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ABSTRACT

The success of medical image de-noising often relies on
the image quality. If the image is severely degraded, in-
formation can be permanently lost. The de-noising or
restoration process rarely use any other external informa-
tion such as valuable data from additional images, for in-
stance from a follow-up study or within an image sequence.
Several optimization methods exist, among them the Graph
Cuts method is efficient in a global optimum sense. We
show that Graph Cuts can be used to solve simultane-
ously image de-noising and image correspondence. Both
of these problems have been previously solved with Graph
Cuts, but always as separate processes. In this paper, we
combine them in the same formulation, and we show an
application where images, initially unusable, can be re-
covered rather than being reacquired at a high risk (e.g.,
avoiding new radiation in medical scans).

1. INTRODUCTION

Medical images, as observed, usually present a certain
level of degradation due to the environment during acqui-
sition or to the physics underlying the image formation,
sometimes so severe that information can be lost in the im-
age. The recovery of the original, or ideal, image is known
as the restoration process. Most general information can
be recovered from observed images, however, depending
on the degradation severity, details such as the precise lo-
cation of organ boundaries, thin vessels, or poorly con-
trasted structures can be permanently lost, and might re-
quire a costly reacquisition of the image. This is unde-
sirable when dealing with radiation in medical imaging.
However, in addition to the low quality image, a second
image with a better quality is sometimes available. It can
be an image of the same patient taken on a different day,
another frame from an image sequence, or an image taken
in a modality yielding less noise. This second image pro-
vides valuable additional information that helps the recov-
ery of a severely degraded image.

Image de-noising is a nonlinear inverse problem, and
since the beginning of computer vision [1], relationships
between pixels have been exploited. In the early days,
Geman and Geman [2] used in a Bayesian framework a
priori knowledge on the distribution of neighboring struc-
tures. Since then, other popular approaches for image de-
noising and enhancement have been used [3, 4, 5]. They
are often formulated in a variational framework and prone

to local minima. In this paper, we focus on the Graph Cuts
approach. Indeed, with particular objective functions, the
Graph Cuts have the advantage of finding a solution guar-
anteed to be in the vicinity of the global minimum [6].
Image restoration via Graph Cuts can be modeled as find-
ing a piecewise smooth function [6, 7] and can be tackled
through a statistical approach [8].

Joint approaches allow the combination of two prob-
lems within the same optimization formulation. Brailean
and Katsaggelos [9] already sensed the relevance of such
approaches and were able to enhance restoration by simul-
taneously estimating the displacement field within an im-
age sequence. Woods et al. [10] used a stochastic frame-
work to create a high resolution image from multiple low-
quality images. Simultaneous approaches [11, 12] also
involve motion segmentation rather than displacement es-
timation. Recently [12, 13, 14], edge detection is used
jointly with the image de-noising and motion segmenta-
tion processes.

We show in this paper that a joint approach can be used
with Graph Cuts and enhance image restoration. Image
de-noising was one of the first Graph Cuts applications,
and it has recently been shown that Graph Cuts can be
used for image registration [15, 16, 17, 18, 19, 20, 21]. We
propose a joint approach, where image de-noising helps
the registration process, and the good overlap of a clearer
image improves de-noising of a corrupted image. This
method can be used in any situations where degraded im-
ages need to be restored and when at least one clear im-
age is available. Typical applications include the recov-
ery of a corrupted frame in a sequence, for instance when
the imaging device failed for one image acquisition. The
sequence could be a short animation (e.g., a cardiac se-
quence), or different images taken days apart (e.g., moni-
toring a pathology evolution). In the following, we first re-
mind how Graph Cuts are used to solve image de-noising,
and how it can recover deformation fields. Later, we show
that both problems can be combined in the same formula-
tion. The results show that a corrupted image, even in an
extreme case with missing parts, can indeed be recovered
with the registration of an additional image.

2. RESTORATION VIA REGISTRATION

Optimization of submodular functions can be done via
Graph Cuts, more specifically with the α-expansion al-
gorithm as described by Boykov et al. [6]. Many prob-
lems in computer vision can thus be solved via this opti-



mization method, including image de-noising and recov-
ery of deformation fields. After a brief reminder of the
optimization framework, the objective functions for image
de-noising and registration will be presented, followed by
how to combine both formulations in a joint approach.

