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Abstract. Scoliosis is a complex 3D deformation of the spine leading to
asymmetry of the external shape of the human trunk. A clinical follow-
up of this deformation is decisive for its treatment, which depends on
the spinal curvature but also on the deformity’s progression over time.
This paper presents a new method for longitudinal analysis of scoliotic
trunks based on spectral representation of shapes combined with statis-
tical analysis. The spectrum of the surface model is used to compute the
correspondence between deformable scoliotic trunks. Spectral correspon-
dence is combined with Canonical Correlation Analysis to do point-wise
feature comparison between models. This novel combination allows us to
efficiently capture within-subject shape changes to assess scoliosis pro-
gression (SP). We tested our method on 23 scoliotic patients with right
thoracic curvature. Quantitative comparison with spinal measurements
confirms that our method is able to identify significant changes associ-
ated with SP.

1 Introduction

Scoliosis is a complex 3D deformation affecting the general appearance of torso
shape. This deformation is defined by abnormal curvature of the spine accom-
panied by deformation of the rib cage. The standard evaluation protocols of this
pathology use clinical measurements such as the Cobb Angle (CA) [7], which is
based on radiographic image data and quantifies the severity of the spinal cur-
vature. Scoliosis is more commonly diagnosed in children aged 10–18 years and
may develop rapidly, to the point of requiring surgical intervention. Frequent
observations are therefore required to monitor the condition during the adoles-
cent growth spurt. An increase in CA of more than 6◦ indicates a worsening of
the curvature [21]. But since the CA is limited to spinal curvature assessment,
this measure cannot evaluate the complex deformation of the torso shape. Yet,
the importance of the latter should not be underestimated as it exhibits the first
symptoms of scoliosis and is the major concern for adolescent patients. Scoliosis
manifests itself in shape asymmetries and a high variety of deformations of the
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Fig. 1. Sample scoliotic trunk surfaces of different patients. These examples illustrate
the high variability in the shape of scoliotic trunks.

external surface of the trunk. These anomalies include deformations such as a
hump at the back, a lateral shift of the trunk and asymmetries of the shoulders,
scapulae, waist and hips (Fig. 1). Analysis of the scoliotic trunk shape is valu-
able in the clinical setting to assess the effect of surgical correction or to monitor
scoliosis progression (SP), i.e. the worsening of the deformation over time. A
clinical follow-up of scoliotic 3D shape deformities therefore becomes decisive
for its management.

Previous approaches based on cross-sectional trunk surface analysis either
describe back rotation and lateral shifts of the trunk [18,22], or quantify torso
shape by three rotations in the lateral, axial and posterior-anterior planes [3].
They ignore all the local deformations of scoliotic shapes, and consequently, are
limited in detecting SP. Statistical shape models [1] have been recently proposed
to evaluate local shape deformations of scoliotic trunks. These models are trained
on populations of normal shapes in a reduced feature space. However, the reduced
space affects the statistical power of these models to reveal SP. Furthermore,
these models are often biased by the control groups used to train them, and
may not account for large shape variations due to normal variability across a
population and to anatomical growth, as is the case in adolescents.

To overcome these issues, we propose a longitudinal analysis of scoliotic
trunks based on spectral representation and statistical analysis of shapes. More
specifically, a statistical shape analysis will incorporate within-subject spectral
correspondence of surface models. Currently, spectral methods provide efficient
tools for the representation of geometric models, e.g., meshes, shape match-
ing [8,12,13,20], segmentation [19] and registration [15,19]. Shape spectra are
isometry-invariant and are more robust to large deformations of surface models.
They are considered as fingerprints of shapes [20]. Accordingly, matching shapes
in the spectral domain enables accurate correspondence independently from their
spatial positions in the Euclidean space. We exploit the spectral matching frame-
work to compute correspondence between scoliotic trunk surfaces. A robust cor-
respondence facilitates the underlying statistical analysis problem, in particular,
detecting local changes between shapes. Change detection approaches in lon-
gitudinal processing provide numerous statistical tools to capture significant
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differences, for instance, associated with disease progression [9] and pattern evo-
lution [2]. Inspired by these methods, we propose the Canonical Correlation
Analysis (CCA) method [11] to evaluate point-wise differences between matched
shapes. Performing this analysis within subjects is useful to assess SP during
clinical follow-up protocols.

