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Abstract

Soft-label assignments have emerged as prominent strategies in training dense prediction1

problems, such as image segmentation. These approaches mitigate the limitations of hard2

labels, such as inter-class relationships in the data and spatial relationships between a3

given pixel and its neighbors. Nevertheless, most existing methods rely only on ground-4

truth masks and ignore the underlying image context associated with each label. For5

instance, image intensities convey information that could potentially clear ambiguities in6

the annotation. This paper, therefore, proposes a Geodesic Label Smoothing (GeoLS)7

approach that incorporates image intensity information within the soft labeling process.8

Specifically, we leverage the geodesic distance transform to capture the intensity variations9

between pixels. The generated maps geodesically modify the hard labels to obtain new10

intensity-based soft labels. The resulting geodesic soft labels better model spatial and11

class-wise relationships as they capture the variations of image gradients across classes12

and anatomy. The benefits of our intensity-based geodesic soft labels are assessed on13

three diverse sets of publicly accessible segmentation datasets. Our experimental results14

show that the proposed method consistently improves the segmentation accuracy compared15

to state-of-the-art soft-labeling techniques in terms of the Dice similarity and Hausdorff16

distance.17

Keywords: Geodesic Distance, Soft Labeling, Label Smoothing, Image Segmentation.18

1. Introduction19

Image segmentation is a highly structured and dense prediction problem where pixels in an20

image are grouped into a set of target regions, such as organs or tumors (Pham et al., 2000;21

Suetens, 2017). It plays a pivotal role in clinical decision systems, notably in computer-22

assisted prognosis and diagnosis, treatment planning, and intervention support (Duncan23

and Ayache, 2000; Zhou et al., 2019). Recent advancements in segmentation methods are24

primarily due to the ability of deep learning techniques to solve such complex predictive25

tasks (Litjens et al., 2017; Hesamian et al., 2019). Training these approaches involves min-26

imizing the deviation of the network predictions from the given ground-truth annotations27
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Figure 1: Limitation of one-hot label assignments. (a) A sample image and (b) its
corresponding ground-truth mask, (c) a closeup image around the boundary region (purple),
and (d) the one-hot (OH) encoding for two pixels (orange and pink in closeup images). The
OH encoding of a pixel (orange) inside the kidney region (green label) may represent the
true class distribution (yc) since the label is spatially consistent with neighboring pixels.
Conversely, the OH label assignment of a pixel (pink) near the boundary region may not
reflect the true class distribution as it does not capture the underlying spatial ambiguities
in the image. Different colors denote the class labels c.

using various objective functions (Rubinstein and Kroese, 2004; Sudre et al., 2017; Lin et al.,28

2017).29

A common strategy to measure this deviation is to employ the cross-entropy function30

with the ground-truth mask represented as one-hot encoded vectors. This learning ob-31

jective exhibits remarkable performance in problems needing predictions of independent32

classes, such as in whole-image classification (Baum and Wilczek, 1987; He et al., 2016;33

Szegedy et al., 2017). Nevertheless, the use of standard one-hot encoding in segmentation34

tasks can be sub-optimal since class predictions at each pixel are inherently conditioned with35

surrounding pixels. Such encoding indeed fails to capture the spatial relationships across36

neighborhoods as well as inter-class relationships within an image. These relationships,37

however, are crucial for the segmentation of medical images. For instance, labels can be38

similar for pixels within a homogeneous region, but vary near object boundaries due to var-39

ious image ambiguities (Fig. 1). Such ambiguity can be attributed to partial volume effect,40

motion artifacts, or image acquisition, among other reasons. Moreover, the one-hot label41

assignments are solely based on the provided ground-truth masks, where the underlying42

spatial and inter-class relationships are disregarded. Therefore, explicitly modeling spatial43

and inter-class relationships in the label assignments is sought to improve the performance44

of the segmentation model.45

Recent attempts to incorporate the inter-class relationships in the labels (Szegedy et al.,46

2016; Galdran et al., 2020) generally modify the hard one-hot encoding into a softer version.47

For instance, Label Smoothing (LS) (Szegedy et al., 2016) uniformly redistributes a portion48

of the target-class probability into all non-target classes to obtain a new soft label assignment49
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for training a deep model. In (Galdran et al., 2020), a non-uniform label smoothing approach50

is proposed to capture the underlying structure within annotations. This method uses a51

Gaussian smoothing on each target class to redistribute probability over other classes. It52

is particularly suitable for datasets featuring ordered class labels, such as tumor or disease53

grading. These label-smoothing approaches, however, disregard the spatial relationships in54

their soft-label assignments.55

To capture the spatial relationships, a few approaches alter the target segmentation mask56

to obtain softer labels in the boundary regions (Kats et al., 2019; Gros et al., 2021). For57

instance, Kats et al. (2019) generates the soft labels in the dilated regions of the target masks58

by adding granularity in the object boundaries. Furthermore, a Spatially-Varying Label59

Smoothing (SVLS) approach models the annotation ambiguity around object boundaries in60

target masks (Islam and Glocker, 2021). Its soft labels capture the local structural variations61

by applying a Gaussian-smoothing operation on the target masks. However, the annotation62

ambiguities of object boundaries stem from poorly defined image intensities caused by63

imaging techniques or existing pathologies, which inherently leads to labeling inaccuracies64

(Joskowicz et al., 2019; Hayward et al., 2008). These ambiguities are not captured in these65

soft-labeling methods, as they solely rely on the given ground-truth masks.66

One solution is to incorporate image-based metrics in the soft-label assignments process.67