2.1. Image De-noising

The Graph Cuts algorithm finds the global solution of a
binary problem. It finds the minimum cut between a sink
and a terminal. For instance, in image segmentation, the
minimum cut optimally separates the image foreground
from its background. However, when a pixel can be as-
signed to many labels, fp ∈ Lf , a series of Graph Cuts
can be used to minimize the following type of energy:

E(f) =
∑
p∈I

D(ip, fp) + λ
∑
p,q∈N

V (fp, fq). (1)

The first term is known as the energy of the data term
D. It penalizes the current labeling f if it is too different
from the observed pixel intensity i in image I . The second
term is the energy of the smoothness term V , controlled
by the parameter λ. It penalizes the labeling f if it is not
smooth enough, that is, if the labels of two neighboring
pixels, fp and fq , are too different.

Boykov et al [6] show two algorithms based on Graph
Cuts: the α expansion and the α − β swap. They min-
imize any energy (Eq. 1) whose smoothness term satis-
fies certain conditions, namely, V (α, β) = 0 ⇔ α =
β, V (α, β) = V (β, α) ≥ 0, V (α, β) ≥ V (α, γ)+V (γ, β)
with α, β, γ ∈ Lf .

The main idea of the α expansion algorithm is to it-
eratively minimize the energy, testing one label α ∈ Lf
at a time. In image de-noising, α is a recovered inten-
sity, e.g., Lf = [0..255]. During an algorithm step, a new
label α ∈ Lf is tested. A Graph Cuts partitions the im-
age in two regions: the α region, where pixels should be
assigned the intensity fp = α, and the ᾱ region, where
pixels should remain unchanged. At each new step, the α
region is said to expand. The recovered image f is thus
optimized while iterating a few times all possible intensi-
ties α.

For image de-noising, the data term in (Eq. 1) is de-
signed to assign a recovered intensity, fp, as close as pos-
sible as the observed intensity ip, for instance, the squared
difference is used, D(ip, fp) = (ip − fp)2. The smooth-
ness term is designed to yield similar intensities between
neighboring pixels, for instance, the absolute difference is
used, V (fp, fq) = |fp − fq|. The energy as formulated in
(Eq. 1) now becomes:

E(f) =
∑
p∈I

(ip − fp)2

+ λ
∑
p,q∈N

|fp − fq|. (2)

2.2. Deformation Field Recovery

For the recovery of a deformation field, the inputs are
two observed images, I1 and I2, the solution is the de-
formation field, u, and the label set contains all possible
deformations, e.g., Lu = {(−10;−10), (−10;−9), ...,
(+10; +10)}. The same optimization framework described
earlier is also used to find the deformation field u. In-
deed, the deformation field undergoes two forces, one that
matches the warped image I2 with the original image I1,
the second that keeps the deformation field smooth. These
two forces correspond to the data term and the smoothness
term in the energy (Eq. 1).

It is assumed that each pixel of an image has a corre-
sponding pixel in the second image, i.e., I1(p) ⇔ I2(p +
up), where up is the displacement between the two pixels.
The data term measures how the data differs between the
original image and the warped image, for instance with
the squared difference of the intensities, D(I1(p), I2(p +
up)) = (i1(p) − i2(p + up))

2. Mutual information [22]
can be used when using multimodal images.

The deformation field is also assumed to be locally co-
herent, i.e., up ≈ uq , for two neighboring pixels p, q ∈ N .
The smoothness term measures how smooth the deforma-
tion is, for instance with the norm of the difference be-
tween two neighboring displacements, V (up, uq) = ||up−
uq||.

Finding a smooth deformation field, u, between two
images, I1 and I2, is therefore solved by minimizing the
following energy:

E(u) =
∑

p∈I1,I2

(i1(p)− i2(p+ up))
2

+ λ
∑
p,q∈N

||up − uq||. (3)

2.3. Joint Approach

In a joint approach the registration brings additional infor-
mation to the de-noising process. When two images are
correctly aligned, the enhancement of the degraded image
can benefit from the better quality of the aligned image.
Similarly, when the degraded image is enhanced, corre-
spondences between both images become clearer. Both
processes can thus benefit from each other in a simul-
taneous manner. The resulting coherence is the motiva-
tion for a joint approach. In this approach, the inputs
are the two images, I1 and I2, and both the recovered
image as well as the deformation field are optimized, f
and u. The label set becomes larger, for each possible
recovered intensity, there is a possible translation of that
pixel between both images, (fp;up) ∈ Lf ∪ Lu, e.g.,
Lf = {(0; (−10;−10)) , ..., (0; (+10; +10)) , ...,
(255; (−10;−10)) , ..., (255; (+10; +10))}.

