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Abstract. Current deep learning models for knee osteoarthritis (OA)
grading often lack anatomical guidance, limiting their accuracy and ex-
plainability. This work proposes a novel framework centered on anatomi-
cally-focused patches to overcome these limitations. Our method extracts
a set of small image patches from clinically-relevant locations along the
joint line, identified by automated landmark detection. These patches
are then processed as a bag of instances within an attention-based mul-
tiple instance learning (MIL) framework. The MIL model learns to iden-
tify and weight the most salient pathological features for an accurate,
patient-level diagnosis. Our approach is evaluated on the OAI dataset
and achieves state-of-the-art performance with a quadratic weighted Co-
hen’s Kappa of 0.807. This result outperforms larger baselines such as
ResNet-34 while using over 85 times fewer parameters. Furthermore,
our attention-weighted visualization method produces sharp, clinically
meaningful saliency maps that precisely localize features such as osteo-
phytes and joint space narrowing, in contrast to the diffuse heatmaps
of prior work. By combining anatomical guidance with an MIL frame-
work, our work presents a lightweight, accurate and trustworthy solu-
tion for automated knee OA grading. The code is available at: https:
//github.com/tien-endotchang/focused-patch-KOA.

Keywords: knee osteoarthritis · Kellgren and Lawrence grading · X-ray
· multiple instance learning, anatomical guidance

1 Introduction

Knee osteoarthritis (OA) is a highly prevalent joint disorder, affecting more than
650 million individuals over the age of 40 worldwide [8]. It is primarily charac-
terized by progressive cartilage degeneration, osteophyte formation, and joint
space narrowing (JSN). In clinical practice, the severity of knee OA is most
commonly assessed using the Kellgren-Lawrence (KL) grading system [14]. This
widely-used method provides a semi-quantitative score based on these radio-
graphic features. KL grades have five categories that indicates the level of knee
degradation. Despite its widespread clinical adoption, manual KL grading is in-
herently subjective, labor-intensive, and prone to variability [9], which motivates
the development of automated assessment methods.

https://github.com/tien-endotchang/focused-patch-KOA
https://github.com/tien-endotchang/focused-patch-KOA
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The automated grading of knee OA from radiographs has been significantly
advanced by machine learning, particularly deep learning [2,21,6,20,24]. A com-
mon and effective paradigm involves a two-step approach: (1) localizing the knee
joint region of interest (ROI), and (2) classifying the localized ROI to predict its
KL grade. Early deep learning models, such as those by Antony et al. [2], estab-
lished this pipeline using a Fully Convolutional Network (FCN) for localization
and a Convolutional Neural Network (CNN) for classification. Tiulpin et al. [21]
used a SVM based localization [22] and further constrained the model attention
to two large patches covering the medial and lateral sides of the knee joint. They
employed a Siamese network architecture that shared weights for processing
both patches, a design which leverages the joint’s symmetry to improve model
efficiency. Their model achieved high performance while significantly reducing
model complexity and improving explainability compared to larger, monolithic
CNNs. Subsequent work aiming for higher performance often incorporated more
complex components. For instance, Chen et al. [6] employed a customized object
detector (YOLOv2) with a specialized ordinal loss, while a later study by Tiulpin
et al. [20] used an advanced CNN backbone with multi-task learning objectives.
Yang et al. [24] applied a graph attention network.

However, current methods often operate on coarse, bounding-box regions of
the knee. This approach discards the rich anatomical information about bone
shape and joint space geometry that is essential for clinical diagnosis. The under-
utilization of this fine-grained anatomical context represents a critical limitation,
often leading to models that are less data-efficient and lack precise explainability.
A few studies have attempted to leverage this information by engineering hand-
crafted shape features [3], but the full potential of using anatomical shape to
directly guide deep feature learning remains largely untapped. We hypothesize
that by focusing on anatomically-defined regions, we can build a more accurate,
efficient, and explainable classification model.