More specifically, a geodesic distance transform captures intensity variations and spatial68

distances within an image (Toivanen, 1996; Criminisi et al., 2008). Our approach, therefore,69

leverages the geodesic distance in order to capture inter-pixel and inter-class relationships70

during the label smoothing process. The generated soft labels thus become intensity-aware,71

capturing image gradient information across object boundaries. Incorporating our geodesic72

soft labels in model training is found to improve the segmentation performance, as they73

model the underlying intensity variations across objects and labels.74

Our contributions: This work introduces a novel Geodesic Label Smoothing (GeoLS)75

approach to enhance image segmentation. Specifically, our originality lies in leveraging the76

geodesic distance transform to embed intensity variations in the soft-labeling process. Un-77

like existing soft-labeling strategies, our proposed method utilizes geodesic maps to smooth78

the hard labels, thus capturing the essential intensity information that is crucial for medical79

image segmentation. The resulting intensity-based soft labels capture class-wise relation-80

ships by considering image gradient information between two or more object categories.81

Furthermore, the geodesic distance between pixels captures the spatial relationships, inte-82

grating richer information than the Euclidean distance. Our GeoLS method is extensively83

validated across three distinct medical image segmentation benchmarks: the brain tumor84

dataset (Bakas et al., 2017, 2018), the abdominal organ dataset (Ma et al., 2022), and the85

prostatic zone dataset (Litjens et al., 2014). The findings in our experiments demonstrate86

the merit of GeoLS over existing soft-labeling methods.87

This manuscript provides a significant extension upon our preliminary work (Adiga Va-88

sudeva et al., 2023). Specifically, we conduct exhaustive experiments on a variety of datasets89

with thorough analyses to demonstrate the performance of our geodesic approach. Notably,90

our method is evaluated on a diversity of segmentation datasets, including tumors in brain91

MRIs (BraTS), multi-organs in abdominal CT scans (FLARE), and multiple zones in pro-92

static MRIs (ProstateX). Moreover, our experiments include comprehensive ablation studies93
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to further highlight the effectiveness of our geodesic soft labels for image segmentation. In94

particular, we investigate the parameters influencing the generation of geodesic soft labels,95

such as studying the impact of intensity variation and different seeding strategies in obtain-96

ing our soft labels. Additionally, we conduct experiments focusing on the combination of97

our proposed loss with a Dice loss, a boundary loss, and a focal loss, which aim to assess98

the synergies in combining these approaches.99

2. Related Work100

2.1 Soft labeling101

Soft labeling has been actively investigated in the machine learning community (Szegedy102

et al., 2016; Müller et al., 2019; Zhang et al., 2021). The early methods often leverage the103

nearest-neighbor points to obtain a soft label (Keller et al., 1985; Seo et al., 2003). Such a104

labeling scheme captures multiple class characteristics in the dataset, which are later used105

to train a classifier (El Gayar et al., 2006). More recently, Szegedy et al. (2016) proposed106

a label smoothing strategy for training deep neural networks. This smoothing strategy107

uniformly redistributes the portion of the one-hot label of a given class to all other classes.108

The model trained with these soft labels has been shown to improve the performance in109

classification tasks in both computer vision (Szegedy et al., 2016; Müller et al., 2019) and110

medical imaging domains (Galdran et al., 2020; He et al., 2020; Islam et al., 2020). It is111

also shown to be effective in handling noisy labels (Lukasik et al., 2020; Lukov et al., 2022).112

In the context of image segmentation tasks, the label smoothing strategy (Szegedy et al.,113

2016) captures inter-class relationships within an image. However, It is also essential to con-114

sider the spatial relationships within neighboring regions. Recent approaches (Kats et al.,115

2019; Gros et al., 2021; Islam and Glocker, 2021) attempt to capture such relationships116

with spatially-varying smooth labels, improving segmentation performance. For instance,117

Kats et al. (2019) obtains soft labels by expanding the original binary mask using a dilation118

operation and subsequently assigns a soft value in the extended region. In (Gros et al.,119

2021), non-binary pre-processing and data augmentation techniques are employed on the120

target mask to obtain soft labels around the boundaries. These strategies are designed for121

binary segmentation tasks, where they disregard the probability distribution in the label122

assignments. Therefore, adopting them directly to multi-class segmentation is not trivial.123

A SVLS approach generates the soft labels by redistributing the class probabilities based124

on Gaussian filtering (Islam and Glocker, 2021). Nevertheless, these soft-labeling methods125

are entirely based on ground-truth masks while ignoring the ambiguities arising from im-126

age intensities. Alternately, soft labels can also be generated using multi-rater annotations127

(Lourenço-Silva and Oliveira, 2021). Although having multiple annotations for soft labels is128

ideal, it is even more expensive to obtain in practice since it requires multiple independent129

annotators. Furthermore, a few methods also utilize uncertainty maps for soft segmenta-130

tion (Tang et al., 2022; Wang et al., 2023). Nevertheless, these methods require multiple131

segmentation predictions to compute uncertainty maps, which are computationally expen-132

sive. Compared to these approaches, our method leverages the geodesic distance transform133

(Toivanen, 1996) to capture the intensity variations in the label smoothing process. The134

resulting intensity-based soft labels capture spatial and class-wise relationships through the135

geodesic maps. Moreover, the generated soft labels are computed once and incorporated136