Energies for de-noising (Eq. 2) and for the recovery
of the deformation field (Eq. 3) are combined in the same
formulation and solved using the Graph Cuts optimiza-
tion. The combined data term contains three terms. The



first, controlled by λd1 , measures how the recovered im-
age, f , matches the image I1. The second, controlled by
λd2 , measures how the recovered image, f , matches the
image I2. The third, controlled by λd3 , measures how the
data differs between the image I1 and the image I2 warped
with the deformation field u:

D(fp, up) = λd1Dde−noising(i1(p), f(p))

+ λd2Dde−noising(i2(p+ up), f(p))

+ λd3Dregistration(I1(p), I2(p+ up)).(4)

The combined smoothness term contains two terms.
The first, controlled by λv1 , measures how smooth the re-
covered image, f , is. The second, controlled by λv2 , mea-
sures how smooth the deformation field u is:

V (fp, fq, up, uq) = λv1Vde−noising(fp, fq)

+ λv2Vregistration(up, uq). (5)

The data term (Eq. 4) and the smoothness term (Eq. 5)
are used in the energy (Eq. 1). This way, both the re-
covered image f and the deformation field u is optimized
simultaneously using the Graph Cuts framework. In the
following results, the energy used is:

E(f, u) =∑
p∈I1,I2

 λd1(i1(p)− fp)2 +
λd2(i2(p+ up)− fp)2 +
λd3(i1(p)− i2(p+ up))

2)


+

∑
p,q∈N

(
λv1 |fp − fq| +
λv2 ||up − uq||

)
. (6)

3. RESULTS

In the following experiments, a comparison is done be-
tween the de-noising of images, using the degraded image
only, and using an additional image. The simultaneous ap-
proach is validated by trying to recover an image heavily
corrupted by noise or missing data. Applications to brain
MRI and cardiac MRI, CT and ultrasound images are pre-
sented to evaluate the improvement of using an additional
image to remove the noise from a corrupted image.

3.1. Improving de-noising

The brain MRI shown in Fig. 1(b) is corrupted by a se-
vere white noise, N(µ = 0, σ = 200). At full resolution
(128× 128), the head shape is barely recognized.

First, the noise removal using solely the image shown
in Fig. 1(b) is done. The label set of possible recovered
intensities is Lf = {0, 1, ..., 255}. The minimization of
the equation (Eq. 2), with parameters λ = 0.5, yields a
poor result. The intensity difference between the original
image (Fig. 1(a)) and the recovered image (Fig. 1(f)) is
measured using the root mean square, which is RMS =
63.10. On the recovered image, the head silhouette can be
discerned; however, details such as the ventricles or the
skull are lost. Increasing the smoothness parameter λ will

(a) (b) (c) (d)
Original Noisy Occluded Translated

(e) (f) (g) (h)
Denoising Joint Denoising Joint

alone approach alone approach
RMS = 63.10 RMS = 47.36 RMS = 72.03 RMS = 41.70

Fig. 1. (a) Original image, MRI brain scan, (b) degraded
image, (c) with missing data, (d) checker board compar-
ing the translated image witht he original image, (e) de-
noising alone of the degraded image, (f) joint approach
enhancing the degraded image via registration of the trans-
lated image, (g) de-noising alone of the occluded image,
(h) joint approach recovering the missing part in the oc-
cluded image via registration of the translated image.

produce even coarser images, decreasing it will produce
noisier images.

Second, image de-noising is improved by registering
an additional image (Fig. 1(d)). This new image is a trans-
lated version of the original image (comparison in Fig. 1(d)).
The label set can contain a single deformation, that is the
known translation up ∈ {(+10; +10)}, but to be closer to
a real case scenario, all translations within a 3 × 3 win-
dow is also included. The label set used in this experi-
ment is thus Lf ∈ {fp, up}, with fp ∈ {0, 1, ..., 255} and
up ∈ {(+10; +10) + (+3; +3), ..., (−3;−3)}. In order
to compare the joint de-noising and registration with the
sole image de-noising, the same balance used in the pre-
vious experiment between data matching and smoothness
is preserved, i.e., 1

λ =
λd1

+λd2
+λd3

λv1
+λv2

. The parameters for
equation (Eq. 6) are λd1 = 0.33, λd2 = 0.33, λd3 = 0.36
and λv1 = 0.2, λv2 = 0.3. The minimization removes the
noise as shown in Fig. 1(e). The intensity difference be-
tween the original image and the image recovered with the
joint approach (Fig. 1(f)) is decreased to RMS = 47.39.
The head is clearly recognized, and details such as the
ventricles are visible.

