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ABSTRACT

The analysis of the brain surface modeled as a graph
mesh is a challenging task. Conventional deep learning ap-
proaches often rely on data lying in the Euclidean space.
As an extension to irregular graphs, convolution operations
are defined in the Fourier or spectral domain. This spectral
domain is obtained by decomposing the graph Laplacian,
which captures relevant shape information. However, the
spectral decomposition across different brain graphs causes
inconsistencies between the eigenvectors of individual spec-
tral domains, causing the graph learning algorithm to fail.
Current spectral graph convolution methods handle this vari-
ance by separately aligning the eigenvectors to a reference
brain in a slow iterative step. This paper presents a novel
approach for learning the transformation matrix required for
aligning brain meshes using a direct data-driven approach.
Our alignment and graph processing method provides a fast
analysis of brain surfaces. The novel Spectral Graph Trans-
former (SGT) network proposed in this paper uses very few
randomly sub-sampled nodes in the spectral domain to learn
the alignment matrix for multiple brain surfaces. We validate
the use of this SGT network along with a graph convolution
network to perform cortical parcellation. Our method on 101
manually-labeled brain surfaces shows improved parcellation
performance over a no-alignment strategy, gaining a signif-
icant speed (1400 fold) over traditional iterative alignment
approaches.

Index Terms— Spectral transformer network, Cortical
parcellation, Graph Convolution Network

1. INTRODUCTION

The surface of a human brain is a complex geometrical struc-
ture containing multiple convoluted folding patterns. Sta-
tistical analysis of the brain surface aids in understanding
its anatomy, and machine learning methods are often sought
for automating this analysis. Conventional machine learning
frameworks exploit spatial information from the Euclidean
domain such as image or volumetric coordinates [1, 2]. Sim-
ilarly, state-of-the-art deep learning approaches [3, 4] operate
on data lying in Euclidean spaces, offering a drastic speed
advantage over traditional methods. However, the geometry

∗Equal contribution of R. He and K. Gopinath.

of the brain is highly variable, hindering the direct use of
these modern deep learning algorithms over multiple brain
surfaces.

Recently, deep learning approaches on irregular graphs
[5, 6, 7] have been proposed. These methods formulate a con-
volution theorem from Fourier space to spectral domains over
graphs. One main limitation of these spectral approaches is
their lack of expressing surface data in comparable spectral
bases across different surface domains [8, 9, 10]. The Lapla-
cian eigenbases are indeed incompatible across multiple ge-
ometries, challenging their direct use during training. As a so-
lution, some recent work [11, 12] maps the local information
onto geodesic patches and uses conventional template match-
ing in spatial convolutions. For instance, [6] proposed local
convolution operation as filtering over small neighborhoods in
spatial domain. Their spatial representations of surface data
remain, however, defined in a Euclidean space by using polar
representations of pixels or mesh vertices.

In the literature, spectral graph matching has been used
to transfer surface data across aligned spectral domains [14].
Such strategy [13, 15] enables the learning of spectral graph
convolution networks across multiple surface data. These
methods, however, involve an explicit computation of a trans-
formation map for each brain towards one reference template.
This process of aligning the eigenvectors of graph Laplacians
is currently an important computational bottleneck. This
expensive step is necessary in such approach to handle the
differences across eigenvectors, including sign flips, order-
ing, and mixing of eigenvectors in higher frequencies. In this
work, we propose a framework for learning this transforma-
tion function across multiple brain surfaces. In an alternative
application for natural image classification, [16] proposes a
transformer network for CNNs for learning a transformation
matrix to spatially standardize the image data. Similarly,
[17] also proposes a transformation network for learning over
point clouds of geometric structures. These methods are,
however, limited to pointwise information in a Euclidean
space. This paper introduces a Spectral Graph Transformer
Network (SGT) to learn the parameters for aligning multi-
ple surfaces directly in the spectral domain. We illustrate
the learning capabilities of this approach with an application
to brain parcellation. We use the aligned coordinates from
our SGT network along with a graph convolution network
(GCN) for quantifying parcellation. The learnt alignment
of 101 manually-labeled brain surfaces [18] reveals that our
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Fig. 1. Overview of the our architecture: The spectral decomposition of a brain graph is randomly sub-sampled as an input
point cloud to a SGT network. The SGT learns the transformation parameters aligning the eigenvectors of multiple brains. The
learnt transformation matrix is multiplied to the original spectral coordinates and fed to the GCN for parcellation. The point
cloud is illustrated before and after alignment with our SGT. The GCN architecture follows recommendations from [13].