4



GeoLS: an Intensity-based, Geodesic Soft Labeling for Image Segmentation

into the learning objective to train a segmentation model. Also, our method generates new137

soft labels from a single annotation and can be seamlessly integrated into the segmentation138

network.139

2.2 Geodesic Distance Transform (GDT)140

The GDT is commonly used for smooth and contrast-sensitive image segmentation (Cri-141

minisi et al., 2008; Protiere and Sapiro, 2007; Toivanen, 1996), as it captures the local142

contrast and structural information within an image. The seminal work, GeoS (Crimin-143

isi et al., 2008), proposes a generalized geodesic distance (GGD) method for segmentation144

tasks in an energy-based model. The effectiveness of GeoS has led to various segmentation145

approaches (Kontschieder et al., 2013; Wang et al., 2014; Qiu et al., 2015). For instance,146

Wang et al. (2014) utilizes GGDs to bring the spatial context between object boundaries147

in an atlas-based label propagation method. Recent approaches have leveraged GGDs in148

deep learning techniques to improve image segmentation (Wang et al., 2018; Bui et al.,149

2019; Hammoumi et al., 2021; Wei et al., 2022). For instance, Bui et al. (2019) proposes150

a regression of the geodesic distance maps to regularize the segmentation network through151

an additional prediction branch. Similarly, Ying et al. (2023) regularizes geodesic distance152

maps in a dual-branch network to enhance edge details for weakly supervised segmentation.153

To improve initial segmentation, the geodesic distance from user interactions (Wang et al.,154

2018) or initial network predictions (Wei et al., 2022) are employed to provide the contex-155

tual information. The resulting geodesic maps are subsequently used as additional inputs156

to the refinement network. These existing approaches require an extra prediction branch or157

refinement network to integrate the geodesic maps. In contrast, our method leverages the158

geodesic distance to embed underlying image context information into the label smoothing159

process. The generated soft labels are computed once and consequently incorporated into160

the learning objective to train the segmentation model. Our geodesic soft-labels, therefore,161

can be directly plugged into any segmentation network.162

3. Method163

An outline of the proposed approach comparing hard labels (OH) and existing soft labels164

(LS and SVLS) is shown in Fig. 2. Consider two closeup regions with the same masks165

but differing image intensities as in Fig. 2. The existing methods rely only on ground-166

truth masks to generate the soft labels. Therefore, they have the same class probability167

maps in both closeup regions. In contrast, our approach adds image context by leveraging168

geodesic distance transform in the soft-labeling process. The resulting intensity-based soft169

labels capture the underlying image ambiguities through geodesic maps. Thus, our method170

produces different class probability maps in the two closeups. The following subsections171

describe the label smoothing formulation and proposed geodesic soft-labeling process.172

3.1 Preliminaries173

Let {(xi, yi)}Ni=1 indicate the training dataset with N samples, where xi ∈ RS×H×W repre-174

sents a 3D input volume of size S ×H ×W , and yi ∈ {0, 1}C×S×H×W denotes the corre-175

sponding ground truth in OH representation with C number of classes. The Cross-Entropy176
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Figure 2: Visualization of different soft labelings. Left side: Two samples, their corre-
sponding ground-truth masks, and closeup images having the same ground-truth masks
around tumor regions. Right side: The probabilities of each class (in red, blue, and
green colors) for the same closeup images from One-Hot (OH) encoding, Label Smooth-
ing (LS), Spatially-Varying LS (SVLS), and ours (GeoLS). Since OH, LS, and SVLS are
solely obtained from ground-truth masks, they have the same class probabilities maps for
both closeup regions (compare top vs bottom). In contrast, our proposed method employs
geodesic maps to smooth the hard labels, thus capturing intensity variations across object
boundaries. Best viewed in color.

(CE) loss function for a given voxel is defined as:177

LCE = −
C∑
c=1

yc log(pc), (1)

where pc is the predicted softmax probability from the segmentation network. For simplicity,178

we use i and c notations wherever necessary and assume that the cardinality of the training179

set normalizes the loss function.180

The OH label encoding, yc, assigns a probability of ‘1’ for the target class and ‘0’ for the181

non-target classes. Such assignments fail to provide the model with annotation ambiguity182

since they do not capture the underlying inter-class relationships within the image. One183

way to model these relationships is by softening the hard OH encoding during the training184

process. For instance, the LS method (Szegedy et al., 2016) reduces the probability of the185

target class by a factor α and evenly distributes it across all classes. The resulting soft label186

for a given voxel is:187
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yLSc = (1− α)yc +
α

C
(2)

These soft labels are subsequently used in training a segmentation network by replacing188

the original OH label in Eq 1. This strategy has been shown to improve performance in189

classification tasks (Szegedy et al., 2016; He et al., 2020; Islam et al., 2020). Nevertheless,190

LS ignores the intrinsic spatial structure that is essential for the segmentation tasks.191

3.2 Geodesic Label Smoothing (GeoLS)192

Existing soft-labeling approaches modify the segmentation masks to capture the spatial193

relationships (Kats et al., 2019; Gros et al., 2021; Islam and Glocker, 2021), thereby ac-194

counting for the annotation ambiguities around the object boundaries. Nevertheless, they195

largely overlook the annotation ambiguities coming from the image intensities, being prone196

to annotation mistakes. To consider such image ambiguities, we integrate the geodesic197

distance transform (Toivanen, 1996) directly in the soft labeling of pixels. This addition198

captures the intensity variations as well as the spatial distance between pixels in an image.199

The following subsections elaborate on our geodesic label-smoothing method.200

3.2.1 Generalized Geodesic Distance (GGD) Transform201

The GGD transform (Criminisi et al., 2008) computes the shortest geodesic distance between202

a set of reference points, known as seed points, and each pixel in an image. This transform203

produces a distance map derived from a spatial distance and image gradient combination.204