If the minimization favors the use of the second image
with λd2 � λd1 , a similar effect to over fitting occurs.
Fig. 1(g) shows image de-noising with λd2 = 3.0, and
the minimization almost recreates the second image at the
registered position.

3.2. Occlusions

In this second experiment, the degradation is pushed to an
extreme; the method has to restore an image with missing
data.

Fig. 1(c) shows the brain MRI with missing parts. A



RMS = 16.91 RMS = 9.03

RMS = 15.40 RMS = 7.72

RMS = 18.14 RMS = 11.55

RMS = 20.12 RMS = 14.05
(a) Degraded (b) Additional (c) De-noising (d) Joint (e) Ground truth vs.

image frame alone approach joint approach

Fig. 2. First and second row, image de-noising of a noisy cardiac CT frame; third row, image de-noising of a chest MRI;
fourth row, image de-noising of a cardiac ultrasound frame: (a) Noisy frame, (b) additional frame, (c) image de-noising
using only the noisy image, (d) image de-noising via registration of the second frame, and (e) its checkerboard comparison
with the original frame.

white noise, N(0, 50), is also added. As expected, remov-
ing noise using this image only cannot recover the miss-
ing data (Fig. 1(h)), the error is RMS = 72.03. How-
ever, when using an additional image, the missing infor-
mation is restored by registering this second image, the
error drops to RMS = 41.70. Fig. 1(f) shows the recov-
ery of the missing part.

3.3. Recovery of Corrupted Frames

Medical image sequences are now becoming widely used
in the cardiac field. This experiment evaluates the im-
provement in the quality of a corrupted frame by jointly
registering an additional frame. Two images of the same
slice, but taken at different time in the cardiac cycle, are
shown on the first row of Fig. 2. One frame is purposely
corrupted by a white noise, N(0, 15). The label set con-
tains all deformations within a 10× 10 window, i.e., each

pixel can move at most (10; 10) pixels between the two
frames.

The noise removal using only the first frame (λ = 0.5)
yields the image (c) shown on the first row of Fig. 2.
The mean square error with the original frame is RMS =
16.91. When using the registration of the second frame,
the recovered image (Image (d) on the first row of Fig. 2)
appears clearer, and the error drops to RMS = 9.03, this
is a 46.6% improvement. In the joint approach, the ratio of
the data over the smoothness energy is similar to the ratio
used in the de-noising alone, that is, λd1 = 0.33, λd2 =
0.33, λd3 = 0.36, λv1 = 0.8, λv2 = 0.7.

The same experiment has been applied on a chest MRI
(third row of Fig. 2). Image de-noising using only the de-
graded image shows an error of RMS = 18.14 with the
original image. Noise removal is improved when using an
additional image, the error drops to RMS = 11.55, this
is a 36.3% improvement. Similarly, the same improve-



ment happens with a CT frame showing a cardiac ventri-
cle (second row of Fig. 2). Image de-noising using only
the degraded image yields an error of RMS = 15.40.
The image quality is improved via the registration of a
different frame, the error becomes RMS = 7.72, this is
a 49.9% improvement. The last row of Fig. 2 shows the
de-noising of a frame from a cardiac ultrasound sequence.
When using only the degraded frame, the de-noising pro-
cess yields an error of RMS = 20.12. Image de-noising
via the registration of a different frame yields an error of
RMS = 14.05 with the intensities of the original frame.
This is a 30.17% improvement.

4. CONCLUSION

This paper shows that simultaneous image de-noising and
image registration can be optimized via Graph Cut. The
results show an improvement in the image enhancement
when using a joint approach over the sole image de-noising,
even in the presence of highly degraded images. The me-
thod has potential applications in the medical field where
corrupted frames in a sequence can arise and would nor-
mally be discarded.

Other optimization methods exist, including variational
approaches, however the Graph Cuts were chosen for its
optimality. Our combined energy formulation is indeed
solvable with the α-expansion algorithm. Future work
will focus on a smoothness term preserving more effi-
ciently discontinuities, thus handling the restoration in blur-
red images, and will use a more efficient deformation mo-
del for image registration. There is also an interest in us-
ing additional frames from different modalities. The work
of Kim et al. [22], expressing Mutual Information in the
Graph Cuts method, will be of great use.
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