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Abstract. The varying cortical geometry of the brain creates numer-
ous challenges for its analysis. Recent developments have enabled learn-
ing cortical data directly across multiple brain surfaces via graph con-
volutions. However, current graph learning algorithms fail when brain
surface data are misaligned across subjects, thereby requiring to apply
a costly alignment procedure in pre-processing. Adversarial training is
widely used for unsupervised domain adaptation to improve segmen-
tation performance on target data whose distribution differs from the
training source data. In this paper, we exploit this technique to learn
surface data across inconsistent graph alignments. This novel approach
comprises a segmentator that uses graph convolution layers to enable
parcellation across brain surfaces of varying geometry, and a discrim-
inator that predicts the alignment-domain of surfaces from their seg-
mentation. By trying to fool the discriminator, the adversarial training
learns an alignment-invariant representation which yields consistent par-
cellations for differently-aligned surfaces. Using manually-labeled brain
surface from MindBoggle, the largest publicly available dataset of this
kind, we demonstrate a 2%–13% improvement in mean Dice over a non-
adversarial training strategy, for test brain surfaces with no alignment
or aligned on a different reference than source examples.

1 Introduction

The cerebral cortex is essential to a wide range of cognitive functions. Automated
algorithms for brain surface analysis thus play an important role in understand-
ing the structure and working of this complex organ. Nowadays, deep learning
models such as convolutional neural networks (CNNs) provide state-of-the-art
performance for most image analysis tasks, including image classification, reg-
istration, and segmentation [1]. However, these models typically require large
annotated datasets for training, which are often expensive to obtain in medical
applications. This limitation is especially true for the task of cortical segmen-
tation, also known as parcellation, where generating ground truth data requires
labeling possibly thousands of nodes on a highly-convoluted surface. This burden
also explains why datasets for such tasks are relatively small. For instance, the
largest publicly-available dataset for cortical parcellation, MindBoggle [2], con-
tains only 101 manually-annotated brain surfaces. Moreover, another common
problem of deep learning models is their lack of robustness to differences in the
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Fig. 1. Overview of our architecture: The input brain graph is mapped to a spec-
tral domain by decomposition of the graph Laplacian. The source and target domain
are obtained by aligning the eigenbases to source reference and targets reference re-
spectively. A segmentator GCN learns to predict a generic cortical parcel label for each
domain. The discriminator aims at classifying the segmentator predictions, thereby
assisting the segmentator GCN in adapting to both source and target domains.

distribution of training and test data. Hence, a CNN model trained on the data
from a source domain usually fails to generalize to samples from other domains,
i.e., the target domains.

Unsupervised domain adaptation (UDA) [3] has proven to be a powerful ap-
proach for making algorithms trained on source data generalize to examples from
a target domain, without having explicit labels for these examples. Generative
adversarial networks (GANs) [4] leverage adversarial training to produce real-
istic images. In this type of approach, a discriminator network classifies images
produced by a generator network as real or fake, and the generator improves
by learning to fool the discriminator. Following the success of GANs, adver-
sarial techniques have later been proposed to improve the learning capability
of CNNs across different domains. Adversarial domain adaptation methods for
segmentation [5,6,7,8,9,10] involve the concurrent training of two networks: a
segmentator that learns to produce accurate segmentation outputs for labeled
source examples, and a discriminator which forces the segmentator to have a
similar prediction for examples of both source and target domains. These ad-
versarial techniques usually rely on either feature space adaptation or output
space adaptation. Initial works [11,12] focused on matching the distributions of
features from source and target domain examples for classification tasks. As the
output of CNNs for segmentation contains rich semantic information, [13] pro-
posed a method that instead leverages output space adaptation. Various pixel-
wise domain adaptation approaches have been developed for natural color images
[12,14]. In medical image analysis, [15] proposed an adversarial neural network
for MRI image segmentation which does not require additional labels on test
examples from the target domain. Likewise, [10] presented a vessel segmentation
approach for fundus images, which uses a gradient reversal layer for adversarial
training. Recent work [16] also addressed the problem of domain adaptation by
adding a differentiable penalty on the target domain. However, these domain
adaptation techniques focus on data lying in the Euclidean space (natural or
medical images) and, therefore, are not suitable for graph structures such as
surface meshes.
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The image space is inadequate to capture the varying geometry of the cere-
bral cortex. Differences in brain surface geometry hinder statistical frameworks
from exploiting spatial information in Euclidean space. The extension of stan-
dard convolutions to non-Euclidean spaces like manifolds and graphs has led
to the development of various geometric deep learning frameworks [17,18]. A
recent work [19] proposed to use geometric deep learning for segmenting three
cortical regions by relying on the spatial representation of the brain surface
mesh. Later, based on the spectral representation of such meshes, [20] developed
a graph convolution network (GCN) to parcellate the cerebral cortex. Despite
offering more flexibility than Euclidean-based approaches, these methods are
domain-dependent and would fail to generalize to new datasets (domains) with-
out explicit re-training. Moreover, obtaining annotations for these new datasets
is also challenging and time-consuming, due to the complexity of visualizing and
labeling intricate surfaces.