The seed points can be either a single point or a set of points selected from the object of205

interest. Let Sc represent a set of seed points upon the target class c. The generalized206

geodesic distance of each voxel v to the set Sc of a target class is described as:207

Dc(v;Sc, xi) = min
v′∈Sc

d(v, v′, xi), (3)

with:208

d(v, v′, xi) = min
p∈Pv,v′

∫ √
||p′(s)||2 + γ2(∇xi · u(s))2ds, (4)

where Pv,v′ represents the set of all paths between voxels v and v′, and p(s) denotes one209

such path parameterized by s ∈ [0, 1]. We define a unit vector u(s) = p′(s)
||p′(s)|| , which is210

tangent in the direction of the path, and whose spatial derivative is p′(s) = ∂p(s)
∂s .211

In Eq. 4, the first term, p′(s), accounts for the Euclidean distance, while the second term212

captures the image gradient information (∇xi). The parameter γ, termed the geodesic fac-213

tor, balances the contribution of the image gradient, and the Euclidean distance between214

the seed set Sc and each voxel in the image. When γ = 0, Eq. 4 simplifies to the Euclidean215

Distance, whereas setting γ to 1 facilitates computation of the geodesic distance as de-216

scribed in (Criminisi et al., 2008). In practice, the geodesic distance transform is optimally217

estimated using the raster scan algorithm (Toivanen, 1996; Criminisi et al., 2008).218

An example of generating a geodesic map is shown in Fig. 3. The seed points are chosen219

by the skeletonization operation on a target mask. The GGD map is subsequently obtained220
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(d) GGD map (e) Geodesic map(a) Image (b) mask (c) Seed points
(skeletonization)

(f) Euclidean map

Figure 3: Geodesic map generation. (a) A sample image and (b) a corresponding
segmentation mask of a spleen organ. (c) Seed points (orange, overlaid on the image) are
derived by skeletonization of the segmentation mask. (d) The GGD map is generated from
seed sets to each pixel in the image. (e) Our final geodesic map is obtained by inverting the
GGD map. (f) An Euclidean map is similarly obtained for the same seed points. Notice
that the Euclidean map spreads uniformly from seed points in all directions. Whereas our
geodesic map spreads based on both spatial distance and gradient information, capturing
the underlying intensity similarities.

using Eq. 4. To highlight the object of interest, we invert the GGD map to get the final221

geodesic map for each target class as follows:222

gc = e−Dc (5)

The resulting maps are thus in the range [0, 1]. The geodesic map of the background class223

is obtained by inverting the average of foreground geodesic maps, also in the range [0, 1]. In224

Fig. 3, we have also added an Euclidean distance map for comparison with a geodesic map.225

The Euclidean map spreads uniformly from seed points in all directions. In contrast, our226

geodesic map propagates based on both spatial distance and gradient information, capturing227

the underlying intensity similarities.228

3.2.2 Geodesic Soft Labels229

The geodesic maps encode image gradient details as a function of distance from the target230

objects. Such maps account for the intensity variations across object boundaries. Our231

approach, therefore, avails the geodesic maps for smoothing the hard labels. In order to232

accomplish this, we first normalize the geodesic map of each class as g̃c = gc∑
c gc

, such233

that it follows a probability distribution. Subsequently, the normalized geodesic maps are234

integrated with the original one-hot encoding to produce the new intensity-based soft labels,235

as defined below:236

yGeoLS
c = (1− α)yc + αg̃c (6)

These generated soft labels are thereafter substituted in Eq. 1 to facilitate the train-237

ing of the segmentation network. The generation of our proposed geodesic soft labels is238

demonstrated in Fig 4. As our approach incorporates intensity variations into the target239

label assignments through geodesic maps, it effectively guides the network toward better240

segmentation.241
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Image Ground truth

= +

One-hot label geodesic label
Proposed Geodesic 

soft-label

Geodesic Maps

c c

Figure 4: Illustration of our proposed Geodesic Label Smoothing (GeoLS). The
geodesic maps for all target labels are combined to form a probability distribution. The
generated geodesic label is subsequently used to modify the one-hot encoding to obtain
the proposed intensity-based soft label. Our soft label captures the underlying intensity
variation, thus it can better guide the segmentation network in ambiguous regions.

4. Experiments and Results242

4.1 Datasets243

In order to validate our geodesic label-smoothing method, we utilize three publicly accessible244

segmentation datasets. These datasets include: a) the Brain Tumor Segmentation dataset245

obtained from the 2019 BraTS challenge (Bakas et al., 2017, 2018), b) the multi-organ246

abdominal segmentation dataset from the 2021 FLARE challenge (Ma et al., 2022), and c)247

the prostatic zone segmentation dataset from the ProstateX challenge (Litjens et al., 2014).248

A detailed description of these datasets and our experimental settings are presented next.249

a) BraTS: This dataset comprises 335 multimodal MRI volumes of the brain, containing250

T1, T2, FLAIR, and T1ce sequences. These volumes are preprocessed with skull-striped,251

co-registered to a fixed template, and resampled to an isotropic resolution of 1 mm3. The252

dataset contains corresponding annotations of glioma tumors, including delineations of the253

necrotic and non-enhancing core, edema, and enhancing tumor regions. These regions are254

converted into Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) for255

evaluation purposes. The dataset is partitioned into 235 for training, 32 for validation, and256

68 for testing across all our experiments.257

b) FLARE: The dataset consists of 361 CT volumes of abdominal regions with seg-258

mentation masks of four organs: liver, kidney, spleen, and pancreas. These volumes have259

variable resolutions, which are standardized by resampling to a consistent resolution of260

