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Abstract. Brain matching is an important problem in neuroimaging stud-
ies. Current surface-based methods for cortex matching and atlasing, although
quite accurate, can require long computation times. Here we propose an ap-
proach based on spectral correspondence, where spectra of graphs derived
from the surface model meshes are matched. Cerebral cortex matching prob-
lems can thus benefit from the tremendous speed advantage of spectral meth-
ods, which are able to calculate a cortex matching in seconds rather than
hours. Moreover, spectral methods are extended in order to use additional in-
formation that can improve matching. Additional information, such as sulcal
depth, surface curvature, and cortical thickness can be represented in a flex-
ible way into graph node weights (rather than only into graph edge weights)
and as extra embedded coordinates. In control experiments, cortex matching
becomes almost perfect when using additional information. With real data
from 12 subjects, the results of 288 correspondence maps are 88% equiva-
lent to (and strongly correlated with) the correspondences computed with
FreeSurfer, a leading computational tool used for cerebral cortex matching.
Our fast and flexible spectral correspondence method could open new possi-
bilities for brain studies that involve different types of information and that
were previously limited by the computational burden.

1 Introduction

The human cerebral cortex is composed of many distinct brain areas whose loca-
tions relative to the folding pattern are highly stereotyped. In many neuroimaging
studies, finding corresponding locations between two individuals allows data to be
pooled across subjects and enables the investigation of functional and anatomical
differences between individuals. Early attempts at computing correspondences relied
on the extrinsic geometry seen on brain volumetric images. In 1967, Talairach et al.
[19] introduced an early version of a brain atlas in the form of a 3D stereotaxic co-
ordinate system. Despite its popularity, this method matched volumetric brain data
using 3D Euclidean distances, which ignored geometric variabilities in the folding
pattern. Techniques based on high-dimensional deformations allow for the alignment
of volumetric brain image data. However, the lack of an explicit model for the brain
surface often creates misaligned cortical areas [1]. Later, it was demonstrated that
surface-based alignment [6,5,4,22,20], which operates by directly registering surface
models of the cerebral cortex, significantly outperforms volume-based approaches
[6,5]. The success of these surface-based techniques depends on the stability of the
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Fig. 1. Eigendecomposition of the graph Laplacian (using (2)) showing the first six eigen-
vectors (or six spectral components, one per column) of two brain surfaces (top and bottom
rows). The color indicates a spectral coordinate for each point.

folding pattern across subjects. Some cortical areas are indeed consistently in a fixed
position relative to the folding pattern [6,11], whereas other areas float around and do
not seem well correlated to the folding pattern. These areas, however, may be corre-
lated with measurable anatomical features other than the explicit cortical geometry.
One successful method for computing brain surface correspondences was introduced
by Fischl et al. [6]. It inflates each cerebral hemisphere surface to a sphere by a
process that minimizes metric distortions, thus preserving local distances and areas.
The cortical surface model is then mapped to the sphere using a nonrigid deforma-
tion driven by geometric features of the original folding pattern. This is the method
used by FreeSurfer, a leading and widely used tool for brain surface reconstruction,
matching, and atlasing. Despite its accuracy, FreeSurfer suffers from a severe com-
putational burden, which causes it to be very slow—it can take hours to compute a
correspondence map between two cerebral cortices.

In order to alleviate this severe computational burden, we introduce a differ-
ent approach for brain surface matching based on spectral correspondence. Spectral
methods [3] present the tremendous advantage of being extremely fast—on the order
of seconds. Correspondences are found on a graph spectrum, which is essentially the
eigendecomposition of the graph Laplacian of an underlying shape model (illustrated
on Fig. 1). Spectral methods have already been used in many fields, including in
computer vision with the segmentation and registration of shapes in images [15],
and recently in medical applications with the analysis of brain shape features [14,16]
and with the smoothing of cortical surfaces [2]. Umeyama [21] and later Scott and
Longuet-Higgins [17], pioneered the use of spectral methods for the correspondence
problem. Shapiro and Brady [18] compared ordered eigenvectors of a proximity ma-
trix to find correspondences. Their work served as a basis for future spectral corre-
spondence methods. Variants includes the use of different proximity matrices using
different kernels, the use of the adjacency matrix, or different normalized Laplacian
matrices. Mateus et al. [12] proposed an original unsupervised spectral method with
an alternative to eigenvalue ordering based on eigenvectors histograms and refining
the eigenvectors alignment with a probabilistic point matching. Jain and Zhang [10]
tackle the eigenvectors alignment with a nonrigid deformation based on thin plate
splines.