In this paper, we address the limitations of existing techniques for corti-
cal parcellation by proposing an adversarial domain adaptation method on sur-
face graphs. Specifically, we focus on a problem shared by most GCN-based
approaches, which is the need for a common basis to represent and operate on
graphs. For approaches operating in Euclidean space, bringing surface graphs
to this common basis usually involves transforming and possibly sub-sampling
meshes to match a given reference, which is particularly difficult for convoluted
surfaces like the cortex. As described in [20], this process can be greatly sim-
plified by instead operating in the spectral domain, for instance using spectral
GCNs [21,22]. Nevertheless, spectral GNCs also need to perform some alignment
to work. Hence, these models require computing the eigendecomposition of the
graph Laplacian matrix to embed graphs in a space defined by a fixed eigenbasis.
However, separate graphs may have different eigenbases, and the eigenvectors ob-
tained for a given graph are only defined up to a sign and a rotation (if different
eigenvectors share close eigenvalues). Due to these ambiguities, spectral GCNs
cannot be used to compare multiple graphs directly and need an explicit align-
ment of graph eigenbases as an additional pre-processing step. Here, we focus
on generalizing parcellation across multiple brain surface domains by removing
the dependency on these domain-specific alignments.

The contributions of our work are multifold:

– We present, to the best of our knowledge, the first adversarial graph domain
adaptation method for surface segmentation. Our novel method trains two
networks in an adversarial manner, a fully-convolutional GCN segmentator
and a GCN domain discriminator, both of which operate on the spectral
components of surface graphs.

– Compared to existing approaches, our surface segmentation method offers
greater robustness to differences in domain-specific alignment. Hence, our
method yields a higher accuracy for non-aligned brain surfaces compared to
a strategy without adversarial learning. Moreover, it also provides a better
generalization for surfaces aligned to a different reference, without requiring
an explicit re-alignment or manual annotations of these surfaces.
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– We demonstrate the potential of our method for alignment-invariant parcel-
lation of brain surfaces, using data from MindBoggle, the largest publicly-
available manually-labeled surface dataset. Our results show significant mean
Dice improvements compared to the same segmentation network without
adversarial training and over a strong baseline approach based on Spectral
Random Forest.

In the next section, we detail the fundamentals of our graph domain adap-
tation method for surface segmentation, followed by experiments validating the
advantages of our method and a discussion of results.