2 × 2 × 2.5 mm3. Subsequently, they are intensity normalized by retaining values within261

the percentile range of [0.5, 0.95], as followed in the literature (Isensee et al., 2021). We262

employ a predefined dataset split for all experiments, allocating 260 volumes for training,263

26 for validation, and the remaining 75 for testing.264
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c) ProstateX: The dataset includes 98 prostatic T2 MRI scans and corresponding seg-265

mentation labels of four anatomical zones, including the peripheral zone (PZ), transition266

zone (TZ), distal prostatic urethra (DPU), and anterior fibromuscular stroma (AFS). All267

volumes are resampled into a fixed resolution of 3 × 0.5 × 0.5 mm3 as followed in (Islam268

and Glocker, 2021). For all our experiments, the dataset is split into 68 for training, 10 for269

validation, and the remaining 20 for testing.270

4.2 Training and implementation details.271

To assess the contribution of our geodesic soft labeling, we utilize a 3D U-net (Çiçek et al.,272

2016) architecture for the segmentation network. This model is trained using Adam opti-273

mizer (Kingma and Ba, 2015) with a learning rate of 10−4 and weight decay of 10−4. The274

input size of 128 × 192 × 192 in BraTS, 112 × 160 × 208 in FLARE, and 24 × 320 × 320275

in ProstateX experiments are fed into the network. The data augmentations such as ran-276

dom flipping and rotation are utilized, as in (Islam and Glocker, 2021). The network is277

trained for 200 epochs with a batch size of 4. For inference, the model with the best dice278

score on the validation set is selected for testing. Our evaluation includes experiments279

with CE, Focal Loss (FL) (Lin et al., 2017), LS (Szegedy et al., 2016), and SVLS (Islam280

and Glocker, 2021) losses as training objectives. Following the literature, commonly uti-281

lized hyperparameter values are considered for each baseline approach, and the result is282

reported for a value with the best dice score on the validation set. In particular, the fo-283

cusing parameter γ in FL is set to {1, 2, 3}. In the case of LS, α ∈ {0.1, 0.2, 0.3} are used,284

whereas σ ∈ {0.5, 1, 2} values are employed in SVLS with a kernel size of 3. In our method,285

the geodesic factor γ is explored for {0.5, 0.75, 1} values with a fixed smoothing factor of286

α = 0.1. To obtain the geodesic maps, an open-source library, GeodisTK 1, is employed287

with a skeletonization of a segmentation mask as seed points. Note that our soft labels are288

computed offline, requiring virtually no additional computation during the training process.289

The only additional cost is loading the geodesic maps, whose computational burden is neg-290

ligible. The geodesic maps are not needed during the inference step, resulting in exactly291

the same computation cost as existing approaches. All our experiments were executed on292

an NVIDIA RTX A6000 GPU with PyTorch 1.8.0. Our GeoLS implementation is available293

at: https://github.com/adigasu/GeoLS.294

4.3 Evaluation Metrics295

The segmentation performance is evaluated with standard and widely used evaluation mea-296

sures, such as the Dice Similarity Coefficient (DSC) and the 95% Hausdorff Distance (HD).297

The former measure estimates the overlap between ground truth labels and predictions,298

whereas the latter measures the distance between ground truth and predicted segmentation299

boundaries. To ensure a fair comparison, we conducted all experiments three times with300

fixed seed sets on identical machines, presenting results with mean and standard deviation301

values.302

1. https://github.com/taigw/GeodisTK
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4.4 Comparison with the state-of-the-art303

The performance of the proposed geodesic soft-labeling approach is first compared with304

CE, FL, and state-of-the-art soft-labeling methods (LS (Szegedy et al., 2016) and SVLS305

(Islam and Glocker, 2021)), and their discriminative results are reported in Tables 1-3 for306

all three datasets. The table also includes the hyperparameter value corresponding to the307

best-performing model for each method.308

The performance of various methods on multi-class brain tumor segmentation dataset309

is shown in Table 1. The results show that employing soft labels improves the segmen-310

tation performance compared to models trained with a CE loss on hard labels in both311

scores. Among soft-labeling baselines, FL and SVLS achieve the best DSC and HD scores,312

respectively. Our approach outperforms these best-performing baselines in both DSC and313

HD scores in all tumor categories. Notably, we observe that the proposed GeoLS indeed314

benefits in the enhancing tumor (ET) region. Such a region is often irregular and poorly315

defined, which leads to imprecise annotation (Menze et al., 2014). Our method improves316

this challenging region by 1.06% in DSC score and 0.45 mm in HD, highlighting the advan-317

tage of combining the intensity information in our soft labels. These results demonstrate318

the merit of using our geodesic soft-labeling over hard-labeling and existing soft-labeling319

approaches.320

Table 2 presents the results of the multi-organ abdominal segmentation on the FLARE321

test set. A similar pattern is observable in the LS, SVLS, and GeoLS results compared to322

those obtained from the BraTS dataset (Table 1). Nevertheless, there is an apparent per-323

formance gap in FL compared to CE results, which may be attributed to the over-emphasis324

on mislabeled pixels present in the data. Overall, our GeoLS yields the best segmentation325

performance corresponding to the baselines, notably enhancing the segmentation in the326

challenging pancreas and spleen regions.327

The results of the multi-class prostatic zone segmentation on the ProstateX dataset are328

reported in Table 3. A similar trend in FL, LS, and GeoLS results is observed as in Table 1.329

However, SVLS produces a drop in performance compared to CE results (HD), possibly330

due to the over-suppression of original one-hot encoding in the boundaries. Moreover,331

Table 1: Segmentation results on the BraTS test set. In all tumor structures (ET,
TC, WT), our method yields the best DSC and HD scores. For each tumor structure, bold
and underlined indicate the best and second-best methods.

