

2011b) and summarized here in Fig. A.1. Information on the fiber architecture (i.e., any

directional data from DT-MRI) is purposely omitted from the registration process in order

to avoid introducing any bias in the study of the fiber variability.
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Myocardium Segmentation

— Firstly, the myocardium of each heart is segmented out on the B0 image of the DT-MRI

acquisition. The segmentation method is based on Graph Cuts (Boykov and Jolly, 2000).

Heart Registration

— Secondly, each myocardium is registered to a reference image using solely the B0 images

and the myocardial masks. The pairwise registrations are performed with the symmetric

Log-domain diffeomorphic demons (Vercauteren et al., 2008; Mansi et al., 2010).

Construction of Healthy Atlas

— Thirdly, the reference image is deformed toward the morphological average of all hearts

by iterating until convergence the pairwise registrations and the heart averaging steps. This

atlas construction follows Guimond’s et al. method (Guimond et al., 2000).

Warping of Diffusion Tensors

— Fourthly, and last, the resulting deformation fields computed from the registration process

are used to warp all tensor fields to the morphological atlas. The diffusion tensors are

reoriented using the Finite Strain strategy since it preserves the geometric features (Peyrat

et al., 2007).

A.2.3 Statistical Analysis

The diffusion tensor space of symmetric positive definite matrices does not have a vector

space structure with the standard Euclidean metric. The Log-Euclidean metric (Arsigny

et al., 2006b) provides a simple and fast framework where first order arithmetic on diffusion

tensors has a closed form solution. The average diffusion tensor field, D, is computed from

the N warped tensor fields {D(i)}i=1...N (with N = 10 healthy hearts) using the Fréchet

mean:

D = exp

�
1

N

N�

i=1

log(D(i))

�
(A.1)

The eigendecomposition of the average diffusion tensorD gives the three average eigenvectors

v1,2,3. The maximal local diffusion, revealed by the primary eigenvector v1 occurs along
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the fiber while most of the remaining diffusion occurs within the laminar sheet, where the

secondary eigenvector v2 is thought to lay (Helm et al., 2005a,b; Tseng et al., 2003). The

tertiary eigenvector, v3, corresponds to the normal of the laminar sheet.

The deviation of the cardiac laminar sheet of each heart is given with the angular differ-

ence θ from the direction of laminar sheet normal, v3, to the direction of the average laminar

sheet normal, v3. For instance, for the ith heart, the angular deviation from the average

heart is:

θ(i)3 = arccos

�
|v(i)

3 · v3|
� v(i)

3 �� v3 �

�
(A.2)

Endocardium 

! 

Intersection 
Angle 

Laminar Sheet 
Normal 

Epicardium 

Figure A.2: Intersection an-

gle of the 3rd eigenvector in

a myocardial section.

The angles are defined between 0◦ and 90◦. The absolute value

of the dot product removes the inherent ambiguity in the orien-

tation of the eigenvectors (i.e., |a·b| = |a·(−b)|). The variability
of the laminar sheet can be measured with the probability dis-

tribution of the intersection angle of the third eigenvector (i.e.,

of the laminar sheet normal). The intersection angle (LeGrice

et al., 1995) is defined as the projected angle of the laminar

sheet normal (in red in the right figure) onto a transverse plane

(the vertical transmural plane in green in the right figure). A prolate ellipsoidal model of

the heart (Nielsen et al., 1991) is fitted to the morphology of the statistical atlas to ease

measurements in the prolate ellipsoidal coordinates.

A.3 Results

The cardiac laminar sheet was shown (Lombaert et al., 2011b) to vary more than the fiber

direction. In order to understand the higher variability, the distribution of the intersec-

tion angle of the laminar sheet normal is estimated in all hearts and in several myocardial

segments. The distributions show the presence of possibly two populations of laminar sheets.

