Deep spectral-based shape features for Alzheimer’s
Disease classification

Mahsa Shakeri'»2, Herve Lombaert3, Shashank Tripathi',
Samuel Kadoury!+2
for the Alzheimer’s Disease Neuroimaging Initiative*

! MEDICAL, Polytechnique Montreal, Montreal, Canada,
2 CHU Sainte-Justine Research Center, Montreal, Canada,
3 INRIA Sophia-Antipolis, France

Abstract. Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are
the most prevalent neurodegenerative brain diseases in elderly population. Recent
studies on medical imaging and biological data have shown morphological alter-
ations of subcortical structures in patients with these pathologies. In this work, we
take advantage of these structural deformations for classification purposes. First,
triangulated surface meshes are extracted from segmented hippocampus struc-
tures in MRI and point-to-point correspondences are established among popula-
tion of surfaces using a spectral matching method. Then, a deep learning vari-
ational auto-encoder is applied on the vertex coordinates of the mesh models to
learn the low dimensional feature representation. A multi-layer perceptrons using
softmax activation is trained simultaneously to classify Alzheimer’s patients from
normal subjects. Experiments on ADNI dataset demonstrate the potential of the
proposed method in classification of normal individuals from early MCI (EMCI),
late MCI (LMCI), and AD subjects with classification rates outperforming stan-
dard SVM based approach.

Keywords: classification, spectral matching, variational autoencoder, Alzheimer’s
disease.

1 Introduction

Alzheimer’s disease (AD) is characterized by progressive impairment of cognitive and
memory functions in elderly population. Considering its worldwide prevalence, early
diagnosis of this disease might have a huge impact on the overall well-being of the
population, and the burden to caregivers, as well as the associated financial costs to the
world’s health system. Studies reported that AD can be diagnosed by clinical assess-
ments in most of the cases [1], while by the time the patient is diagnosed the disease

*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI and/or provided data but did
not participate in analysis or writing of this report. A complete listing of ADNI investigators
can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgement_List.pdf
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progression may have deteriorated. Therefore, early diagnosis of this neuropathology is
of special interest.

Mild cognitive impairment (MCI) is considered as a transition state between normal
aging and dementia [2]. The cognitive deficits in MCI patients are not as severe as those
seen in individuals with AD. However, studies have suggested that about 10 — 12% of
subjects with MCI progress to AD per year [2]. Therefore, these individuals with milder
degrees of cognitive and functional impairment than AD patients are particularly inter-
esting subjects, since biomarker manifestation could potentially be different at such an
early stage of the disease.

Studies have shown that the neuropathological changes in AD and MCI affect the
hippocampus structure, which is a brain region crucial to various cognitive functions [3].
Neuroimaging datasets for AD including magnetic resonance imaging (MRI) and other
types of biomarkers have shown considerable promise to detect longitudinal changes in
subjects [4], by offering rich information on the patients morphometric and anatomical
profiles. Their use stems from the premise that morphological changes may be more
reproducible and more precisely measured with MRI than other parameters such as
clinical scores, cerebrospinal fluid (CSF), or proteomic assessments.

Recent advances in medical imaging and classification techniques have led to a bet-
ter discrimination between Alzheimer’s disease and healthy aging. Because of the high
dimensionality of medical image, various dimensionality reduction approaches have
been developed to facilitate and enhance classification accuracy. A simple method is
principal components analysis (PCA) [5], which finds the directions of greatest vari-
ance in the dataset and represents each data point by its coordinates along each of these
directions. A nonlinear generalization of PCA is multi-layer autoencoders (AE) [6],
which is a feedforward neural network to encode the input into a more compact from
and reconstruct the input with the learned representation. Among available AE architec-
tures, the deep variational autoencoder (VAE) [7] method has recently become popular
in computer vision due to its capability to learn a manifold without the assumption of
linearity in addition to its generative property.