To address this limitation, we introduce anatomically-focused patches, a
novel input representation for knee OA grading. Our approach leverages the pre-
cise contours of the femur and tibia to define a set of small, overlapping patches
along the tibiofemoral joint line. This strategy directs a lightweight CNN to
learn discriminative features from the key clinically relevant regions. The gener-
ation of these patches relies on stable and reproducible anatomical landmarks of
the knee joint. Our experiments use BoneFinder [16,15] for this purpose, which
identifies such landmarks using statistical shape models. To effectively aggregate
information from this set of patches, an attention-based multiple instance learn-
ing (MIL) framework [12] is employed to form a final, patient-level prediction.
We demonstrate that this anatomy-guided approach leads to superior classifi-
cation performance and enhanced explainability, all while using a model with
significantly lower complexity. Our primary contributions are:

– We propose a novel method for generating anatomically-focused patches for
knee OA grading, which leverages detailed anatomical segmentation data to
improve upon heuristic or bounding-box-based ROI extraction.
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Fig. 1. [Overview] A schematic overview of the proposed method. An input
radiograph is processed via anatomical landmark detection to generate a bag of focused
patches. These are fed into a MIL model for KL grade prediction. The MIL model con-
sists of three components: Extractor (green); Aggregator (orange); and Classifier
(gray). Dashed lines show the explanation pathway: local GradCAMs are weighted by
attention scores αi to form a single, precise saliency map.

– We demonstrate that by feeding these patches into an efficient CNN and
aggregating them with an attention-based MIL framework, our model sur-
passes the performance of influential prior work that relied on less precise,
heuristically-defined patches.

– We show qualitatively that our approach yields more precise and clinically
meaningful class activation maps, confirming that the model learns from the
correct anatomical structures and enhancing its explainability.

2 Methods

Our work introduces a novel framework for knee OA grading centered on anatomi-
cally-focused patches, a new input representation designed to guide deep learning
models with anatomical shapes. This approach consists of three integrated com-
ponents (see Fig. 1): (1) a method for generating these focused patches from bone
contours; (2) a MIL framework to aggregate features from these patches; and
(3) a post-hoc visualization technique to explain the decisions from our model.

2.1 Anatomically-Focused Patches

Our approach moves beyond coarse, bounding-box-based ROI localization by
leveraging fine-grained anatomical information. The generation of these patches
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begins with the automated detection of anatomical landmarks that consistently
trace the contours of the distal femur and proximal tibia. This provides a de-
tailed, point-based representation of the shape of knee joint, as shown in Fig. 2(b).

Rather than using all available landmarks, a clinically-informed selection
strategy is applied. The radiographic assessment of OA, as defined in stan-
dardized atlases, focuses on features like osteophyte formation and JSN at the
tibiofemoral joint surfaces [1]. Accordingly, only the subset of landmarks located
specifically along these articular contours is retained. This selection discards
landmarks on the outer bone shafts, which are less relevant for KL grading, and
concentrates the attention of model on the regions prone to osteophyte formation
and JSN.

Centered on each of these K selected landmarks, a square image patch of
size P × P pixels is extracted. This procedure yields a set of K anatomically-
focused patches for each knee radiograph (Fig. 2(c)). Finally, each patch is resized
to a uniform resolution, transforming the knee image into a bag of instances
{X1, X2, ..., XK}, which serves as the natural input for a MIL framework.

2.2 Attention-based Multiple Instance Learning

The anatomically-focused patching strategy transforms each knee radiograph
into a bag of numerous small instances. A key challenge is that the evidence
for OA, such as a small osteophyte, may only be present in one or a few of
these instances. A final patient-level KL grade must therefore be inferred from

(a) Original radiograph (b) Detected Anatomical
Landmarks

(c) Selected landmarks &
patches

Fig. 2. [Patches Processing] Generation of anatomically-focused patches. (a)
An input knee radiograph. (b) A set of anatomical landmarks are automatically de-
tected, outlining the bone contour. (c) A clinically-informed subset of landmarks is
selected along tibiofemoral joint surfaces. A square patch is extracted around each se-
lected landmark, forming the set of focused inputs for our classification model. In this
work, the landmark detection was performed using the BoneFinder tool.
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this collection of patches, where the importance of each patch is unknown in
advance.

This formulation directly corresponds to the problem definition of multiple
instance learning. In MIL, a bag (the knee) is labeled as positive (having JSN) if
at least one of its instances (the patches) is positive (having JSN). To solve this,
we adopt the attention-based deep MIL framework from Ilse et al. [12]. This
framework is composed of three components: a feature extractor, an aggregator,
and a classifier.