approach improves brain parcellation by 4.4%, from an av-
erage Dice overlap of 78.8% to 83.2%. The performance of
our method is shown to be at par with traditional alignment
strategies, performing at 84.4%, but gains a significant speed
improvement. The learning of an end-to-end SGT and GCN
model enables a direct, automatic learning of surface data
across multiple brains. Our SGT part learns a transforma-
tion matrix that handles the eigenvector differences, while
the GCN part focuses on the brain parcellation. The next
section details the fundamentals of our SGT and GCN model,
followed by an evaluation of our alignment strategy for graph
convolutions.

2. METHOD

An overview of the method is shown in Fig. 1. Firstly, the
cortical surfaces modeled as brain graphs are embedded in a
spectral manifold using the graph Laplacian operator. Sec-
ondly, graph nodes are randomly sampled in the spectral em-
beddings and fed to the SGT network to align the brain em-
beddings. Finally, a GCN provides a labeled graph as output,
taking spectral coordinates and cortical sulcal depth as input.

2.1. Spectral embedding of brain graphs

Let G = {V, E} be a brain graph defined with node set V ,
such that |V| = N , and edge set E . Each node i has a feature
vector xi ∈ R3 representing its 3D coordinates. We map G to
a low-dimension manifold using the normalized graph Lapla-
cian operator L = I−D−

1
2 AD−

1
2 , where A is the weighted

adjacency matrix and D the diagonal degree matrix. In this
work, we define the weight between two adjacent nodes as the
inverse of their Euclidean distance. Let L = UΛU> be the
eigendecomposition of L, the normalized spectral coordinates
of nodes are given by U

∧
= Λ−

1
2 U.

2.2. Spectral transformer network

The normalized spectral coordinates U
∧

from the spectral em-
bedding of L is only defined up to an orthogonal transfor-
mation. We thus need to align the spectral representations of
different brain graphs to a common representation. As a base
reference, we align the normalized spectral embedding of all
brain surfaces to a template U

∧

ref in the dataset. This tradi-
tional alignment process involves computing an expensive op-
timal orthogonal transform based on iterative Procustes algo-
rithm [14]. Let u

∧
i, one row of U

∧
, be the normalized spectral

coordinates of node i of a brain model. The overall alignment

to a reference model U
∧(0)

can thus be formulated as:

argmin
π,T

N∑
i=1

∥∥u∧i T − u
∧(0)
π(i)

∥∥2

2
, (1)

This alignment step is computationally expensive, taking
a few seconds to converge. It typically alternatives between
finding a transformation T, and a node matching π(·). Also,
the alignment process is independent of the final target task.
Our SGT learns instead the transformation matrix T for every
brain graph in a data-driven manner. As input to the network,
we provide U

∧

sub, a set of N randomly sub-sampled U
∧

coor-
dinates, chosen similarly to [17], with enough samples to re-
cover T. Most information on graph connectivity is encoded
in the first eigencomponents of L, which enable savings in
processing times. For instance, we could only keep the first 3
components for the learning step. In our experiments, U

∧

sub

is a matrix of size N×3. Fig. 1 describes the architecture of
our spatial transformer network.

The model first applies a sequence of two point-wise lin-
ear transformation layers on U

∧

sub, each one followed by a
non-linear rectifier (ReLU) function. Such layer takes a N×
Ml−1 matrix X as input and post-multiplies it by aMl−1×Ml

parameter matrix Wl to give an output matrix of size N×Ml.
This transformation, which is similar to 1× 1 convolutions



in CNNs, expresses each embedded node with respect to a
shared set of Ml hyper-planes in the spectral space, and is
used to capture the global shape of the embedding. In our
model, we use M1 = 256 for the first layer and M2 = 128
for the second one (note that M0 = 3). Next, the output of
the second point-wise transformation layer is converted to a
fixed-size representation of size 128×1 by applying average
pooling. Last, to get the final spectral transformation matrix,
we apply three Multilayer Perceptron (MLP) layers of size
[128, 64, 9], also with ReLU activations, and reshape the out-
put of the last layer into a 3 × 3 matrix. This transformation
matrix is multiplied to the normalized spectral coordinates U