2 Method

An overview of our proposed method is shown in Fig. 1. In the initial step,
the cortical brain graph is embedded into the spectral domain using the graph
Laplacian operator. Next, samples from the source domain only are aligned to a
reference template using the Iterative Closest Point (ICP) algorithm. This algo-
rithm works by repeating the following two steps until convergence: 1) mapping
each node of the graph to align to its nearest reference node in the embedding
space; 2) computing the orthogonal transformation (i.e., rotation and flip) which
brings nodes nearest to their corresponding reference node. Since this process
is iterative and external to the network architecture, it can be computation-
ally expensive to run. However, we only need to apply it during training and,
as shown in experiments, the proposed method can achieve good performance
on non-aligned test examples by learning an alignment-invariant representation.
Finally, a graph domain adaptation network is trained to perform alignment-
independent parcellation. The segmentator network learns a generic mapping
from input surface features, e.g. the spectral coordinates and sulcal depth of
cortical points, to cortical parcel labels.

2.1 Spectral embedding of brain graphs

We start by describing the spectral graph convolution model used in this work.
Denote as G = {V, E} a brain surface graph with node set V, such that |V| = N ,
and edge set E . Each node i has a feature vector xi ∈ R3 representing its 3D
coordinates. We map G to a low-dimension manifold using the normalized graph
Laplacian operator L = I − D−

1
2 AD−

1
2 , where A is the weighted adjacency

matrix and D the diagonal degree matrix. Here, we consider weighted edges and
measure the weight between two adjacent nodes as the inverse of their Euclidean
distance, i.e. aij = (‖xi−xj‖+ε)−1 where ε is a small positive constant. Letting
L = UΛU> be the eigendecomposition of L, the normalized spectral coordinates
of nodes are given by Û = Λ−

1
2 U. The normalization with Λ−

1
2 is used so that

coordinates corresponding to smaller eigenvalues are given more importance in
the embedding.
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Denote the neighbors of node i ∈ V as Ni = {j | (i, j) ∈ E}. The convolution
operation used in our spectral GCN is defined as

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk y

(l)
jq ϕ(ûi, ûj ; Θ

(l)
k ) + b(l)p ,

y
(l+1)
ip = σ

(
z
(l)
ip

) (1)

where y
(l)
jq is the feature of node j in the q-th feature map of layer l, w

(l)
pqk

is the weight in the k-th convolution filter between feature maps q and p of

subsequent layers, b
(l)
p is the bias of feature map p at layer l, and σ is a non-

linear activation function. The information of the spectral embedding relating
nodes i and j is included via a symmetric kernel ϕ(ûi, ûj ;Θk) parameterized by
Θk. In this work, we follow [20] and use a Gaussian kernel: ϕ(ûi, ûj ;µk, σk) =
exp

(
− σk ‖(ûj − ûi)− µk‖2

)
.

2.2 Graph domain adaptation

Our graph domain adaptation architecture contains two blocks: a segmentator
GCN S performing cortical parcellation and a discriminator GCN D, which
predicts if a given parcellation comes from a source or target graph. Let Xsrc

be the set of source graphs and Xtgt the set of unlabeled domain graphs, with
X = Xsrc∪Xtgt the entire set of graphs available in training. In the first step, we
optimize the segmentator GCN using labeled source graphs G ∈ Xsrc. We feed
the segmentation network’s prediction S(G) to the discriminator D whose role
is to identify the input’s domain (i.e., source or target). The gradients computed
from an adversarial loss on target domain graphs are back-propagated from D to
S, forcing the segmentation to be similar for both the source and target domain
graphs.

As in other adversarial approaches, we define the learning task as a minimax
problem between the segmentator and discriminator networks,

max
D

min
S
L(D,S) =

1

|Xsrc|
∑
G∈Xsrc

Lseg(S(G),yG) − λ

|X |
∑
G∈X
Ldis

(
D(S(G)), zG

)
,

(2)

where Lseg is the supervised segmentation loss on labeled source graphs, and Ldis

is the discriminator loss on both source and target graphs, which is optimized
in an adversarial manner for S and D.