3

1) Compute spectra

(Unsorted components)

Graph from Mesh

↓
Adjacency Matrix

(Add info. on graph edges)

↓
Laplacian

(Add info. on graph nodes)

↓
Eigendecomposition

2) Reorder spectra

(Sorted components)

Downsample

↓
Compare

permutations

↓
Reorder

3) Align spectra

(Spectrum alignment)

Subsample

↓
Add extra coordinates

(Add info. on embedding)

↓
Nonrigid alignment

↓
Transform embeddings

4) Match points

Closest points

on embeddings

Fig. 2. Algorithm summary: First, we build two graphs and set the graph edges (the adja-
cency matrix) and on the graph nodes (the Laplacian matrix). The eigendecomposition of the
graph’s Laplacian reveals the spectral components. Second, we reorder the components by
finding the optimal permutation of components. Third, we deform the spectral embeddings.
Finally, matching points are found with closest points in both spectral representations.

Previous spectral correspondence methods employ solely geometric information
by weighting the graph edges with the distances between connected pairs of vertices.
However, in order to use certain quantities (like sulcal depth, surface curvature, or
cortical thickness), we must modify the spectral correspondence approach to incor-
porate information beyond edge length. To our knowledge, we are the first to present
the use of node weighting in a spectral correspondence method. Additional informa-
tion can indeed be incorporated into the Laplace operator, which implicitly contains
metric information about nodes and edges. Moreover, additional information can be
used as extra embedded coordinates when aligning the eigenvectors. This added level
of flexibility makes our method a good candidate for brain studies involving various
types of information with a large number of subjects.

After detailing our approach in the next section, we show in a control experiment
that additional information can dramatically improve the performance of a spectral
method. Using data from 12 subjects, we validate our method by comparing the
computed correspondences with those generated by FreeSurfer [6]. We show that our
method produces results, in a fraction of time required by FreeSurfer, that approach
the accuracy of FreeSurfer. We believe that this large gain in processing speed would
open the doors to new brain studies that were previously limited by the computational
burden of the cortex matching calculation. Therefore, this method has the potential
to be a significant tool for use in neuroscience.

2 Method

The proposed algorithm finds correspondences by comparing cortex representations,
called spectra (illustrated on Fig. 1). The spectrum of a brain surface mesh is in-
dependent of its extrinsic geometry. In order to adapt a spectral method to brain
surface matching, we must solve for several issues. First, we show how additional
information (sulcal depth [6], surface curvature, and cortical thickness) can be used
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in spectral methods as weightings of the graph nodes. Second, we improve the order-
ing of the spectral components by finding an optimal permutation of the underlying
eigenvectors. And third, we align the spectra in a multidimensional space using a
nonrigid point transformation method. Our algorithm is summarized in Figure 2.