With respect to surface representation, recent studies have shown the advantage of
spectral shape description compared to Euclidean surface representation [8] [9] [10].
The use of eigenvalues have led to interesting results for AD classification in [11],
where Laplace-Beltrami spectrum on the intrinsic geometry of the structural meshes
was computed to define the shape descriptors.The spectral coordinates, which were de-
rived from the Laplacian eigenfunctions of shapes have been used in [8] to parametrize
surfaces explicitly. The authors applied a Random Decision Forest classifier on spectral
representation of surfaces and achieved a significant improvement on cortical parcella-
tions. Also, in [9] and [10], the eigendecomposion of the surfaces in the spectral domain
were used to provide pointwise information on meshes and establish accurate point-to-
point correspondences across surfaces.
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In this work, we present a surface-based classification technique based on classifi-
cation of spectral features using variational stacked auto-encoders. We first extract 3D
surface meshes of hippocampus structures from segmented binary MR images. Then,
the point-to-point surface correspondences is established across populations (NC, AD,
EMCI, LMCI) using a spectral matching approach. In spectral based shape matching
approach, relationships are modeled as graphs and an eigendecomposition on these
graphs enables us to match similar features. Once the matched surfaces are created,
the vertex coordinates are used as shape feature descriptors. Then, variational autoen-
coder (VAE) obtains the non-linear low-dimensional embedding of the shape features.
A multi-layer perceptron (MLP) classifier is simultaneously trained to model the non-
linear decision boundaries between classes.

The work follows on the prior work of [12], which used a Stacked Auto-Encoder
(SAE) to discover the latent representation from the grey matter (GM) tissue densi-
ties and voxel intensities. Unlike Suk et al. [12], which selects intensity and volume
based features from MRI and PET modalities, we create the feature descriptors from
matched hippocampi surfaces extracted from MRI. Moreover, instead of training a sep-
arate classifier on the low dimensional features as in [12], we add a softmax multi-layer
perceptron on top of our variational autoencoder network to obtain both dimensionality
reduction and the classification output at the same time.

The rest of the paper is organized as follows. In Section 2, we present the morpho-
logical feature extraction method using spectral shape matching, as well as the feature
representation and classification method based on variational autoencoder and multi-
layer perceptron. Section 3 includes the description of the dataset, experiments and
discussion. Our conclusions are presented in Section 4, along with envisioned future
research directions.

2 Methodology

Given MR images along with their corresponding hippocampus segmentations (pro-
duced manually or automatically), we first extract features from MRI as explained in
Section 2.1. Then, we use a deep variational autoencoder (VAE) to learn a latent feature
representation from the low-level features and train a multi-layer perceptron (MLP) for
classification purposes in Section 2.2.

2.1 Shape feature extraction using spectral matching

Given a reference surface mesh S, and a population of n surfaces {S;},_, ,,, the spec-
tral matching between each surface meshe .S; and S, is done in a two step process. First,
an initial map is calculated between the two surfaces [9]. This initial map is then used
in the second step to establish a smooth map between the two meshes [10].

Here, we consider vertices and neighbouring points in each surface mesh as nodes
and edges of a graph. Then a laplacian graph is created for each surface graph from
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the set of vertices and edges of each mesh. The general Laplacian operator L; [13] is
defined on each surface as following:

L; =G (D —W;) (1)

where W; is the weighted adjacency matrix, which is created based on a distance be-
tween connected nodes. The term D; is a diagonal matrix, in which the elements are
set by the degree of vertices. G; is a node weighting matrix created based on the mean
curvature at each node as described in [14].

The eigendecomposition of Laplacian matrix L; provides its spectral components.
After reordering the spectral components by finding the optimal permutation of compo-
nents between the pair of meshes, regularization is performed by matching the spectral
embeddings. The correspondence initial map ¢ between each pair of vertices on .S; and
S, is established with a simple nearest-neighbour search between their spectral repre-
sentations.

In the next step, given initial map c, the final smooth map between two surfaces S;
and S, is obtained. In this process, an association graph is defined as the union of the
set of vertices and edges of two surfaces with an initial set of correspondence links ¢
between both surfaces. Then, a Laplacian matrix is created for the association graph,
and the spectral decomposition is computed to produce a shared set of eigenvectors that
enables a direct mapping between two meshes .S; and S..

Once all 3D meshes are matched to the reference, the vertices of all surfaces are re-
arranged to create the new reconstructed meshes with consistent vertex ordering. Now,
the shape descriptor z; will be created for the surface S; as a vector of (X, Y, Z) coor-
dinate of all vertices.