Methods ET TC WT Average

CE 72.05 ± 2.14 82.38 ± 0.91 90.09 ± 0.39 81.51 ± 1.03
FL (γ = 1) 73.55 ± 0.49 82.82 ± 0.20 90.37 ± 0.16 82.25 ± 0.20
LS (α = 0.1) 73.28 ± 0.85 82.65 ± 0.30 90.46 ± 0.08 82.13 ± 0.35
SVLS (σ = 1.0) 73.15 ± 2.82 82.67 ± 1.96 90.43 ± 0.78 82.08 ± 1.81

D
S
C

(%
)
↑

Ours (γ = 0.75) 74.61 ± 0.79 83.51 ± 0.24 90.88 ± 0.12 83.00 ± 0.31

CE 14.55 ± 1.61 7.64 ± 1.15 6.28 ± 0.86 9.49 ± 1.20
FL (γ = 1) 12.81 ± 1.11 7.31 ± 0.32 5.96 ± 0.18 8.69 ± 0.31
LS (α = 0.1) 13.52 ± 0.35 7.23 ± 0.16 5.95 ± 0.16 8.90 ± 0.21
SVLS (σ = 1.0) 12.83 ± 2.70 6.93 ± 1.37 5.72 ± 1.10 8.50 ± 1.70

H
D

(m
m
)
↓

Ours (γ = 0.75) 12.36 ± 0.56 6.08 ± 0.61 5.22 ± 0.52 7.89 ± 0.32

11



Adiga, Dolz and Lombaert

Table 2: Segmentation results on the FLARE test set. Our method produces the
best DSC and HD scores on average results as well as on a challenging pancreas organ. For
each abdominal organ, bold and underlined indicate the best and second-best methods.

Methods Liver Kidney Spleen Pancreas Average

CE 94.88 ± 0.31 94.70 ± 0.33 95.46 ± 0.85 72.52 ± 0.61 89.39 ± 0.14
FL (γ = 1) 94.84 ± 1.08 94.38 ± 0.35 95.56 ± 0.72 69.66 ± 2.02 88.61 ± 0.90
LS (α = 0.1) 95.96 ± 1.11 94.89 ± 0.35 95.61 ± 0.63 73.07 ± 1.35 89.88 ± 0.38
SVLS (σ = 0.5) 95.76 ± 0.34 94.28 ± 0.34 95.01 ± 0.09 73.39 ± 0.16 89.61 ± 0.10

D
S
C

(%
)
↑

Ours (γ = 1.0) 95.60 ± 0.87 94.80 ± 0.37 96.52 ± 0.30 73.72 ± 1.02 90.16 ± 0.44

CE 4.15 ± 1.10 2.94 ± 0.11 2.98 ± 1.06 6.72 ± 1.18 4.20 ± 0.19
FL (γ = 1) 3.28 ± 1.28 3.22 ± 0.32 2.80 ± 1.08 8.03 ± 0.46 4.33 ± 0.61
LS (α = 0.1) 2.87 ± 1.14 2.93 ± 0.37 2.60 ± 0.24 6.37 ± 1.03 3.69 ± 0.26
SVLS (σ = 0.5) 2.61 ± 1.06 3.17 ± 0.78 1.42 ± 0.18 6.26 ± 0.48 3.36 ± 0.20

H
D

(m
m
)
↓

Ours (γ = 1.0) 3.01 ± 1.05 2.40 ± 0.50 1.49 ± 0.55 5.59 ± 0.20 3.12 ± 0.21

Table 3: Segmentation results on the ProstateX test set. Our method is competitive
in most cases and achieves the best DSC score on average results. At the same time,
baselines are ranked differently across prostatic zones (PZ, TZ, DPU, and AFS). For each
prostatic zone, bold and underlined indicate the best and second-best methods.

Methods PZ TZ DPU AFS Average

CE 71.56 ± 0.55 86.34 ± 0.28 48.39 ± 2.46 38.27 ± 4.46 61.14 ± 1.21
FL (γ = 1) 72.18 ± 1.11 86.38 ± 0.20 51.19 ± 2.73 35.50 ± 6.85 61.31 ± 1.96
LS (α = 0.2) 70.52 ± 0.31 86.34 ± 0.46 53.31 ± 2.89 35.16 ± 6.65 61.33 ± 1.29
SVLS (σ = 1.0) 72.08 ± 1.89 85.89 ± 0.64 51.10 ± 4.14 35.67 ± 3.08 61.19 ± 2.12

D
S
C

(%
)
↑

Ours (γ = 1.0) 70.86 ± 1.11 86.51 ± 0.36 51.50 ± 0.50 39.50 ± 2.60 62.09 ± 0.75

CE 6.51 ± 0.34 3.22 ± 0.10 11.28 ± 0.44 9.58 ± 1.21 7.65 ± 0.24
FL (γ = 1) 5.76 ± 0.97 3.38 ± 0.39 7.89 ± 3.34 9.68 ± 0.59 6.68 ± 1.05
LS (α = 0.2) 6.64 ± 0.69 3.33 ± 0.15 7.28 ± 2.20 9.75 ± 1.14 6.75 ± 0.70
SVLS (σ = 1.0) 7.04 ± 0.84 3.73 ± 0.24 10.94 ± 5.75 10.2 ± 1.26 7.98 ± 1.59