A.3.1 Variability of the Laminar Sheet Normal

The direction of the laminar sheet normal in each heart is compared with the ones of the

average healthy heart (i.e., the atlas). The angular differences of the laminar sheet normals,

given by Eq. A.2 and shown in Fig. A.4, present deviations to the average heart in several
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Figure A.3: Histograms of the angular deviation θ3 (in degrees) for 10 hearts.
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Figure A.4: Deviation, θ3, of the laminar sheet normal of each heart to the atlas. The
coloring is the angular difference in degree.

areas for each heart. The histogram of the angular differences, in Fig. A.3, shows an angular

peak at θ3 = 15.77◦ (the average of the histogram modes in Fig. A.3).

A.3.2 Variability of the Intersection Angle

We now study the probability distribution of the intersection angle of the third eigenvector

(i.e., the laminar sheet normal). The probability distributions are presented in a joint his-

tograms (Fig. A.5) where the angle distribution, on the vertical axis, is plotted against all

transmural distances, on the horizontal axis. Each heart appears to have a consistent distri-

bution of laminar sheet normal directions with angles concentrated around a specific mean.

Subject #3, #6, #9, and #10 appear to show two populations of laminar sheet normals

(i.e., the angles are concentrated along two horizontal curves). The global joint histogram in

Fig. A.5 (b) shows the probability distribution of the intersection angle (i.e., the variability

of the laminar sheet normal) among all 10 hearts. Furthermore, the probability distributions
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Figure A.5: Joint histograms showing the distribution of the intersection angle from epi-
cardium (left side of each histogram) to endocardium (right side of each histogram) for (a)
each heart, and (b) all hearts combined. The x-axis is the transmural distance from epi-
cardium. The y-axis is the distribution of the intersection angles observed at one specific
transmural distance (i.e., each column is the histogram of angles for one given distance).
Color is the normalized probability distribution.

in the 17 AHA segments (American Heart Association (Cerqueira et al., 2002)) provide lo-

cal statistics across the myocardium. More distinct clusters of laminar sheet structures are

visible in Fig. A.6, in particular AHA zones 2, 3, 4, 7, 8, 9, 12, 13, and 14 show angular

distributions concentrated along two horizontal curves. These curves of average angles can

be estimated using Gaussian Mixture Models (i.e., for each transmural distance, the inter-

section angle values are clustered into two Gaussian models). This is illustrated with two

blue curves in each joint histogram. Each curves indicates the estimated mean angle of one

of the two Gaussian models.

A.4 Conclusion

In this paper, preliminary results of a study on variability of the human cardiac laminar

structure have been presented. The cardiac fiber architecture has an important role in

electrophysiology and in mechanical functions of the heart. The variability of the laminar

sheets in humans is still not well known. It is thought that there are two populations of

laminar sheets. Helm et al. (Helm et al., 2005b) observed in 7 canine hearts a bimodal

distribution of intersection angles of the third eigenvector (i.e., the laminar sheet normal).

We similarly observed a bimodal distribution of intersection angles in human hearts. Our
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Figure A.6: Joint histograms showing of the distribution of the intersection angle in 17 AHA
LV segments. Blue curves (mean angles) are found using GMM (gray lines are the one-
standard-deviation envelopes). Two populations of intersection angles are visible in most
segments.

preliminary results within the dataset of 10 hearts suggest the possible presence of two

populations of laminar sheets. We will include additional hearts to the study and try to

further characterize the different populations of cardiac laminar sheets.
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APPENDIX B COMPARISON WITH ABNORMAL HEARTS

Herve Lombaert, Jean-Marc Peyrat, Laurent Fanton, Farida Cheriet, Hervé Delingette,

Nicholas Ayache, Patrick Clarysse, Isabelle Magnin, Pierre Croisille

Presentation

This appendix presents the article “Statistical Atlas of Human Cardiac Fibers: Comparison

with Abnormal Hearts” (Lombaert et al., 2011d) published in the STACOM Workshop (Sta-

tistical Atlas and Computational Models of the Heart) of the conference MICCAI (Medical

Image Computing and Computer Assisted Intervention) held in Toronto, ON, in September