We begin this paper by describing the representation of scoliotic trunks via
the spectral graph. To our knowledge, this is the first time that the spectrum
of the graph is used for scoliotic trunk analysis. We exploit the recent work
on spectral matching [14] to find accurate correspondence maps between shape
models. Spectral correspondence, together with CCA, are proposed for efficient
point-wise feature comparison between longitudinally acquired scoliotic trunk
shapes. We tested our method using the clinical follow-up trunk shape data of
a set of patients with a specific type of scoliotic curvature: right thoracic spinal
curve. Our results, when validated versus standard clinical measurements, show
that significant shape changes revealed by this novel method of analysis are
associated with SP.

2 Method

2.1 Spectral Representation of Trunk Surfaces

Let us assume a discrete representation of the trunk surface as a triangulated
mesh. A spectral representation of the surface is then derived using the general
Laplacian operator on a graph. Let G = {V, E} be a graph defined by the set of
vertices, with spatial coordinates x = (x, y, z)T , and the set of edges connecting
pairs of neighboring vertices. The general graph Laplacian is then formulated as
L = G−1(D −W ), where W is the |V|× |V| weighted adjacency matrix, D is the
diagonal degree matrix defined as Dii =

∑
j Wij , and G is the diagonal matrix of

vertex weights, defined as G = D. Our weighted adjacency matrix is defined by
the heat kernel Wij = exp−‖xi−xj‖2/2σ2

(σ ∈ IR), if there is an edge connecting
vertices i and j, i.e., eij ∈ E ; otherwise Wij = 0. The harmonic spectrum of
the shape of scoliotic trunks (see Fig. 2) is obtained from the generalized eigen-
vector problem L = UΛU−1, where Λ = diag(λ0, λ1, ..., λ|V|) are the ordered
eigenvalues and U = (U0, U1, ..., U|V|) are their associated eigenfunctions. If the
graph is connected, the first eigenvalue λ0 is always equal to zero [4], i.e. there is
no boundary condition, and the first eigenfunction U0 is always constant. This
solution is valid for trunk surfaces, since meshes are interpolated1 to fill the
holes where the trunk model is cropped off, i.e. at the arms, neck and pelvis. We
leave out the first (trivial) eigenfunction corresponding to the zero eigenvalue,
so that U = (U1, ..., U|V|) and λ1 becomes the first non-zero eigenvalue of Λ.
Accordingly, each mesh vertex x is represented in the spectral domain by the
embedding (λ−1/2

1 U1(x), ..., λ−1/2
K UK(x))—a row of the matrix UΛ−1/2.

1 The Radial Basis Functions (RBF) algorithm [6] is used to interpolate incomplete
trunk meshes and to enforce mesh connectivity.



82 O. Ahmad et al.

Fig. 2. Spectral representation: the first 6 eigenfunctions of the trunk shape of a patient
at two different times. Eigenfunctions 2–6 are incompatible between surfaces due to
sign flips and changes in the eigenfunctions. Direct matching between surfaces will thus
be inconsistent. White isolines highlight the instabilities between eigenfunctions. The
color scale indicates harmonic (eigenfunction) amplitude in the spectral domain. (Color
figure online)

2.2 Spectral Correspondence Between Trunk Surfaces

The spectral representation defines a feature space to solve the correspondence
problem between shapes via spectral matching. Spectral correspondence must
however ensure stability between matched shapes [13]. Figure 2 shows incompat-
ibility in harmonic bases 2–6 between surface models, manifested by sign flips
as well as changes in the shape and orientation of the eigenfunctions, due to
numerical instabilities and multiplicity ambiguities in the eigenvalues. In more
recent work [14], the correspondence problem has been addressed efficiently by
the transfer of harmonic weights Λ−1/2 across shapes. We apply this method to
find the correspondence between pairs of scoliotic trunk shapes. Let two meshes
M1 and M2 represent the surface models of a deformable scoliotic trunk. (The
term “deformable” here refers to the fact that a patient’s trunk shape changes
over time.) Their spectral representations can thus be defined as U1Λ

−1/2
1 and

U2Λ
−1/2
2 , respectively. The spectral transfer from M1 to M2 is defined by the

K × K matrix
R12 =

(
(U2)TU2

)−1 (
(U2)TU(1◦c)