2.1 Spectral correspondence

Given a shape defined by its collection of nodes X = {x1, x2, ..., xn} and a neighbor-
hood system N connecting a subset of these nodes (e.g., a mesh with vertices and
faces), it is possible to construct its corresponding graph GX . Here, we define the
adjacency matrix W in terms of affinity weights (see [8]), which are derived from
a distance metric dist(xi, xj) between two neighboring vertices (xi, xj) (ε is a small
penalizing term):

Wij =

{
(dist(i, j) + ε)

−1
, if i ∈ N (j), and i 6= j

0, otherwise
(1)

It was shown in [8] that the general Laplacian operator on a graph takes the form
L̃ = GL = G (D −W ), where D is a diagonal matrix defined as Dii =

∑
jWij and G

is the diagonal matrix of node weights. Typically in spectral correspondence, G is set
to G = D−1. However, we propose here to replace the default assignment G = D−1

with any meaningful node weighting. Therefore, data associated with a mesh, such
as distances or other additional information, can be incorporated in a graph on either
its edges (in (1)), or its nodes by manipulating G.

We assume that the sulcal depth at each point, {s1, s2, ..., sn}, the Gaussian
curvature at each point, {κ1, κ2, ..., κn}, or the cortical thickness at each point,
{t1, t2, ..., tn}, are pointwise characteristics and should be primarily defined on the
graph nodes rather than on edges. We use the exponential of the positive diagonal
matrices exp(S) = exp (diag(s1, s2, ..., sn)), and exp(K) = exp (diag(κ1, κ2, ..., κn)),
and exp(T ) = exp (diag(t1, t2, ..., tn)). We propose to incorporate additional informa-
tion in the weighting of the nodes by defining the graph Laplacian as:

L̃ = GL, where G = D−1 (cs exp(S) + cκ exp(K) + ct exp(T ))
−1
, (2)

where cs, cκ, and ct are weighting factors. We use for instance cs = mean{Dii}i=1···n/
mean{exp(si)}i=1···n. The right eigenvectors of the Laplacian comprise the graph
spectrum X̂ = {X̂(1), X̂(2), ..., X̂(n)}. Figure 1 shows an example of spectral compo-
nents for two brain hemispheres where each column depicts a different spectral com-
ponent. Each eigenvector X̂(u) represents a different (weighted) harmonic on a mesh

surface that represents an intrinsic geometric property. The values x̂
(u)
i , i ∈ [1 . . . n],

give the spectral coordinates for each point xi. Eigenvectors associated with the lower
non-zero eigenvalues (e.g., X̂(2), X̂(3)) represent coarse (low-frequency) intrinsic ge-
ometric properties of the shape, the first of them X̂(2) is called the Fiedler vector,
while eigenvectors associated with higher eigenvalues (e.g., X̂(n−1), X̂(n)) represent
fine (high-frequency) geometric properties. The core idea of our method is to match
two meshes X and Y by comparing their corresponding spectra X̂ and Ŷ rather than
directly comparing the meshes themselves.
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2.2 Ordering the spectra

Each point of the brain surface mesh is represented with K spectral components
associated with the K smallest eigenvalues, i.e., the embedded representations are
X̂K = [X̂(2), ..., X̂(K+1)] and Ŷ K = [Ŷ (2), ..., Ŷ (K+1)]. Unfortunately, the spectral
coordinates of the two meshes may not be directly comparable as a result of two
phenomena. First, there exists a sign ambiguity when computing eigenvectors (i.e., if
Ax = λx then A(−x) = λ(−x)), requiring a sign check of each eigenvector in the two
meshes. Additionally, as a result of greater algebraic multiplicity of an eigenvalue,
it may be possible that the ordering of the lowest eigenvectors will change, e.g., if
two eigenvectors correspond to the same eigenvalue in both meshes, then the solver
may compute these eigenvectors in one order for the first mesh and in the opposite
order for the second mesh. For large meshes, this is a recurrent problem and the
eigenvectors must be reordered. Since different brains do not present major discrep-
ancies or major articulated deformations between individuals, the eigenvectors may
be reordered by comparing their values at all pairs of closest points between the two
brain hemispheres.