Segmentator loss For each input graph, the segmentator network outputs a
parcellation prediction ŷ where ŷic is the probability that node i belongs to parcel
c. In this work, we define the supervised segmentation loss as a combination of
weighted Dice loss and weighted cross-entropy (CE),

Lseg(ŷ,y) =

[
1−

ε + 2
∑N

i=1

∑C
c=1 ωc yic ŷic

ε +
∑N

i=1

∑C
c=1 ωc(yic + ŷic)

]
−

N∑
i=1

C∑
c=1

ωc yic ŷic, (3)
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with yic being a one-hot encoding of the reference segmentation and ε a small
constant to avoid zero-division. The weights ωc balances the loss for parcels
by increasing the importance given to smaller-sized regions. We follow [20] and
set class weights ωc as the total number of nodes divided by the number of
nodes with label c. In the loss of Eq. (3), CE improves overall accuracy of node
classification while Dice helps to have structured output for each parcel.

Discriminator loss Since the discriminator D is a domain classifier, we
define its loss as the binary cross-entropy between its domain prediction (i.e.,
ẑ = 1 for source or ẑ = 0 for target):

Ldis(ẑ, z) = − (1− z) log(1− ẑ) − z log ẑ. (4)

As mentioned before, this loss is maximized while updating the segmentator’s
parameters and minimized when updating the discriminator. Thus, the segmen-
tator learns to produce surface parcellations that are alignment-invariant.

2.3 Network architecture

Segmentator: The segmentator is a fully-convolutional GCN comprised of 3
graph convolution layers with respective feature map sizes of 256, 128, and 32.
At the input of the network, each node has 4 features: 3D spectral coordinates
and an additional scalar measuring sulcal depth. All layers have Kl = 6 Gaussian
kernels, similar to [20]. Since the output has 32 parcels, our last layer size is set
to 32. In the last layer, softmax operation is applied for parcellation prediction,
and the remaining layers employ Leaky ReLU as an activation function to obtain
filter responses in Eq. (1).

Discriminator: Similar to the segmentator network, we use 2 graph con-
volution layers, an average pooling layer, and 3 fully connected (linear) layers
for classifying the segmentation domain. The first graph convolution layer takes
segmentation predictions with 32 feature maps as input. Moreover, the output
sizes of the first two layers output are 128 and 64, respectively. Average pooling
is used to reduce the input graph to a 1-D vector for the classification task. Three
fully-connected layers are placed at the end of the network, with respective sizes
of 32, 16, and 1. Each graph convolution layer has Kl = 6 Gaussian kernels.
Sigmoid activation is applied to the last linear layer to predict the input domain
of the graph sample and the remaining layers use Leaky ReLU.

3 Results

We evaluate the performance of our method using MindBoggle [2], the largest
manually-labeled brain surface dataset. This dataset contains the cortical mesh
data of 101 subjects aggregated from multiple sites. Each brain surface includes
32 manually labeled parcels. We split this dataset into 70-10-20 training, vali-
dation and test sets. The training set has only 35 samples for the source and
target domains each. To have more training samples and thus reduce overfitting,
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Fig. 2. Effect of hyper-parameter λ: Segmentation performance in mean Dice (left)
and Discriminator classification accuracy (right) on test examples, obtained for λ ∈
{0.1, 1, 10}.

we sub-sample the node embeddings of each mesh to generate 25 examples of
10K nodes. This data augmentation technique, which is not possible in regular
CNNs, is enabled by the spectral embedding of our approach.

Let Pc be the nodes predicted as having label c ∈ {1, . . . , 32}, and Gc be the
actual set of nodes with this label in the ground-truth parcellation. We evaluate
performance using the mean Dice overlap:

MeanDice(P,G) =
1

32

32∑
c=1

2 |Pc ∩Gc|
|Pc|+ |Gc|

. (5)

All experiments were carried out on an i7 desktop computer with 16GB of RAM
and an Nvidia Titan X 12 GB GPU. The code for our work is available at the
following URL: https://tinyurl.com/yawdw7hh.