)
(1)

where c is the unknown correspondence map such that U(1◦c)Λ
−1/2
1 is equivalent

to U2R12Λ
−1/2
2 . The correspondence c is solved as an optimization problem

(detailed in [14]) that minimizes the l2 norm of the difference

c = argminc‖U(1◦c)Λ
−1/2
1 − U2R12Λ

−1/2
2 ‖2. (2)
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Fig. 3. Spectral correspondence resulting from the transfer of harmonic weights
between two scoliotic trunks. Similar colors represent corresponding points in the pos-
terior (left) and anterior (right) views of the trunk surfaces. Regions of the deformable
shapes exhibiting local variability, e.g. the shoulders, scapulae, hips and waist, are
correctly matched. (Color figure online)

Similarly, the inverse correspondence c−1 that maps mesh M2 to mesh M1

can be solved such that U(2◦c−1)Λ
−1/2
2 is equivalent to U1R21Λ

−1/2
1 , where

R21 =
(
(U1)TU1

)−1 (
(U1)TU(2◦c−1)

)
(3)

is the K × K spectral transfer matrix from M2 to M1. To enforce symmetry in
the solution, both c and c−1 are used in the underlying energy function. The
number of harmonic bases K determines the resolution used to compute the
correspondence in the spectral domain. Since trunk shapes are smooth surfaces,
it was sufficient in our experiments to compute the correspondence between
their meshes using at most 20 eigenfunctions. Figure 3 gives an example of the
correspondence map of a pair of trunk surfaces acquired during clinical follow-
up. Corresponding points are correctly computed between the deformable shapes
and are independent of local and global differences between the surface models.

2.3 Statistical Analysis of Local Deformations

The correspondence map c (Sect. 2.2) enables accurate point-wise comparison
between local features of shapes. To do this, let us consider two feature vec-
tors F and G on meshes M1 and M2, respectively. Here, M1 and M2 belong to
same individual and are measured at different time points. Our feature vector
represents the geometric information of the mesh, as for instance surface point
(depth) coordinates, i.e. F (x) = (x, y, z)T . A point-wise comparison between
M1 and M2 can then be established from the l2 difference of their multivari-
ate features: δ(x) = ‖F (x) − G(c(x))‖2, at each point x and for a given point
mapping c. This means that we could simply test the statistical significance of
the difference between feature components at the corresponding vertex pairs in
M1 and M2. However, the test statistic obtained by the simple difference would
ignore the inherent correlation between deformable shapes, and consequently,
would be less sensitive to small changes. Indeed, longitudinally sampled scoliotic
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trunks are highly correlated when the scoliosis progresses moderately; changes
in the shape deformities will therefore have very small amplitudes. One possi-
ble solution is to weight the feature vectors so that their statistical differences
become significantly high. We therefore propose to combine the correspondence
map with CCA [11].

Canonical Correlation Analysis (CCA) with Correspondence. The prin-
ciple of CCA is to find a linear transformation that captures the relationship
between two groups of multivariate vectors. Given two groups of features F and
G (of n dimensions) at corresponding vertices, the canonical correlation finds,
simultaneously, the weight matrices a = (a1, ..., an) and b = (b1, ..., bn) whose
column vectors are ordered w.r.t. the degree of positive correlation between F
and G— first canonical variates (aT

1 F, bT
1 G) are the linear combinations with

the largest correlation—and the variances Var[aTF], Var[bTG] are equal to one.
This normalization constraint ensures a uniform scaling of all the features, and
therefore ensures that we get unique weight coefficients for all the corresponding
points.

Our strategy is then to establish a point-wise comparison from the differences
between canonical variates having maximal variance. This is analogous to finding
the linear combinations with minimal (non-negative) correlation [16,17], since

Var{aTF − bTG} = 2(1 − Corr[aTF,bTG]). (4)

Accordingly, differences with maximal variance are obtained by reversing the
correlation order between canonical variates so that the first difference com-
ponent refers to the highest variance. Point-wise comparison is consequently
established between a set of canonical variates aTF, bTG as follows

Change amplitudes

a) b)

Fig. 4. Statistical change maps for a deformable scoliotic trunk shape using (a) the l2
differences between transformed features (normal vector coordinates) with the CCA,
and (b) the direct l2 differences.
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δ(x) =
m∑

k=1

(aT
n−k+1F (x) − bT

n−k+1G(c(x)))2

vn−k+1
, x ∈ M1 (5)

where vk is the k−th component of the variance obtained from Eq. (4). Please
note that all the difference components are mutually independent. Furthermore,
the linear transformation given by the CCA allows the difference components
between canonical variates to approximate zero-mean normal distributions [17]
at each corresponding point. Therefore, the difference measure in Eq. (5) defines
the χ2(m) test statistic with m ≤ n degrees of freedom. (In our application,
n = 3, and m is set to be equal to n.) Figure 4 shows one example of how the
CCA transformation can improve the power of the test statistic relative to the
direct l2 difference between matching features.