To speed up the reordering, all eigenvectors are first subsampled by selecting
randomly a few points (we use 500 points in our experiments). Their spectral coor-
dinates are normalized between 0 and 1 and denoted as x̂(i). A spatial integration
of all differences within pairs of closest points provides a similarity measure, i.e., if
the eigenvectors x̂(i) and ŷ(j) correspond to each other in both meshes, for all closest
Cartesian points {(xi, yi′)}i=1···n, the difference of their associated spectral coordi-
nates are computed. All the differences of potentially corresponding eigenvectors, x̂(u)

and ŷ(v), are gathered in a dissimilarity matrix, C(x̂(u), ŷ(v)) =
∑N
i=1

(
x̂
(u)
i − ŷ

(v)
i′

)2
,

where yi′ ∈ Y is closest to xi ∈ X . The Hungarian algorithm may be used to find an
optimal permutation of eigenvectors ŷ(v) and, in order to remove the sign ambiguity,
the minimal dissimilarity between the comparison of x̂(u) and ŷ(v), and x̂(u) and −ŷ(v)
is used. The cost matrix used in the Hungarian algorithm is Q(u, v) = min{C(x̂(u),
ŷ(v)), C(x̂(u),−ŷ(v))}. After permutation, any eigenvector x̂(u) corresponds with ŷ(u)

and has a permutation cost C(u).

2.3 Alignment of Spectra

After reordering and handling the sign ambiguity, the eigenvectors of the two meshes
may be assumed to have the same ordering in both embeddings (i.e., x̂(u) corresponds
with ŷ(v)). However, the embedded representations, X̂K and Ŷ K , need to be aligned
(as illustrated in the third box of Fig. 2, both spectra have slight differences) so that
closest points in these embedded representations would reveal corresponding points
in both shapes (i.e., if ŷKj is the closest point to x̂Ki , then xi corresponds with yj).

In order to perform this alignment, each eigenvector x̂(u) is first weighted with
exp(−(C(u)λx̂(u))2/2σ2), where C(u) is the permutation cost, λx̂(u) is its associated
eigenvalue, and σ is a penalizing factor, we use σ = mean

{
C(u)λx̂(u)

}
u=1···K . Low-

frequency eigenvectors, associated with coarser geometric properties (i.e., small eigen-
values λx̂(u)), will thus have more importance than the high-frequency eigenvectors
associated with finer details, and pairs of corresponding eigenvectors will have more
importance if they have strong similarities (i.e., low permutation costs C(u)).
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To further constrain the alignment of the mesh representations, we add extra in-
formation as additional coordinates to the embedded representation. Specifically, we
concatenate with our first K spectral components X̂K = [X̂(2), ..., X̂(K+1)] the extra
coordinates, exp(S), exp(K), and exp(T). These extra components are also normal-
ized to be comparable with the spectral coordinates. The embedded representations
to be aligned are thus:

X̃ = [X̂K , cs exp (SX ) , cκ exp (KX ) , ct exp (TX )], and,

Ỹ = [Ŷ K , cs exp (SY) , cκ exp (KY) , ct exp (TY)]. (3)

The alignment of the spectral components can be viewed as a nonrigid registration,
X̃K = Φ(Ỹ K). The third box of Fig. 2 shows the alignment challenge where the first
three spectral components (X̂(2), X̂(3), X̂(4)) are used as 3D (x, y, z) coordinates for
visualization purposes. The Robust Point Matching with a thin plate spline-based
transformation is often used for 2D or 3D registration. However, with this approach,
the final registration depends on the number and choice of the control points. We
apply the Coherent Point Drift method [13] which is fast and demonstrates excellent
performance in this application. To increase speed in our algorithm, we subsample
X̃ and Ỹ by taking randomly a few points (we used 500 points). The Coherent
Point Drift method finds a continuous transformation Φ that can be applied on all
points of Ỹ . After aligning both embedded representations (i.e., X̃ = Φ(Ỹ )), it is
possible to directly compare them, i.e. two points which are closest in the embedded
representations, x̃i and ỹi′ , are treated as corresponding points in the meshes X and
Y. The fourth box of Fig. 2 illustrates a few pairs of corresponding points. All pairs
of points connected by the red lines have the closest embedded coordinates.