First, each patch Xi is passed through a CNN feature extractor, f , to produce
a low-dimensional embedding, hi = f(Xi) ∈ RM . Next, to create a single feature
vector z representing the entire knee, the instance embeddings h1, ..., hK are
combined by a gated attention aggregation. This mechanism learns to assign
an attention weight αi to each patch embedding hi, effectively allowing the
model to focus on patches that are more informative for the final prediction.
The aggregated feature vector z is a weighted sum:

z =

K∑
i=1

αihi, (1)

where the attention weights αi are computed as follows:

αi =
exp{w⊤(tanh(V hi)⊙ sigm(Uhi))}∑K

k=1 exp{w⊤(tanh(V hk)⊙ sigm(Uhk))}
. (2)

Here, w ∈ RL, V ∈ RL×M , U ∈ RL×M are learnable weight matrices, and ⊙
denotes Hadamard product. Finally, the aggregated feature vector z is fed into
a classifier, g, to produce the final KL grade prediction. The entire framework is
trained end-to-end by minimizing a weighted cross-entropy loss function between
the predicted probabilities and the ground-truth KL grade.

2.3 Attention-weighted Saliency Map

To visualize the decision-making process of the model, an attention-weighted
saliency map is generated. This method integrates the local, pixel-level explana-
tions from individual patches with the global, patch-level importance assigned
by the MIL attention mechanism.

Standard class activation mapping (CAM) techniques such as Grad-CAM
[19] can produce noisy or incomplete heatmaps [5]. Inspired by [4], an ensem-
ble of CAM variants is computed for each of the K input patches to create a
more robust local explanation. This ensembled CAM (e-CAM) is the average of
heatmaps generated by multiple techniques, using the final convolutional layer
of the feature extractor as the target.

These local e-CAM heatmaps are assembled to form a full-image saliency
map. An empty array with the same dimensions as the original radiograph is
initialized. Then for each patch, its e-CAM heatmap is resized to its original
dimensions and placed back at its anatomical location within the empty array.
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Crucially, each placed heatmap is weighted by its corresponding attention score,
αi, from the aggregator (Eq. 2). The resulting attention-weighted sum of all
local heatmaps is then normalized and smoothed to produce the final, unified
visualization.

3 Experiments and Results

The experiments are designed to validate our primary contributions. We first
demonstrate that our proposed framework, which combines anatomically-focused
patches with an attention-based MIL model, achieves state-of-the-art classifica-
tion performance compared to established baselines. We then provide a qualita-
tive analysis of our attention-weighted saliency maps to confirm that its decisions
are driven by clinically relevant anatomical features.

3.1 Dataset and Preprocessing

Dataset. This study utilizes data from the Osteoarthritis Initiative (OAI, https:
//nda.nih.gov/oai), a multi-center, longitudinal, public observational study of
knee OA. The full cohort includes 4,796 participants aged 45-79. For our experi-
ments, we used the bilateral PA fixed-flexion knee radiographs from the baseline
visit of the OAI database. The KL grades, as provided by the OAI, serve as the
ground truth for our classification task. The definitions of KL grades for knee
joint are as follows: KL0 (normal), KL1 shows doubtful JSN and possible os-
teophytes (doubtful), KL2 demonstrates definite osteophytes and possible JSN
(minimal), KL3 shows moderate multiple osteophytes, definite JSN (Moderate)
and KL4 shows large osteophytes, marked JSN (severe). To ensure consistency,
the image contrast were normalized using histogram truncation following [21].

Anatomically-Focused Patch Processing. Our patches cover consistent anatomi-
cal areas across images of varying sizes. Their scaling strategy is thus designed
to yield normalized patches with a consistent physical size of 10 mm × 10 mm.
Our strategy subsequently builds a set of patches along the bone contours. Our
experiments use a set of 74 anatomical landmarks outlining the bone contours,
first identified using the BoneFinder tool [16,15]. From this set, K = 41 land-
marks corresponding to the tibiofemoral articular surfaces are selected. A square
patch is extracted around each selected landmark and resized to a final input
of 16× 16 pixels. This low resolution encourages the model to learn key clinical
relevant features.

Data Splits and Augmentation. The dataset was augmented using two strategies
as in [21]. First, all images of left knees were horizontally flipped to increase data
size. Second, we applied random adjustments to contrast, brightness, and gamma
correction. This results in 8,952 unique knee instances. We then performed a
knee-level stratified split based on KL grade to create training (60%), validation
(20%), and testing (20%) sets. The exact distribution of KL grades across these
splits is detailed in Table 1, which highlights the significant class imbalance
inherent in the OAI dataset.

https://nda.nih.gov/oai
https://nda.nih.gov/oai
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Table 1. Distribution of Kellgren-Lawrence (KL) grades in the training,
validation, and test sets. The numbers indicate the count of knee images per grade,
demonstrating the natural class imbalance of the dataset.