3 Results and Discussion

Our method was evaluated on 23 scoliotic patients aged 10–18 years having a
right thoracic curvature in the normal spine. All the subjects were scanned at
an initial visit (t = 0) and at 6 and 12 months from their first visit. The trunk
surface meshes contained 40k to 70k vertices according to the size of the patient.
The trunk model was cropped off at the arms, neck and pelvis using standard
control points. These consisted of the left and right points at the corners of
the acromions and of 4 anatomical landmarks located manually by an tech-
nician by palpation at the following locations: left and right anterior-superior
iliac spines (ASIS), midpoint of the posterior-superior iliac spines (MPSIS) and
C7 vertebral prominence (VP) [22]. The mesh boundaries were subsequently
removed by interpolation (Sect. 2.1). This pre-processing step ensured that holes
were filled and noise was reduced at the cropped regions. The spectral corre-
spondence was computed by matching within-subject meshes to a template, the
latter defined at the initial visit, to ensure accurate vertex-wise feature com-
parison across all time points. For feature comparison, we locally approximated
the mesh by its tangent plane, orthogonal to the normal vector, at each point
F (x) = (nx, ny, nz)T . We then used the CCA method to capture the differences
between the local features, defined as the normal vectors, between pairs of meshes
at corresponding vertices. Figure 5 shows the result of our method (spectral cor-
respondence with CCA) for two trunk shapes at 0 and 6 months intervals for
a patient who was clinically assessed with a progressive scoliosis between these
successive visits. Feature vectors F of the first mesh (M1) and their correspon-
dence (G) on the second mesh M2 are illustrated at each vertex on M1 for visual
comparison. Significant changes in the trunk shape are indicated as the black
regions on the detection map. These were identified using CCA with a p < 0.05
significance test.

We evaluated our method quantitatively by comparing the trunk shape
changes across time to the increase of the Cobb angle (CA), a standard clinical
index which measures the curvature of the spine as acquired in a radiographic
image (in degrees). We therefore computed the normalized local surface area
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Fig. 5. Statistical analysis of local shape deformations for assessment of SP. Shown
here are within-subject scoliotic trunks scanned at 0 and 6 months intervals, with a
progressive thoracic spinal curve (15◦ increase of Cobb angle). Feature vectors F and G
are represented at corresponding points on the template surface (scanned at 0 months
interval). Our method reveals 3% of significant changes (in terms of the normalized
local surface area) in regions located on the back (in black on the detection map at the
center) at 5% test of significance. (Color figure online)

(in percentage) of the changes in trunk deformations during the follow-up; the
local surface area of the longitudinal changes is normalized w.r.t. the total surface
area of the subject’s template (acquisition at t = 0). This normalization com-
pensates for the different torso sizes across the population. Table 1 summarizes
the CA statistics for all 23 patients as well as the averages for the progressive
and non-progressive groups. For clinical purposes, a scoliosis case is considered
progressive when the measured CA increases by 6◦ or more between 2 acqui-
sitions. Table 2 illustrates the confusion matrix between our method and the
ground truth data. This comparison shows that all 7 patients clinically evalu-
ated as progressive had significant trunk shape changes across the two follow-up
time points using our method. The average increase of the normalized area of
scoliotic deformities was (2.7±1.8)%, whereas the average increase in CA across
this group was 9◦. This means that for this group of patients, whose spinal
deviations progressed moderately, the proposed method was able to capture, on
average, 2.7% change in the shape deformations associated with SP. Moreover,
significant shape changes were detected in 4 out of 16 non-progressive scoliotic
patients. These cases are reported as false positives with respect to the ground
truth clinical assessment. They are mainly due to outliers located at the cropped
boundaries of the trunk. The uncertainty in the placement of the anatomic land-
marks leads to variability in the cropping of the trunk model and therefore to
uncertainty errors in matching the boundary regions. On the other hand, SP is
evaluated clinically solely on the basis of deviations of the spine through CA
measurement. But the CA remains limited to assessing the spinal deformity in a
2D radiographic projection, while the shape of the scoliotic trunk is also affected
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Table 1. Summary CA statistics for 23 scoliotic trunks characterized by a right thoracic
spinal curve (in degrees).

t (mo) Max Mean SD Mean of progressive group Mean of non-progressive group

0 47 21 18 37 15

6 58 28 20 46 22

12 59 29 21 51 22

Table 2. Confusion matrix for categorization of patients as progressive or non-
progressive: our method versus standard clinical method based on CA.