∧

to obtain the aligned spectral coordinates.
The parameters of the spectral transformer network are

optimized by computing the mean square error between the
predicted coordinates and spectral coordinates Ũ obtained
with the iterative alignment method. To enforce regulariza-
tion during training, and match the possible rotation and flip
ambiguity of eigendecomposition, we also add a second loss
term imposing the transformation matrix to be orthogonal.
The final loss function is given by:

Espt(θt) = ‖Ũ−U
∧

T(θt)‖2F + ‖T(θt)T
>(θt)−I‖2F . (2)

2.3. Graph convolution on surfaces

The second part of our end-to-end model is based on a ge-
ometric convolutional neural network that maps the now-
aligned spectral coordinates to a common comparable graph
embedding. A generalized convolution operation on a graph
G = {V, E}, with Ni = {j | (i, j) ∈ E}, as the neighbors of
node i ∈ V , is defined as

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk ·y

(l)
jq ·ϕ(u

∧
i,u
∧
j ; θ

(l)
k ) + b(l)p , (3)

where ϕ(u
∧
i,u
∧
j ;θk) is a symmetric kernel in the embedding

space with parameter θk. In this work, we follow [13] and use
a Gaussian kernel: ϕ(u

∧
i,u
∧
j ;µk, σk) = exp

(
− σk ‖(u

∧
j −

u
∧
i)− µk‖2

)
.

We define a fully-convolutional network comprising of
4 graph convolution layers with sizes 256, 128, 64, and 32.
Each layer has Kl = 6 Gaussian kernels similar to [13, 19].
The total target parcels are 32, hence, our last layer is of size
32. Leaky ReLU is applied after each layer to obtain our
filter responses. A softmax operation is used after the last
graph convolution layer in order to obtain the probabilities of
the mutually-exclusive parcels at each node. Our output loss
function employs a cross-entropy with Dice loss for all par-
cellations. Our final end-to-end model comprising of a spec-
tral transformer and a graph convolution network for brain
parcellation is trained using the loss function given by

Efinal(θt,θg) = λEspt(θt) + Egcn(θg). (4)

This final loss Efinal is minimized by back-propagating the
error using standard gradient descent optimization.

Fig. 2. SGT network data sampling: Each point indicates
the performance of our SGT model in terms of mean square
error. The best mean square error is achieved for models with
1000 nodes as input to our SGT.

3. EXPERIMENTS AND RESULTS

In this section, we evaluate how inputs affect our SGT net-
work. The optimal SGT parameters are thereafter used to
train our end-to-end model for brain parcellation. We vali-
date our approach on the Mindboggle [18] dataset contain-
ing manually-labeled brain surfaces. The dataset contains
101 cortical meshes, each with 102K to 185K vertices and 32
manually-labeled parcels. We randomly split the dataset into
training, validation and testing in a 70-10-20% ratio for our
experiments. Here, we induce random sign flips on the eigen-
vectors of the training dataset to balance flipping and rotation
variance. The performance of the methods are measured in
terms of average Dice overlap and Hausdorff distances. The
experiments are carried out on an i7 desktop computer with
16GB of RAM and a Nvidia Titan Xp GPU.

3.1. Spectral transform data sampling

Our spectral transformer network takes as input a set of points
in the spectral domain. The number of eigenvectors is fixed
to three, as suggested in [13]. To evaluate the effect of in-
put size N , we sample spectral points randomly from 50 to
50, 000. We study the performance of spectral alignment us-
ing our SGT model in terms of mean square error.

The results shown in Fig. 2 illustrate that the best align-
ment performance is achieved with a sub-sampling size of
N = 1000. The input data with N = 50, 100, 500 is inad-
equate to capture the complete geometric information of the
brain, as seen in Fig. 2. In addition to lower performance,
a higher number of nodes also increases memory consump-
tion and computation time. The gain in mean square error for
input size over N = 1000 can also be seen in Fig. 2.