3 Results

Our methodology introduces several new concepts for spectral methods and shows
how these methods may be customized for the application of cerebral cortex matching.
We first show in an intuitive experiment the effect of node weighting on a simple mesh.
Second, we measure the accuracy of spectral methods on a controlled experiment
with a known ground truth. Third, we analyze the accuracy of our method against
FreeSurfer. For this comparison we used 24 cerebral hemispheres from 12 subjects,
and based our comparison on 288 matches using different combinations of additional
information. Each brain surface mesh has been extracted using FreeSurfer from T1-
weighted magnetic resonance images.

3.1 Node Weighting

We believe that we are the first to utilize node weights in a spectral correspondence
approach. Consequently, we briefly devote some space to give an intuition about
the behavior of these node weights in the context of spectral correspondence. To
demonstrate the differences in weighting the edges and the nodes, we choose to show
the Fiedler vector on a spherical mesh with an asymmetric vertex distribution. The
concentration of vertices at the poles guides the spectral eigendecomposition (i.e.,
the Fielder vector is aligned with the sphere poles as shown in top-left sphere of Fig.
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Fig. 3. Effect of node weighting. Top row, three
cases showing the Fiedler vector on spheres of
same orientation. Left, with no weighting: the vec-
tor is aligned with the sphere axis. Middle, with
edge weighting: the top and bottom sections of
the sphere are masked. Right, with node weight-
ing: the vector is reorientated vertically. Bottom
row : Same three experiments ran on 100 randomly
orientated spheres. Their Fiedler vectors are accu-
mulated. The reorientation of the Fiedler vector
via node weighting (bottom-left) is clearer.

3). The accumulation of Fiedler vector on randomly orientated spheres should yield
a uniform distribution (as shown in the bottom-left sphere of Fig. 3). We show that
encoding weights on nodes can influence the orientation of the Fiedler vector. For
instance, to reorient the Fiedler vector vertically, we use a texture data where the top
section and the bottom sections of a sphere (on a world z axis) are heavily weighted.
For all points {xi}i=1···n, their weights are Θ = [θ1, θ2, ..., θn] where θi = 1000 if

|x(z)i | > 0.4 (i.e., a large weighting at the top and bottom of the sphere along the z

axis) and θi = 1 if |x(z)i | ≤ 0.4 (i.e., a low weighting around the middle section).
In previous approaches to spectral correspondence, weights are encoded on graph

edges. The texture weightΘ is added to the edge weights (1): wij = (dist(xi, xj) + ε)
−1

× (|θi − θj |+ ε)
−1

. The resulting weighting will highlight the texture boundaries iso-
lating three distinct regions: the top, the middle, and the bottom section. This creates
a multiplicity of three in the zero eigenvalues, and as shown in the top-middle sphere
of Fig. 3, the Fiedler vector covers the largest section.

In our method, we propose to weight nodes in a graph in addition to weighting the
edges. In order to compare with the previous experiment, we do not incorporate the
texture Θ on graph edges. It is used on graph nodes (2): G = D−1diag (Θ)

−1
. After

the spectral decomposition, the multiplicity of the zero eigenvalue is 1 (i.e., there
is one distinct object), and the Fiedler vector is aligned with the texture (i.e., with
the world z axis). To verify this alignment, we repeated this experiment with 100
spheres orientated randomly and we accumulated the values of the Fiedler vectors
(bottom row of Fig. 3). The principal axis of the accumulated values, (−0.04, 0.12,
0.99), is indeed vertical when weighting the graph nodes (bottom-right of Fig. 3).
The accumulation of the Fiedler vectors does not show an apparent principal axis
when weighting only the graph edges (bottom-middle of Fig. 3), or when the texture
data is not used (bottom-left of Fig. 3).

These three experiments show that weighting the graph nodes provides a new
way for incorporating additional pointwise information and behaves differently than
weighting the graph edges. Spectral methods can thus benefit from this idea, not only
in cortex matching, but in various applications. The next experiment shows how node
weighting improves matching in spectral methods.