Ground truth measurements (CA)

Progressive Non-progressive

Proposed method Change 7 4

No change 0 12

Total 7 16

by other factors, in particular the deformation of the rib cage (manifested as a
hump at the back). This latter deformation is caused by the axial rotation of
vertebrae [10]. Figure 6 shows one case of a follow-up patient whose scoliosis was
considered non-progressive according to the CA, while a hump at the back pro-
gressed significantly between the 6 and 12 month time points. This is considered
as a false positive according to the CA assessment. Rib hump deformation is in
fact one of the first diagnostic indicators of scoliosis, in particular during its early
stages; it is also one of the most visible signs affecting the cosmetic appearance of
the trunk, which is the major concern of young patients [5,23]. Our preliminary
results demonstrate the importance and the effectiveness of including longitudi-
nal shape analysis in scoliosis assessment routines. We aim to strengthen these
results by means of larger datasets and more extensive validation. Moreover, in
order to efficiently evaluate SP, we excluded in this work all possible changes
on the anterior side of the trunk. These changes, particularly observed in young
female patients, are affected by the deformation of the chest, which might be
due to different factors: asymmetry changes associated with scoliosis, position of
the arms or growth; they might therefore lead to ambiguity in SP assessment.
Even with a standardized positioning of the arms, the morphological correla-
tion between the normal anatomical changes of the body (e.g., body fat and
growth) and scoliosis deformations prompted us to focus on the posterior side
of the trunk. Analysis of full-torso changes would require an evaluation of the
normal variability of scoliotic trunk shapes during the anatomical development
of adolescents.

Finally, we evaluated the performance of the point-wise statistical analysis
using the CCA transformation of shape features against direct comparison, i.e.,
simple point-wise differences (Sect. 2.3). For this evaluation, we compared the
increase in the normalized local surface area of the trunk deformations during
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Fig. 6. One progressive case considered as a false positive compared to the CA ground
truth. Middle column: feature vector (normal vector coordinates F(x) = (nx, ny, nz))
of the scoliotic trunk at the initial visit (t = 0 mo. interval). Left and right columns:
shape features at t = 6 and t = 12 mo. intervals, respectively. Detection maps are
obtained using spectral correspondence to t = 0 and CCA for 5% test of significance.

Fig. 7. Performance of the statistical analysis using CCA transformation of matching
features versus direct comparison, for the follow-up of 7 progressive cases. The CCA
significantly improves the test statistic for both p < 0.05 and p < 0.001.
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the follow-up of the 7 patients having progressive scoliosis. Figure 7 shows that
the CCA significantly improves the detection power of the χ2 test statistic (for
p < 0.05 and p < 0.001). On average, a 2.74% increase in the surface area is
detected by the CCA method for p < 0.05, and 3.22% for p < 0.001, while the
test using direct comparison detects only very small areas of change in the shape
deformities (0.5% for p < 0.05 and 0.08% for p < 0.001). Further research could
investigate whether a statistical model [2] that considers the spatial relationship
between each vertex and its neighborhood can improve the underlying point-wise
statistical analysis.

4 Conclusion

In this contribution, we addressed longitudinal shape analysis of scoliotic trunks
using a spectral representation of surface models and point-wise feature compari-
son via CCA. The main originality of our work is the spectral representation and
the efficient computation of shape correspondences in order to compare different
scoliotic trunks over time. For the first time, scoliotic trunk analysis is based
on the spectral representation of shapes. However, correct shape correspondence
remains a challenging problem in our context because of the variability between
acquisitions in the cropping of the surface models at the trunk boundaries. Future
work will focus on this issue. In our validation study, we considered a single type
of scoliotic deformation to test the performance of our method against the stan-
dard evaluation based on Cobb angles. Quantitive comparison with the clinical
ground truth demonstrates the effectiveness of our shape analysis method for
scoliosis follow-up and progression assessment.

Future work will be threefold: we will focus on the issue of shape matching
in the presence of uncertainty at the trunk boundaries; we will consider larger
patient sets including several scoliotic deformation types for validation; finally,
we will look at adapting this framework for other applications such as predict-
ing scoliosis progression and evaluating the effect of spine correction on trunk
asymmetry.
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