H
D

(m
m
)
↓

Ours (γ = 1.0) 7.83 ± 2.72 3.22 ± 0.06 6.50 ± 0.52 9.78 ± 0.26 6.83 ± 0.78

existing methods are ranked differently across datasets and evaluation measures, indicating332

that these approaches are sensitive to datasets. In contrast, our GeoLS outperforms the333

state-of-the-art approaches in most cases. Based on these results, we can conclude that334

our method remains consistent across diverse datasets, highlighting the robustness of our335

intensity-based soft labels.336

4.5 Qualitative Results337

Figure 5 shows the visual comparison of different segmentation results on brain tumors from338

BraTS, abdominal organs from FLARE, and prostatic zones from ProstateX datasets. In339

brain tumor segmentations (top row), the results of existing approaches (OH, FL, SVLS) are340

predominantly over-segmenting in non-enhancing core regions (blue), whereas the LS and341

GeoLS reduce the segmentation errors. In the middle row of Fig. 5, the existing methods342

struggle to segment the challenging pancreas organ (yellow) organ. In contrast to these base-343

lines, our GeoLS delivers a superior segmentation of the pancreas organ. The prostatic zone344
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OH LS SVLS GeoLS (ours)FLGT
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DSC: 59.87, HD: 5.30 DSC: 54.87, HD: 6.49DSC: 55.53, HD: 6.52 DSC: 44.59, HD: 12.49 DSC: 67.02, HD: 4.31

Image

DSC: 95.63, HD: 1.36 DSC: 95.55, HD: 1.25DSC: 95.99, HD: 1.25 DSC: 95.32, HD: 1.31 DSC: 96.35, HD: 1.10

DSC: 91.03, HD: 3.45 DSC: 93.25, HD: 2.18DSC: 90.79, HD: 3.80 DSC: 91.01, HD: 3.05 DSC: 94.90, HD: 1.55

Figure 5: Qualitative results across BraTS (top), FLARE (middle), and Prosta-
teX (bottom) datasets. For BraTS and ProstateX, segmentation results are shown from
the region highlighted in the image (purple). Average DSC (%) and HD (mm) scores are
mentioned at the top of each prediction. Our GeoLS minimizes classification errors in am-
biguous regions, such as the non-enhancing core (blue) in BraTS, the pancreas (yellow)
in FLARE, and PZ (blue) and AFS (yellow) zones in the ProstateX examples. Color-
ing denotes different tumor structures (top), abdominal organs (middle), and prostatic
zones (bottom).
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OH LS SVLS GeoLS (ours)FLGTImage

Figure 6: Predicted probability maps. The probability maps indicate a non-enhancing
core (blue) in BraTS (top), a pancreas (yellow) in FLARE (middle), and a PZ (blue) in
ProstateX (bottom), corresponding to the examples shown in the qualitative results. Our
GeoLS yields reasonably low probabilities in poorly defined image intensities and misclas-
sified regions while maintaining high probabilities in non-ambiguous regions.
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segmentations are arguably challenging due to imprecise boundaries between different zones.345

In the bottom row, the results of prostatic zone segmentations are poor in all approaches.346

Our method produces reasonable segmentation results, notably in the AFS prostatic zone347

(yellow). In addition, the prediction probability maps of baselines and our method for the348

same examples are shown in Fig. 6. Our GeoLS produces reasonably low probabilities in349

poorly defined image intensities and misclassified regions, ensuring segmentation accuracy350

even in challenging areas. At the same time, it consistently maintains high probabilities351

in well-defined image intensity regions. Furthermore, the quantitative results presented in352

Sec. 4.4 support these visual results. These results indicate that supplying image gradient353

information through geodesic maps in our intensity-based soft-labeling approach enhances354

the segmentation performance.355

4.6 Sensitivity to γ356

The hyperparameter γ in Eq. 4 plays a crucial role in balancing between the Geodesic357

Distance and the Euclidean Distance. Since the intensity variations and spatial distance358

can influence the generalized geodesic distance transform, we investigate the segmentation359

performance by varying the γ parameter and report their results in Fig. 7, across all datasets.360

Additionally, we include the segmentation result obtained from a model trained with γ = 0,361

i.e., utilizing only the Euclidean Distance for soft labels. The results demonstrate that the362

segmentation performance is better for higher γ values compared to the models solely relying363

on Euclidean distance maps. This indicates that incorporating geodesic information based364

on image gradients in our soft labels positively impacts the performance of segmentation365

tasks.366

(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 7: Sensitivity of geodesic factor γ on segmentation performance - Each
bar indicates the average DSC ↑ (top) and HD ↓ (bottom) scores for BraTS, FLARE, and
ProstateX datasets. γ = 0 here uses only using Euclidean Distance. Segmentation accuracy
improves when the γ value is increased towards 1, indicating a higher emphasis on Geodesic
Distance in soft labels.
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Table 4: Performance under different seed sets S . Average DSC and HD scores on
BraTS, FLARE, and ProstateX datasets are reported. Segmentation accuracy is consistent
across datasets for skeleton-based seed points. The bold and underlined indicate the best
and second-best results.