3.1 Effect of λ on parcellation

The loss function for adversarial training involves hyper-parameter λ, which
controls the trade-off between parcellation accuracy on labeled source data and
fooling the discriminator (i.e., alignment invariance). To assess the impact of this
important hyper-parameter on performance, we show in Fig. 2 the segmentator
mean Dice and discriminator classification accuracy on test examples at different
training epochs, for λ ∈ {0.1, 1, 10}. As expected, when using a large λ = 10,
the model focuses mostly on fooling the discriminator. This results in a low seg-
mentation Dice, and a discriminator accuracy near 50% since the discriminator
cannot distinguish between source and target parcellation outputs. Conversely,
for a small λ = 0.1, the adversarial training gives less importance to fooling
the discriminator, which translates in a high discriminator accuracy. However,
this also leads to a poor performance on target examples, since the parcellation
output for these examples differs greatly from those of source examples. This
illustrates that a stronger adversarial learning is required to align the source
and target domains. For the rest of our experiments, we selected λ = 1 based on
the parcellation accuracy for validation examples.

https://tinyurl.com/yawdw7hh
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Table 1. Comparison with surface segmentation approaches: Mean Dice and
standard deviation on test data. The first result column corresponds to the default
setting where test (i.e., target domain) graphs are not aligned. For the second column,
test graphs were aligned on the same reference as training (i.e., source domain) graphs.
Result columns 3-7 correspond to the setting where all test graphs are aligned to
four randomly-selected target graphs (a different graph for each column). Bold font
highlights a performance statistically higher than all other methods (t-test p < 0.01).

Alignment to reference graph

Method
No

alignment
Source

Rand.
target 1

Rand.
target 2

Rand.
target 3

Rand.
target 4

Spectral RF [23] 65.4± 9.0 81.9± 3.4 60.0± 1.8 55.3± 2.1 60.2± 4.0 55.2± 3.0

Seg-GCN [20] 71.4± 7.9 86.5± 2.8 67.8± 2.0 58.8± 2.8 63.5± 3.2 60.1± 3.6

Adv-GCN (ours) 73.8± 6.0 85.7± 3.5 73.5± 2.0 72.5± 2.6 72.4± 2.4 71.7± 3.3

3.2 Comparison with the state-of-the-art

We next compare our method, called Adv-GCN in the following results, against
two other graph-based approaches for surface parcellation. This first one is the
Spectral Random Forest (RF) algorithm proposed in [23], which performs the
same spectral graph embedding as our method, and then uses the spectral co-
ordinates and sulcal depth at individual nodes to train a RF classifier. As done
in [23], we employed 50 trees to build the RF model. This comparison baseline
was included to show the limitation of point-based approaches which ignore the
relationship between nodes when predicting labels. The second approach, called
Seg-GCN, is the same segmentation GCN as in our method, but trained without
the adversarial loss. For this baseline, which is similar to the method presented
in [20], our goal is to show the benefit of learning an alignment-invariant repre-
sentation with adversarial domain adaptation.

The surface parcellation approaches are compared in three different test set-
tings. In the first one, the approaches are applied on target examples without any
alignment. This corresponds to the normal application setting of our alignment-
invariant method. For the second one, we align all target examples on the same
reference surface as the one used for source examples. This setting requires to
retain the reference surface and apply ICP alignment in pre-processing for each
test surface. Finally, in the third setting, target examples are aligned to a ref-
erence surface chosen randomly in the test set. This last setting corresponds to
the case where we want to parcel surfaces from a dataset which was processed
differently than the source dataset.