2011. The objective of this article is to investigate whether the cardiac fiber architecture is

related to abnormality of hearts. This is a joint work between INRIA, Sophia Antipolis,

France; CREATIS, Lyon, France; and École Polytechnique, Montreal, Canada.

abstract

Criteria of normality of the cardiac fibers are important in cøardiomyopathies. In this paper,

we investigate the differences in the cardiac fiber structures between 10 hearts classified as

healthy and 6 hearts classified as abnormal, and determine if properties of the cardiac fiber

structures can be discriminants for abnormality. We compare the variability of the fiber

directions from abnormal hearts to an atlas of healthy hearts. The human atlas of the cardiac

fiber structures is built with an automated framework based on symmetric Log-domain

diffeomorphic demons. We study the angular variability of the different fiber structures. Our

preliminary results might suggest that a higher variability of the fiber structure directions

could possibly characterize abnormality of a heart.

B.1 Introduction

Cardiovascular diseases are by far the number one killer in the US with over 930,000 deaths

annually and 71 millions, more than a fifth of the population, live with a form of cardiovas-

cular disease (Thom et al., 2006). The characterization of the consequences led by specific

cardiopathies is essential to a better diagnosis and a better treatment of these diseases.

Among the possible causes, the differences in the cardiac fiber architecture could be an

promising topic. The heart is composed of myocardial fibers organized in a complex lam-

inar structure (Streeter et al., 1969; LeGrice et al., 1995), and the cardiac fiber structures
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have an important role in electrophysiology (Hooks et al., 2002), in mechanical functions

(Costa et al., 2001), and in remodeling (Wu et al., 2006) of the heart. Changes in the fiber

structures are for instance inherent in myocardial hypertrophy (Karsner et al., 1925; Tezuka,

1975; Grajek et al., 1993). Myocardial disarray, or disorganisation of the fibers, is also still

the focus of contentious studies (Becker and Caruso, 1982). The question of normality of

the cardiac fiber structures arises when trying to assess the role of myocardial disarray in

cardiomyopathies. In this paper, we try to assess whether there is a difference in the cardiac

fiber structures between hearts classified as normal and hearts considered as abnormal.

The directions of the fiber structures and their variability can be measured with Diffusion

Tensor Imaging (DT-MRI). A human atlas of the cardiac fiber structures from DT-MRI

(Lombaert et al., 2011b,e) has recently been built with 10 healthy ex vivo hearts. We

register 6 ex vivo hearts classified as abnormal to the atlas of healthy hearts and analyze

the angular differences between the fiber structure directions of the abnormal hearts and

the ones of the average healthy heart. The statistical study shows that the directions of

the cardiac fiber structures vary more in abnormal hearts than in healthy hearts. The

preliminary results might suggest that a higher variability of the fiber structure directions

could possibly characterize abnormality.

B.2 Material and Method

B.2.1 Dataset

The human dataset (Frindel et al., 2009; Rapacchi et al., 2010) consists of 10 healthy and 6

abnormal ex vivo human hearts acquired during forensic autopsies. All cases are from extra

cardiac sudden deaths. However, the true nature of deaths is not available. The images

have been acquired on a 1.5T MR scanner (Avanto Siemens), all within 24 hours after death

and prior to the examination by the pathologist, with a bipolar echo planar imaging using 4

repetitions of 12 gradient images. The diffusion-weighted images, from which are estimated

the diffusion tensors, are of size 128x128x52 with an isotropic resolution of 2 mm. Criteria of

abnormality (Silver et al., 2001) are based on the heart weight (with given permitted weight

limits within the 95% percentile), the septal thickness (with a maximal thickness defined at

12 mm for women and 14 mm for men), and on subsequent pathology examination.
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Figure B.1: Construction of the healthy atlas : The myocardia are segmented. Images are
then aligned and registered nonrigidly toward a reference image. The atlas is constructed
iteratively by averaging acquired images in the average heart shape. Comparison with the
atlas : Abnormal hearts are registered to the average healthy heart. The cardiac fiber struc-
tures of each abnormal heart are compared with the structures of the average healthy heart.