Group Total KL0 KL1 KL2 KL3 KL4
Train 5371 2068 959 1424 743 177
Validation 1791 690 319 475 248 59
Test 1790 689 319 475 248 59

3.2 Experimental Setup

Model Architecture. Our MIL framework (Fig. 1) consists of a feature extractor,
a gated attention aggregator, and a classifier. The Extractor is a lightweight
CNN that processes each 16× 16 patch. It contains a sequence of convolutional
blocks, separated by 2 × 2 max-pooling. Each block contains a 3 × 3 convolu-
tion, BatchNorm, and ReLU. The resulting feature map is flattened and passed
through a fully-connected layer to produce a feature embedding (M = 128).
The Aggregator implements the gated attention mechanism [12] with a hidden
dimension of L = 128, producing attention weights for all K = 41 patch em-
beddings. Finally, the Classifier is a single fully-connected layer mapping the
128-dimensional attention-weighted feature vector to the 5 KL grades.

Training. All models were trained for 100 epochs using the Adam optimizer
with an initial learning rate of 1e-4. To mitigate overfitting, a weight decay of
1e-4 and dropout with a rate of 0.4 was applied. We used a batch size of 16
knee image bags. To address the severe class imbalance shown in Table 1, the
cross-entropy loss was weighted, with weights set to the inverse frequency of each
class in the training set. A learning rate scheduler reduced the learning rate by
a factor of 2 if the validation loss did not improve for 10 consecutive epochs. All
experiments were conducted with a fixed random seed of 42 for reproducibility.
The final model for testing was selected based on the epoch that yielded the
highest quadratic weighted Cohen’s Kappa [7] on the validation set.

Evaluation Metrics. We evaluated classification performance using three metrics:
overall accuracy, weighted F1-score, and the quadratic weighted Cohen’s Kappa
[7]. As KL grades are ordinal, Kappa is the primary metric for our evaluation,
It appropriately penalizes large misclassification errors (e.g., KL0 vs 4) more
heavily than small errors (e.g., KL1 vs 2) and is standard in OA literature [21,9].
Besides the metrics on the test set, we also report their standard deviation over
5 bootstrapped samples of the test set.

Baselines for Comparison. We compare our proposed method against two base-
lines: (1) a lightweight Siamese network in Tiulpin et al. [21], which represents the
state-of-the-art in efficient, patch-based OA grading, and (2) a standard ResNet-
34 [11] trained on a single large ROI, representing a monolithic deep learning
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Table 2. Comparison of classification performance on the test set. Our pro-
posed method (Ours (attention)) is compared against key baselines and an ablation
study (Ours (mean)). Performance on the full test set ± std from 5 bootstrap samples.
Best results for each metric are in bold. # parms denotes the number of trainable
parameters.

Methods # parms input size Acc. F1-Score Kappa
ResNet-34 [11] 21,287,237 ≈ 245 (KB) 0.648 ± 0.003 0.616 ± 0.007 0.781 ± 0.013
Tiulpin et al. [21] 595,077 ≈ 65 (KB) 0.639 ± 0.008 0.632 ± 0.005 0.772 ± 0.012
Ours (mean) 215,109 ≈ 21 (KB) 0.617 ± 0.003 0.613 ± 0.004 0.788 ± 0.008
Ours (attention) 248,262 ≈ 21 (KB) 0.644 ± 0.004 0.652 ± 0.003 0.807 ± 0.006

approach. Additionally, to validate our specific MIL design, we include an abla-
tion study (Ours (mean)) where the attention-based aggregator is replaced with
a simple, non-weighted average pooling of patch features.

3.3 Classification Evaluation

The quantitative results are summarized in Table 2. Our proposed model, Ours
(attention), outperforms all baselines on the primary metric of quadratic weighted
Cohen’s Kappa and on the F1-score. While ResNet-34 achieves a slightly higher
accuracy, this metric could be misleading given the severe class imbalance. The
superior Kappa score of our method demonstrates a more clinically meaningful
classification ability. Notably, our method also surpasses its direct ablation, Ours
(mean), highlighting the critical role of the learned attention mechanism.

To further analyze the performance, Fig. 3 presents the confusion matrices for
the baseline Siamese network and our proposed method. Our model demonstrates
a visibly stronger diagonal, indicating higher sensitivity for KL grades. The
improvement is particularly pronounced for the more advanced and less frequent
grades (KL3 and KL4), where the baseline model struggles more. This, combined
with the quantitative superiority of the attention model over the mean-pooling
ablation, confirms that our framework effectively works in accurate OA grading.