3.2 Matching Deformed Brain Surfaces

Every individual has a unique folding pattern in the cerebral cortex, however there
are many large-scale similarities. Before considering inter-subject cortex matching,
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(a) deformed meshes (b) Error map when not using
additional information

(c) Error map when using
additional information

Fig. 4. Comparison with ground truth. Left : The deformed mesh (colored with its Fielder
vector) overlaid with the original vertex positions illustrated by the blue dots. Middle:
The mean distance error is 0.44 mm with a standard spectral correspondence method (i.e.,
without additional information). Right : With additional information (sulcal depth, surface
curvature, and cortical thickness), the error drops to 0.05 mm.

we study the intra-subject case. We do so with a controlled, simulated deforma-
tion to analyze how additional information improves the accuracy of our method,
and how the additional information should be incorporated. For our experiment, we
match one brain hemisphere with a deformed version of itself. The vertex indexing
remains the same in the deformed version, therefore the true matching is known
(i.e., for all i, vertex pi in the first mesh should match the vertex qi in the second
mesh). We severely deform one of the cortical hemisphere surface models with the
transformation q(z) = (1 + α)p(z) (a compression in the z-axis controlled by α) and

q(x) = p(x) + βr2/max(r2) with r2 = p(x)
2

+ p(y)
2

(a radial distortion controlled by
β). This simulates a deformation due to a drastic change in the head shape. The
deformation however preserves the same mesh topology (i.e., with no discontinuity
and no intersecting faces). Fig. 4 illustrates the position of the original hemisphere
with the blue dots and the deformed hemisphere with the colored mesh. We quantify
the accuracy of our matching by measuring the mean distance between all points and
their corresponding matched points. That is, for all points pi in mesh 1 matching qj in
mesh 2, we average the distance: mean (dist(pi, pj)). When no additional information
is used, as it is the case in most state-of-the-art spectral methods, we find an average
error distance of 0.44 mm as shown in the first error map of Fig. 4. Most errors are
actually located on the sulci extrema.

Additional information can be incorporated as node weighting by using (2); as
edge weighting by similarly adding additional term to (1) such as wij = 1/(d(i, j) +
ε) exp(−(si − sj)2/2σ2

s) exp(−(κi − κj)2/2σ2
κ) exp(−(ti − tj)2/2σ2

t ), where σs,κ,t are
penalizing factors; or as additional coordinates in the alignment process by using
(3). Three sources of additional information (sulcal depth, surface curvature, and
cortical thickness) can thus be used in three different ways in our method. That
is 512 possible combinations (23×3). We iterate through all of them and found that
adding information as additional coordinate has the strongest impact on the accuracy
of our matching. Adding the sulcal depth as the only additional feature yields an
error of 0.16 mm; adding only the surface curvature yields an error of 0.35 mm;
and the cortical thickness yields an error of 0.14 mm. Adding single or multiple
source of additional information on only the graph nodes does not yield significant
improvement (0.44 mm), nor does representing this additional information on only
the graph edges (0.44 mm). However, by adding all three features and using all of
them on the graph nodes and on the graph edges, the error drops to 0.06 mm. Our
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Parcel overlaps using spectral
correspondence

Parcel overlaps using FreeSurfer

Fig. 5. In green, the areas where the projected sulcal regions of two cortices overlap, and in
red the projection mismatches. (Left brain) Correspondences were computed in 124 seconds
using our method, while (right brain) FreeSurfer required several hours.

best combination of additional information was obtained when using all three features
and when using sulcal depth and cortical thickness on the graph nodes, yielding an
error of 0.05 mm. The error map in the right of Fig. 4 shows an almost perfect
matching with our best-performing combination.