B.2.2 Registration of Abnormal Hearts

The atlas of diffusion tensors is constructed using the automated framework described in

(Lombaert et al., 2011b). The method is summarized in Fig. B.1 and has four steps. The

myocardium is segmented (Boykov and Jolly, 2000) and its mask is used to guide the nonrigid

pairwise registration (Vercauteren et al., 2008, 2009a; Mansi et al., 2010). All hearts are

registered to an initial reference image, which is updated toward the morphological average

of all hearts (Guimond et al., 2000). Once the transformations of all hearts toward the

average cardiac shape are computed, the diffusion tensors are warped (Peyrat et al., 2007)

to the morphological atlas.

The processing of abnormal hearts is performed within the same framework (Lombaert

et al., 2011b). Firstly, the myocardia of the abnormal hearts are segmented using a minimal

user interaction. Secondly, their masks are registered to the newly computed average healthy

heart. The diffusion tensors are warped accordingly to the shape of the average healthy heart.
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B.2.3 Comparison with Abnormal Hearts

The diffusion tensors fields from all hearts, {D(i)}i=1...N (with N = 10 healthy + 6 abnormal

hearts), are warped to the morphological average of the healthy hearts (i.e., in a common

reference). The Log-Euclidean metric (Arsigny et al., 2006b) is used to compute efficiently

the average diffusion tensor of the healthy hearts (hearts #1 to #10) with the Fréchet mean,

D = exp
�

1
10

�10
i=1 log(D

(i))
�
.

The eigendecomposition of the diffusion tensor matrix D gives the principal directions

v1,2,3 describing the fiber structures. More precisely, the first eigenvector v1 gives the fiber

orientation, the second eigenvector v2 is believed to lie within the laminar sheet and to be

perpendicular to the fiber, and the third eigenvector v3 is assumed to give the normal of the

laminar sheet.

The abnormal hearts are compared with the average healthy heart by measuring the

angular deviations of the fiber structures of each heart with the average heart. The an-

gle θ between the direction of an eigenvector vj of the ith heart and the direction of the

corresponding average eigenvector V j is defined between 0◦ and 90◦ with:

θ(i)j = arccos

�
|v(i)

j · vj|
� v(i)

j �� vj �

�
(B.1)

The absolute value of the dot product removes the inherent ambiguity in the orientation of

the eigenvectors (i.e., |a · b| = |a · (−b)|).

B.3 Results

We study the deviation of the fiber structures of each heart (healthy and abnormal) to the

average structures of the healthy hearts (i.e., to the atlas). The structures in the healthy

hearts are, as expected, very similar to the atlas. The histograms of the angular differences

of the first, second, and third eigenvectors of the healthy hearts to the atlas (gray curves in

Fig. B.2) show average modes of respectively (i.e., the curves are peaking at) θ1 = 13.03◦,

θ2 = 21.76◦, and θ3 = 15.77◦. Abnormal hearts show by contrast fiber structures that have

larger deviations to the atlas of healthy hearts. The histograms of the angular differences

of structures show higher modes in abnormal hearts (black in Fig. B.2), with a deviation

of θ1 = 20.96◦ for the fibers (i.e., first eigenvector) and of θ2 = 48.21◦ and θ3 = 34.36◦
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#1 (21yo): 11.4o #2 (20yo): 7.5o #3 (21yo): 11.4o #4 (17yo): 12.3o

#5 (21yo): 8.1o #6 (47yo): 16.6o #7 (27yo): 10.5o #8 (47yo): 20.8o

#9 (74yo): 22.0o #10 (50yo): 9.6o #11 (43yo): 19.3o #12 (42yo): 26.2o

#13 (19yo): 17.5o #14 (19yo): 8.1o #15 (35yo): 33.7o #16 (49yo): 21.1o
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Figure B.2: (Left) Deviation of the fiber direction of each heart to the atlas of healthy hearts.
Coloring is the angular difference in degree. Abnormal hearts are with gray background.
The age of each subject is provided in each sub figure. (Right) Histograms of the angular
variability (in degrees) of (a) the 1st eigenvector, (b) 2nd eigenvector, and (c) 3rd eigenvector
(abnormal hearts in dark lines, healthy hearts in light lines).