3.2. Brain surface parcellation

We now evaluate the performance of our end-to-end SGT
and GCN model on brain surface parcellation. The predicted
transformation matrix from SGT aligns all brain surfaces.
The number of embedded node coordinates used during



No alignment SGT Alignment - Ours Traditional Iterative Alignment [13] Reference (Ground Truth)

Dice overlap : 78.8%
Avg. Hausdorff dist : 2.5 mm
Time     :               -

Dice overlap : 83.2%
Avg. Hausdorff dist : 1.8 mm
Time     :    10.7 millisecs

Dice overlap : 84.4%
Avg. Hausdorff dist : 1.7 mm
Time     :           15 secs

Fig. 3. Brain parcellation: Performance comparison of different alignment strategies using GCN measured with average
Dice overlaps and Hausdorff distances. Model trained with no SGT yields a low Dice of 78.6% with irregular segmentation
boundaries. Training an end-to-end SGT and GCN model achieves a Dice overlap of 83.2%, similar to the performance of
a traditional alignment model, which scores 84.4%. The Hausdorff distances and qualitative results show equivalent results
between the two methods. However, a significant speed gain, from 10.7 seconds to 10.7 milliseconds is achieved with our SGT.

Table 1. Different alignment strategies with GCN approaches – Average Dice overlaps (in %) over 32 parcels on test set are
shown along with classification accuracy (in %), and average Hausdorff distances (in millimeters).

Method Dice overlap (%) Accuracy (%) Avg. Hausdorff (mm)

No Alignment 78.82± 4.02 81.68± 3.88 2.54± 2.86
Pretrained + Orthogonal 81.97± 3.20 84.14± 2.88 1.99± 2.19
Pretrained + MSE 82.29± 4.46 84.38± 4.09 1.94± 2.23
End-to-end (Ours - 10.7 milliseconds) 83.26± 3.66 85.17± 3.48 1.85± 2.04

Traditional Alignment [13] (15 seconds) 84.42± 2.59 85.99± 2.53 1.76± 1.75

training SGT is set to N = 1000. These nodes are ran-
domly sub-sampled for each subject during the training of
our end-to-end model.

Our method is compared with different alignment strate-
gies for graph parcellation. We show the limitations of
ignoring the spectral alignment. The GCN trained with
non-aligned spectral coordinates achieves a Dice overlap
of 78.8%. This low performance is due to the incompatibility
of eigenbases across brain surfaces. Training our end-to-end
SGT with GCN provides a performance improvement of 4.4%
over no alignment. Next, our transformer network is trained
independently from the parcellation task in order to learn the
SGT weights. The rationale of this experiment is to evaluate
the use of a fixed alignment strategy for learning the GCN
model. We evaluate the use of both SGT loss and orthogonal
regularization independently. The model trained only with
orthogonal regularization improves by 3.1%, from 78.8% to
81.9%. This increase indicates the benefit of learning regular-
ized rotation and flipping. We see a further performance boost
by training our SGT model with a mean square error. Table 1
shows a similar improvement of 3.4% compared to not using
alignment. Note that updating the weights of both SGT and
GCN in an end-to-end framework further guides the learning
of the transformation matrix. This experiment setup trains
the SGT model to learn a transformation most suitable for
the parcellation task. Our end-to-end model indeed yields an
improvement in average Dice overlap to 83.4% from 82.2%
when trained separately. The results of the experiments are
reported in Table 1.

4. CONCLUSION

This paper presents a novel end-to-end framework for learn-
ing a spectral transformation required for graph convolution
networks. The proposed SGT network learns a transforma-
tion in the spectral domain that maps input spectral coordi-
nates to a reference set. We first evaluate the optimal size
of the coordinate set necessary for training the SGT network.
Next, our experiments on brain surface parcellation validate
the benefits of our alignment strategy. Training a GCN model
without any alignment results in a low Dice overlap and irreg-
ular parcel boundaries as shown in Fig. 3. The conventional
procedure of aligning different brain surfaces to a reference
is an expensive computational step. Our method learns this
alignment step automatically by capturing the geometry of the
brain, yielding a Dice overlap of 83.2%. Qualitatively, as il-
lustrated in Fig. 3, the performance of our method is similar
to a GCN trained with traditional alignment, however com-
putation times are reduced by a 1400-fold, from 15 seconds
to 10.7 milliseconds. The use of SGT is evaluated in this pa-
per with brain surface parcellation as an application. Never-
theless, our method can potentially be used for other surface
analysis problems such as disease classification or identifying
new geometry-related biomarkers.
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