3.3 Validation

Brain surface matching is an ambiguous problem. Indeed, sulci morphology and topol-
ogy differ from one individual to another. There is no ground truth available for per-
fect brain surface matching. However, FreeSurfer [6] has been demonstrated to provide
highly accurate cortical matchings that closely align cortical areas across subjects [9]
and therefore provides a reliable benchmark for our comparison. The delineations of
81 sulcal regions are available for 24 hemispheres (12 subjects). These sulcal regions
were obtained using an automatic parcellation of the cortex [7] and are considered as
our gold standard. Although folding parcellations are not excepted to align between
subjects in all cases (except for the primary folds), they do provide means to compare
the two methods. We use correspondence maps generated by FreeSurfer and by our
method to project the parcellation areas onto different brain hemispheres and we
measure their overlaps (illustrated on Figure 5). To process a mesh of 135,000 ver-
tices, FreeSurfer has a varying processing time which is always on the order of several
hours, while the time required by our method is just on the order of a few minutes.
To process all our 288 possible pairs of left and right brain hemispheres, our method
required on average 124 seconds on a 2.8 GHz Intel Pentium 4 using unoptimized
Matlab code (with meshes of 20,000 vertices, our method performed in 19 seconds).
The code could benefit further from parallel programming and the use of GPU. The
total time was 9 hours on a single computer, a substantial advantage compared to
the several weeks required by FreeSurfer to process all 288 cortex matchings in series.
Each overlap ratio is defined by the ratio of set intersection to set union. Figure 6
shows the overlap ratios for the largest sulcal parcellations using our method (our
best setting is shown in cyan) and FreeSurfer (red). Our results are consistent across
all 81 sulcal regions (i.e., whenever FreeSurfer outputs a higher overlap ratio, our
method also consistently outputs a higher overlap ratio). Specifically, our results are
correlated to FreeSurfer’s overlaps with a correlation coefficient of ρ = 0.816. When
comparing larger regions1 (illustrated on Fig. 6: parcels 9, 10, 18, 23, 24, 26, 41, 42,

1 Sulcal regions: 9 (G frontal middle), 10 (G frontal middle), 18 (G occipit temp med
Lingual part), 23 (G parietal inferior Supramarginal part), 24 (G parietal superior), 26
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Fig. 6. Overlap ratios of different sulcal regions in several settings. (Dark blue) No ad-
ditional information (65% of FreeSurfer’s performance), (blue) all additional information
(sulcal depth, cortical thickness and cortical curvature) as extra coordinates (87%), (cyan)
all additional information as extra coordinates and sulcal depth on graph nodes and graph
edges (88%), (yellow) all additional information as extra coordinates and cortical thickness
on graph nodes and graph edges (78%), (orange) all additional information as extra coordi-
nates and cortical curvature on graph nodes and graph edges (87%) and (red) by FreeSurfer
(requiring weeks of computations). Our method only requires 9 hours and is strongly corre-
lated with FreeSurfer (correlation coefficient of ρ = 0.816). The error bars show the standard
deviation of each overlap ratio.

45, 47, 59, and 80, as defined in [7]), FreeSurfer’s overlap ratios are on average 74%.
In its best setting (using sulcal depth as additional information), our method gives
88% that of FreeSurfer’s overlap ratios.

3.4 Combination of Additional Information

Besides information on sulcal depth, we had access to information on cortical thick-
ness and on surface curvature. The cortical thickness is another clinically relevant
anatomical measure, which is calculated by FreeSurfer from anatomical MRI images.
The sulcal curvature is estimated with the Gaussian curvature (κ1κ2) of the mesh.
We first analyze the performance of our method using five configurations of different
combinations of additional features. For each configuration, we ran our method on
the 288 pairs of brain hemispheres (totaling 1440 matchings). The results are summa-
rized in Figure 6. The first configuration uses no additional information (G = D−1