2.2 Feature learning and classification

In this work we use a deep learning-based feature representation method to improve
the classification accuracy. Here, we take inspiration from the variational autoencoder
network, which learns the low-dimensional manifold without the linearity assumption
and has a generative model. In this section, we explain the proposed network architec-
ture, which is a combination of a variational autoencoder network (VAE) and a softmax
multi-layer perceptron (MLP). The combined VAE-MLP network architecture is shown
in Figure 1.

Deep variational autoencoder and MLP classifier:
Auto-encoders are a type of deep neural networks structurally defined by input,

hidden, and output layers. Given the input data * € R defined from the spectral rep-
resentation of mesh shapes, an auto-encoder maps it to a latent representation z € R?
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(encoding), which could be used for unsupervised learning or for feature extraction.
The representation z from the hidden layer is then mapped back to a vector y € RP
(decoding), which approximately reconstructs the input vector z. The hidden layer in
the middle, i.e., z, can be constrained to be a bottleneck to learn compact representa-
tions of the input data.

Variational autoencoder (VAE) assumes that data is generated by a directed graph-
ical model with a latent variable z. VAE uses the encoder network to map the input =
into the continuous latent variables (g4(z|x)) and uses decoder network to map latent
variables to reconstructed data (pg(x|z)), where ¢ and 6 are the parameters of the en-
coder (recognition model) and decoder (generative model), respectively.

The lower bound VAE loss function of the variational autoencoder for individual
datapoint x; has the following form:

Ly ag(0,¢;7:) = =Dk (g5 (2]7:) |[pe (2)) + Eq, (2|e,) logpe (zi]2)]  (2)

The first component is the regularization term, which is the KL divergence of the ap-
proximate posterior from the prior, while the second term is the expected reconstruction
error. As shown in [7], we assume both pg (z) and gy (z|z;) as Gaussian. Given J as
the dimensionality of z and K as the number of samples per datapoint, the resulting
estimator for x; will be as follows:

J K
—5> (1 +1log (o3) — pj — Zlogpe (wilzik) (3)

Jj=1 k

LVAE( ¢1x1 -

l\D\’—‘

where, z; ,, = (i + 0; © € and €, ~ N (0, ]).

Here, 1+ and o can be computed using the deterministic encoder network. The re-
construction (decoding) term of log py (x;|2;,1) could be set as a bernoulli cross-entropy
loss function.

The low dimensional features z; = p; + o; from the latent layer are fed to an MLP
classifier for solving the classification problem. For the last layer, we use the cross
entropy loss function and the softmax activation function, which is standard for classi-
fication problems [15]. The softmax function ensures that the network outputs are all
between zero and one, and that they sum to one on every time step. Therefore, they can
be interpreted as the posterior probabilities, given all the inputs up to the current one.
We set the number of units in the classification output layer to be equal to the number
of classes of interest (i.e., two).
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The network architecture:

Annotated medical image datasets tend to be small and generally hard to obtain.
This increases the risk of network overfitting in medical applications. Therefore, we
make a series of design choices for our network to avoid overfitting. Our network in-
cludes L regularization at each layer to penalize the squared magnitude of all param-
eters directly in the objective function. That is, for every weight w in the network, we
add the term %)\wQ to the cost function, where ) is the regularization strength.

We also add a drop out layer with the probability of 0.5 after each dense layer.
During training, dropout is implemented by only keeping a neurone active with some
probability p, or setting it to zero otherwise. Network weights are set based on the uni-
form initialization scaled by the square root of the number of inputs.

We train the network for 100 epochs with batch size of 28 starting with a learning
rate of 0.00001 and dropping it at a logarithmic rate to 0.000001. For the deep learning
library, we use Keras and Theano. We determine the number of hidden units based on
the classification results. The optimal structure of the network is shown in Figure 1.

3 Experiments

We evaluate the performance of our approach on a popular brain imaging dataset in
Alzheimer’s disease, namely the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
The ADNI database (adni.loni.usc.edu) was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of mild cognitive im-
pairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org. The database of ADNI consists of cross-sectional and longitudinal
data including 1.5 or 3.0 T structural MR images. The detailed description of the MRI
protocol of ADNI is provided in [16].