for the laminar sheets (i.e., second and third eigenvector). The visualization of the angular

difference in a slice of each heart shows large discrepancies in the left ventricle with localized

high-variability areas for patient #12, #15, and #16 (shown in the sub-figures of Fig. B.2

with gray backgrounds). This is again confirmed when visualizing the angular difference of

the second and third eigenvectors (i.e., the laminar sheets). It is to note that the registration

of the right ventricle (which exhibited a very small volume) failed for the last patient (#16).

The patients #13 and #14, even if classified as abnormal, presented consistently very small

deviations to the average fiber structures of the healthy atlas (Fig. B.2).
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B.4 Discussion and Conclusion

The question whether the variability of the cardiac fiber structures is a marker to normality

or abnormality is relevant to the study of many cardiomyopathies, including left ventricular

hypertrophy or myocardial disarray. In this paper, we compared the structural changes

between a population of abnormal hearts and of healthy hearts. It was shown that the three

eigenvectors of the diffusion tensors have measurable differences between abnormal hearts

and healthy hearts. When compared to an atlas of healthy hearts, the fibers of abnormal

hearts showed an angular difference of 20.96◦, while the fibers of healthy hearts showed less

deviation with 13.03◦. The laminar sheets also showed a greater deviation and a greater

variability in abnormal hearts than in healthy hearts. Even though the laminar sheet is

known to be more variable than the fiber structure in humans (Lombaert et al., 2011b), the

difference in both populations is non negligible (deviation of the laminar sheet normal of

34.36◦ in abnormal hearts compared to 15.77◦ in healthy hearts). The abnormal hearts also

experience a large fiber angle difference around trabeculae areas. A localized study might

reveal the origin of such large deviance.
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Figure B.3: Possible corre-

lation between the age and

the fiber variability (healthy

hearts in blue with a correla-

tion factor ρ = 0.73, abnor-

mal in cyan with ρ = 0.86).

Nonetheless, two outliers are present (hearts #13 and #14

as shown in Fig. B.2). They were initially classified as abnor-

mal even though their cardiac fiber structures are very similar

to the average healthy heart (deviation of 17◦ and 8◦). We hold

the attention on the age of both subjects, both very young (19

years old). Furthermore, the modes in healthy hearts, i.e., the

peaks of the histograms in Fig. B.2 (a), also show that the car-

diac fibers are less variable in younger subjects than in older

subjects. Age is thought to have an impact in the fiber struc-

ture of skeletal muscles (Lexell and Taylor, 1991). No study

has yet been performed in cardiac muscles. For that matter,

the mode of the angular differences of the first eigenvector (i.e.,

the fiber direction) was plotted against the age of each subject (Fig. B.3). The correlation

factor between age and fiber variability is 0.73 when considering only the 10 healthy hearts

(with a low p-value of 0.016). When considering only the abnormal hearts, the correlation

factor is higher at 0.86 (with a p-value of 0.029). The estimated least-square fit lines of both

population are overlaid in Fig. B.3. Before hypothesizing that the variability of the fiber
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directions increases faster with age in abnormal hearts, many unknown parameters should be

considered firstly (for instance, the distinction between primitive hypertrophy or secondary

hypertrophy, known to occur in old subjects, is here unknown).

In conclusion, our study comparing a population of abnormal hearts and of healthy hearts

showed that there are observable differences in the fiber directions in both populations.

Abnormal hearts have fiber directions that are more variable and that are on average 20.96◦

different from the average healthy heart. Future studies will include additional hearts in

order to further study these preliminary findings.
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