in (2)). In that configuration, the average overlap ratio on the largest parcels is
only 48% (in comparison, FreeSurfer performs at 74%). In the second configura-
tion, we use sulcal depth, cortical thickness, and cortical curvature as extra coordi-
nates in the spectral alignment (using (3)). The average overlap ratio increases to
64% (or 87% of FreeSurfer’s performance), a 34% increase from the previous con-
figuration. As shown in the previous experiments, using additional information as
extra coordinates does increases the accuracy. In the third configuration, we also
use all additional information as extra coordinates, and we add sulcal depth infor-
mation on graph nodes (G = D−1 exp(S)−1 in (2)) and on graph edges (in (1),
wij = 1/(d(i, j) + ε) exp(−(si − sj)2/2σ2

s) where σs is a regularization term). This
configuration is actually the best one in which our method performed. The aver-
age overlap ratio is 66% (or 88% of FreeSurfer’s performance). This suggests that

(G precentral), 41 (Medial wall), 42 (Pole occipital), 45 (S central), 47 (S cingulate Main
part and Intracingulate), 59 (S intraparietal and Parietal transverse), 80 (S temporal
superior).
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sulcal depth provides crucial information when matching brain hemispheres, as has
been previously suggested by Fischl et al. [6]. The fourth configuration adds cortical
thickness as additional information on graph nodes (G = D−1 exp(T )−1 in (2)) and
on graph edges (in (1), wij = 1/(d(i, j) + ε) exp(−(ti − tj)

2/2σ2
t )). Using cortical

thickness alone actually worsen the overlap ratio to 58% (or 78% of FreeSurfer’s per-
formance). This suggests that cortical thickness may be a contradictory information
in our spectral correspondence method. The fifth configuration uses cortical curva-
ture as additional information on graph nodes (G = D−1 exp(K)−1 in (2)) and on
graph edges (in (1), wij = 1/(d(i, j) + ε) exp(−(κi − κj)2/2σ2

κ)). Cortical curvature
shows to be also a significant additional information as it increases the average over-
lap ratio to 64% (or 87% of FreeSurfer’s performance). It is important to note that
there is no perfect configuration of additional information. Our experiment showed
that certain configurations perform better on particular parcellations rather than
on others. The right configuration of additional information thus depends on which
sulcal region of the brain should be matched. That said, our experiment suggests
that sulcal depth and cortical curvature are significant additional information that
improve our matching method.

4 Conclusion

Cerebral cortex matching is an important topic that facilitates basic computational
study in neuroscience. Current, surface-based matching methods can be quite accu-
rate, but very slow. We have proposed a new cortex matching algorithm based on
spectral correspondence operating at speeds of several orders of magnitude faster
than current methods. Furthermore, we extended spectral methods in order to use
additional information as weights in graph nodes and as extra embedded coordinates
with little or no computational expense. This added flexibility makes our spectral cor-
respondence method a good candidate for brain studies involving many additional
information. Our current best configuration of additional information were found
when using sulcal depth, surface curvature, and cortical thickness, as extra embed-
ded coordinates and sulcal depth on graph nodes and graph edges. Our brain surface
matching method far outperforms the accuracy of the more commonly used volu-
metric methods and approaches FreeSurfer’s level of accuracy when aligning sulcal
regions (88% of FreeSurfer’s performance). The vast increase in speed and the added
flexibility when using additional information gives new perspectives to previously
computationally prohibitive experiments. The contribution new features incorporated
to help improve the matching (e.g., anatomical or functional features extracted from
various data sources) can be tested. Quick parameter sweeps can be performed to
isolate the best parameter value sets. These computationally intensive experiments
can help us to understand what features are consistently correlated with brain areas
across individuals and what their role are during the development of the cortical fold-
ing pattern. Currently, the correspondences found with the pairs of closest spectral
neighbors. New schemes, such as the Relaxation Labeling as proposed in [23], will be
tested and might improve accuracy. Future work will be to test different weighting
functions (both based on nodes and edges), to incorporate more brain information
(e.g., vascular density, MRI intensity), to evaluate the performance using additional
cortical areas, and to test hypotheses about the relative importance of these features.
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