Results of this experiment are summarized in Table 1. When test exam-
ples are aligned to the same source reference (i.e., no domain shift), our seg-
mentation GCN architecture, with or without adversarial learning, outperforms
Spectral RF by a large margin. This illustrates the importance of considering
the relationship between different nodes in the graph, as in our graph convolu-
tion model. However, when applied to non-aligned test surface, our Adv-GCN
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Fig. 3. Segmentation Dice for individual parcels: Box-plot of mean Dice overlap
achieved by three different methods for all 32 cortical parcels when test subjects are
not aligned.

method achieves a 2.4% improvement in mean Dice over Seg-GCN, and 8.4% over
Spectral RF. This demonstrates the benefit of learning an alignment-invariant
representation via adversarial domain adaptation. Furthermore, the improve-
ment provided by our Adv-GCN method is even more significant for surfaces
aligned to a random target reference (last four columns of Table 1). Thus, across
the four random target references, Adv-GCN yields an average improvement of
14.9% compared to Spectral RF and 10.0% compared to Seg-GCN. This shows
the strength of adversarial learning to match the output distribution for two
fixed domains.

The average Dice overlap for individual parcels is shown in Fig. 3. As can be
seen, Adv-GCN provides a higher mean and smaller variance for most of the 32
parcels. By inspecting results, we find that accuracy is correlated with parcel size,
with larger parcels generally better segmented than smaller ones. Figure 4 shows
qualitative results for different graph segmentation methods. As highlighted by
the red circle, our Adv-CGN gives a more accurate segmentation compared to
Seg-GCN and Spectral RF, with an improvement over 13% in parcel-averaged
Dice.

4 Conclusion

In this paper, we presented a novel adversarial domain adaptation framework
for brain surface parcellation. The proposed algorithm leverages an adversar-
ial training mechanism to obtain an alignment-invariant surface segmentation,
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Spectral RF [18] Seg - GCN Adv - GCN  (Ours) Reference (Ground Truth)

Dice overlap : 55.3% ± 2.1 Dice overlap : 58.8% ± 2.8 Dice overlap : 71.8% ± 2.6Spectral RF [18] Seg - GCN Adv - GCN  (Ours) Reference (Ground Truth)

Dice overlap : 55.3% ± 2.1 Dice overlap : 58.8% ± 2.8 Dice overlap : 71.8% ± 2.6

Fig. 4. Qualitative comparison: Parcellation outputs of the three surface segmenta-
tion approaches for a single non-aligned test surface. For better visualization, segmented
parcels are drawn on an inflated surface. For each approach, we report the average Dice
and standard deviation computed over the 32 parcels. As highlighted by the red circle,
our adversarial GCN (Adv-CGN) gives a more accurate segmentation compared to
the same model without adversarial training (Seg-GCN) and Spectral Random Forest
(RF).

and overcomes the limitations of spectral GCNs [21,22] that require finding an
explicit alignment of graph eigenbases. Table 1 shows a clear improvement in per-
formance over the same spectral GCN without adversarial training (Seg-GCN)
and the Spectral Random Forest (RF) algorithm [23]. Specifically, our method
yields a 2.4% mean Dice improvement over Seg-GCN and 8.4% over Spectral RF,
for non-aligned test surfaces. This improvement reaches over 10% for test surface
aligned to a random target reference. Qualitative results in Fig. 4 illustrate the
better parcellation of our method for non-aligned surfaces.

In some experiments, we observed a tendency of the discriminator to over-
fit the training set, which impeded domain adaptation in the learning process.
In a future study, two strategies could be explored to overcome this problem:
using other types of discriminator, for instance the Least Squares GAN [24] or
Wasserstein GAN [25], and applying data augmentation on labeled brain surface
meshes. While our adversarial graph domain adaptation technique was demon-
strated on cortical parcellation, it also has potential for other surface segmenta-
tion problems where a domain shift is present. Likewise, our method could be
useful for semi-supervised surface segmentation, thereby mitigating the need for
large amounts of labeled surfaces. In this setting, the same architecture could
be used, however the discriminator would predict if the segmentation output is
for a labeled or unlabeled example from the same domain. We plan to evaluate
the impact of higher frequency input representations with performance measures
such as Hausdorff distance in future work.
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