Datasets BraTS FLARE ProstateX

choice of S DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓
random-3 82.98 ± 0.68 8.10 ± 0.09 87.83 ± 1.02 4.79 ± 0.16 58.65 ± 3.73 7.41 ± 1.59
random-5 82.51 ± 0.80 9.00 ± 0.70 89.46 ± 1.00 4.20 ± 0.97 60.88 ± 0.85 7.07 ± 0.33
random-7 82.36 ± 0.48 8.89 ± 0.81 89.23 ± 0.21 4.41 ± 0.49 61.76 ± 2.62 6.84 ± 0.91
skeleton 83.00 ± 0.31 7.89 ± 0.32 90.16 ± 0.44 3.12 ± 0.21 62.09 ± 0.75 6.83 ± 0.78
erosion 81.93 ± 0.93 9.17 ± 0.68 89.56 ± 0.08 3.63 ± 0.27 61.72 ± 0.90 6.96 ± 0.55

4.7 Choice of seed set S367

Our soft label relies on the geodesic maps, which vary with the different choices of seed set S.368

Therefore, to validate the effectiveness of our seeding strategy on segmentation performance,369

we conduct experiments with different seed-set strategies. These strategies involve obtaining370

a random selection of pixels within each target class. For this, our experiments include 3,371

5, and 7 randomly selected pixels as seed points. Such seed points are inadequate for large372

regions, such as the liver, or multiple instances of a class label, such as the kidney. To address373

this issue, seed sets are also obtained using the remainings of the skeletonization and erosion374

operations applied to each target class. The results of these experiments are reported in375

Table 4. It shows that the segmentation performances are comparable for different seed-set376

choices, which further demonstrates the strength of our geodesic soft labels. Furthermore,377

the results suggest that the skeleton-based seed strategy consistently yields favorable results378

across all datasets, which indicates that this seeding strategy could also be viable on new379

datasets.380

4.8 Combination of loss functions381

The main goal of this work is to provide an alternative to state-of-the-art soft labeling losses382

by leveraging geodesic distance transform. Nevertheless, the proposed approach is orthog-383

onal to other types of segmentation losses, including widely used Dice loss (Sudre et al.,384

2017). Moreover, combined CE and Dice losses are often employed to train segmentation385

models for medical images (Ma et al., 2021; Taghanaki et al., 2019). Thus, we investigate386

whether the findings observed when comparing the CE loss hold when we combine the387

proposed GeoLS with the Dice loss. These results, depicted in Fig. 8, demonstrate that388

adding the Dice loss improves the segmentation performance of both CE and GeoLS across389

all datasets. Moreover, combining GeoLS and Dice losses achieves the best results in most390

cases, demonstrating the consistency of our geodesic label-smoothing approach.391

Furthermore, we performed experiments by combining our GeoLS with a boundary loss392

(BL) first and then with a focal loss (FL), and their results are reported in Fig. 9. The393

results show a similar trend as with a combination of Dice loss. Combining our method394

with the BL and FL yields better segmentation results compared to the CE combined with395

the BL and FL across all three datasets, in most cases. These results demonstrate the396

robustness of the proposed GeoLS when combined with other loss functions.397
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(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 8: Segmentation results with a combination of Dice loss - Each bar indicates
the average DSC ↑ (top) and HD ↓ (bottom) scores on all three datasets. The performance
of segmentation improves by adding Dice loss on both CE and our models. Combination of
Dice loss with our yields consistently best in most cases.

(a) BraTS dataset (b) FLARE dataset (c) ProstateX dataset

Figure 9: Segmentation results with a combination of Boundary loss (BL) and
Focal loss (FL) - Each bar indicates the average DSC ↑ (top) and HD ↓ (bottom) scores
on all three datasets. Combining our method with BL and FL consistently provides better
segmentation results compared to CE combined with BL and FL in most cases.

5. Discussion and Conclusion398

Despite the growing popularity of contemporary soft-labeling approaches, the underlying399

image context information associated with the label is largely overlooked in the soft labels400

for image segmentation. This work demonstrates that incorporating such information into401

standard hard labels would improve the performance of deep segmentation networks. To402

that effect, our contribution, a Geodesic label smoothing (GeoLS), incorporates intensity403

variation details into the soft-labeling process through geodesic distance transforms. More404

specifically, our proposed approach generates new intensity-based soft labels that capture405

ambiguity between neighboring target regions. Employing our soft labels in the training406

of segmentation models has consequently demonstrated an improved segmentation perfor-407
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mance. Our results have in fact shown that our geodesic-based smoothing consistently408

outperforms state-of-the-art approaches in soft-labeling, across three different datasets:409

multi-class tumor segmentation in brain MRIs, organ segmentation in abdominal CTs,410

and zone segmentation in prostatic MR volumes. Both quantitative and qualitative results411

indicate notable improvements in the segmentation of known challenging regions, such as412

of enhancing tumors, as well as the pancreas.413

Furthermore, the ablation study conducted on the geodesic factor parameter indicates414

that our geodesic maps integrate richer intensity information in the yielded soft labels, ef-415

fectively producing an improved segmentation performance than utilizing only Euclidean416

distance maps. Our experiments have also evaluated several key seeding strategies for gen-417

erating soft labels. These results show that the skeleton-based strategy remains consistent418

across all datasets. The design of the seeding process can be further explored in order419

to better capture the intrinsic structures of target objects. This work provides, therefore,420

a valuable alternative to hard-labeling and existing soft-labeling losses. Nonetheless, our421

geodesic label smoothing loss can also be combined with other segmentation losses, such as422

the conventional Dice loss. The use of such loss has in fact shown further improvements423

in the segmentation accuracy within our experiments. As future work, our approach could424

also be potentially applicable to segmentation tasks under noisy annotations (Lukasik et al.,425

2020; Karimi et al., 2023). Overall, our proposed geodesic-based soft-labeling could be vir-426

tually leveraged in broader ranges of applications where annotation remains challenging due427

to ambiguities in image intensities across regions.428
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