For this study, a subset of latest 1.5 T MR images is used including 150 normal con-
trols (NC), 90 AD patients, 160 early MCI (EMCI), and 160 individuals with late MCI
(LMCI). ADNI performed additional post-processing steps on MR images to correct
certain image artifacts and to enhance standardization across sites and platforms [16].
The post-processing steps include gradient non-linearity correction, intensity inhomo-
geneity correction, bias field correction, and phantom-based geometrical scaling to re-
move calibration errors. In this work, we use these processed images. Here, hippocampi
was segmented using FSL-FIRST automatic segmentation software package [17] and
visual inspection was performed on the output binary masks to ensure the quality of the
automatic segmentation.
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Fig. 1. The architecture of our proposed network. The numbers mentioned under each layer cor-
respond to the layer’s dimension.

Here we consider six binary classification problems: AD vs. NC, NC vs. EMCI, NC
vs. LMCI, AD vs. EMCI, AD vs. LMCI, and EMCI vs. LMCI. We consider 20% of
data for test and the rest for train. Each time 20% of train set is left out and used for
validation.The whole process is repeated five times for unbiased evaluation. The regu-
larization strength A is set as 0.05 based on experimental results.
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Fig.2. Comparison of the classification accuracy with a baseline approach using the same
spectral-based shape feature representation. The VAE-based method achieved higher accuracy in
most of the cases.

We tested different network architectures and realized that going deeper than the
proposed model in Figure 1 would not help improving the classification accuracy, how-
ever the dimensionality of the hidden and the latent unit had direct effect on the classi-
fication performance.

In the analysis of the results, the performance of the classifier are measured by its
sensitivity (SE), specificity (SP) and accuracy (AC). Sensitivity, which is the ability of
the classifier to correctly identify positive results, is defined as TP/(TP+FN). Specificity
refers to the ability to correctly identify negative results and is formulated as TN/(FP+
TN). Accuracy is defined as (TP+ TN)/(TP+TN+FN+FP).

As baseline, we train a linear Support Vector Machines (SVM) on the same dataset
after applying principle components analysis (PCA) for dimensionality reduction. The
features are extracted from 3D surface meshes after applying spectral matching in the
same way as our proposed method. The classification accuracy for the proposed and the
baseline methods is illustrated in Figure 2. We summarize the classification accuracy
along with the sensitivity (SE), and specificity (SP) measures in Table 1.
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Table 1. Comparison of the classification accuracy (AC%), sensitivity (SE%), and specificity
(SP%) with a baseline method using the same spectral-based shape feature descriptor. The
proposed method achieved higher accuracy in most of the cases.

NC/AD NC/EMCI | NC/LMCI | AD/EMCI | AD/LMCI | EMCI/LMCI

AC SE SP| AC SE SP| AC SE SP| AC SE SP| AC SE SP| AC SE SP
Baseline 80 70 86|55 52 58/ 63 56 75|76 65 71|63 58 66|51 50 52
Proposed 84 73 89|56 52 60|59 52 64|81 70 82|67 58 73|63 62 66

These results show that our method produces higher accuracy in most of the cases.
As expected, the best classification accuracies are those obtained for groups, which are
well separated diagnostically. For instance, 84% and 81% for the classification of NC
versus AD and EMCI versus AD, respectively. The computational time of both meth-
ods is around 60 sec for training on 300 surfaces and less than 5 ms for testing on one
surface.

In addition, the obtained results is comparable to the previously proposed approaches
that have used MRI based features. For instance, Suk et al. [12] and Goryawala et
al. [18] found the accuracy of 85% and 84%, respectively for the classification of NC
versus AD. These method have also included additional information from PET modal-
ity or neuropsychological test to improve the classification performance. One future
direction of our proposed approach would be to include a combination of informative
features to reach a higher accuracy.

4 Conclusions

In this paper we have proposed a deep learning method based on a spectral feature repre-
sentation using hippocampus morphology for the classification of Alzheimer’s Disease.
The morphological features were extracted as 3D surface meshes from MR image and
spectral matching process was used to establish point-to-point correspondences in mesh
vertices. A variational autoencoder was trained to find the latent feature representation
from hippocampus morphological variations. A softmax classifier was applied to dif-
ferentiate between NC, EMCI, LMCI, and AD.

Experimental evaluation on the ADNI dataset demonstrates the effectiveness of our
approach especially in classifying AD vs. NC and AD vs. EMCI. This work shows the
importance of the VAE-based morphological feature representation in improving the
diagnosis accuracy in different stages of dementia. Future research directions include
adding other informative features, such as cognitive information and multimodal data
(e.g., PET) to increase the classification accuracy.
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