3.4 Qualitative Analysis of Model Explanations

To validate that the improved performance of our model is due to learning clin-
ically relevant features, we visualize its reasoning using our proposed attention-
weighted saliency map. Specifically, for each patch, we generate the e-CAM by
averaging the normalized heatmaps from five diverse methods in the pytorch-
grad-cam library [10]: GradCAM [19], GradCAM++ [5], ScoreCAM [23], Layer-
CAM [13], and AblationCAM [18]. This ensemble leverages the complementary
strengths of each method; for example, LayerCAM provides higher spatial res-
olution by integrating activations from multiple layers, while AblationCAM is
less sensitive to gradient saturation issues, often yielding more complete object
localization. These pixel-level e-CAMs provide the local explanations that are
subsequently aggregated using the MIL attention weights.
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Fig. 3. [Reduced Confusion] Normalized confusion matrices for the baseline
from Tiulpin et al. [21] (a) and our proposed method (b). Values are normalized
by row to represent class-wise sensitivity. Our model shows improved performance,
especially for advanced OA (KL3, KL4), with reduced off-diagonal confusion.

Fig. 4 presents a qualitative, case-by-case comparison between the expla-
nations from the baseline model [21] and our method across all five KL grades,
with OARSI features [1] from OAI dataset as ground truth. A consistent pattern
emerges: the heatmaps of baseline model are often diffuse, correctly identifying
the affected knee side but lacking the precision to pinpoint specific pathologies.
In contrast, the saliency maps of our model are remarkably focused, highlighting
distinct anatomical and pathological features. A detailed analysis follows:

– KL0 (Healthy): While the baseline model shows broad, symmetrical heatmap,
the heatmap of our model precisely inspects the joint space and the medial
and lateral tibial tubercles. This suggests that our model performs a com-
prehensive check of all key regions before correctly concluding there are no
significant OA features.

– KL1 (Mild): The ground truth indicates medial JSN of grade 1. The baseline
model produces a diffuse heatmap in this region. The heatmap of our model
is not only more focused on the medial joint space but also highlights the
medial tibial tubercle. This aligns with findings that associate tibial spiking
with knee OA [17]. Our model appears to have learned that irregularities in
this area, including early osteophytes or tibial spiking, are key indicators of
knee OA.

– KL2 (Minimal): The ground truth identifies osteophytes in both medial and
lateral tibia and medial JSN. The baseline heatmap is again diffuse. Our
heatmap, however, produces sharp, distinct focuses on the medial tibial os-
teophyte and correctly inspects the lateral side for osteophyte formation.
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original

KL0 KL1 KL2 KL3 KL4

Tiulpin

ours

Fig. 4. [Improved Explainability] Qualitative comparison of model explana-
tions across KL grades. Top row:original radiographs for knees with KL grades
0 through 4. Middle row: saliency maps from the baseline model by Tiulpin et al.
[21], which are often diffuse. Bottom row: the attention-weighted saliency maps from
our proposed method. Our model explanations are notably more precise, accurately
localizing key pathological features such as small osteophytes in early OA (KL1-2) and
severe JSN in advanced OA (KL3-4).

This demonstrates a more precise focus on the key features defining this
grade.

– KL3 (Moderate): For this case with multiple osteophytes and moderate me-
dial JSN, our model explanation generates a strong, focused heatmap over
the narrowed medial joint space and the corresponding osteophytes, whereas
the baseline heatmap remains broad and less specific.

– KL4 (Severe): In this example of severe lateral side OA, our model perfectly
outlines the narrowed joint space and adjacent osteophytes. This stands in
contrast to the unfocused heatmap of baseline, which spills into the back-
ground and fails to capture the precise pathological features.

In summary, the visualizations confirm that our anatomy-guided framework
learns to identify specific, clinically meaningful features beyond what was possi-
ble with the heuristic defined patch baseline. The consistent focus on the tibial
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tubercles, an indicator of OA [17], is a novel finding enabled by our anatomy-
guided framework. This ability to produce precise and trustworthy explanations
for its superior performance is a critical step toward the clinical adoption of
automated OA grading systems.

4 Conclusions

This paper introduces an anatomy-guided framework for automated knee os-
teoarthritis grading. The core of this work is the use of anatomically-focused
patches, extracted from bone contours, to direct a multiple instance learning
model attention to clinically relevant regions.

This approach achieves promising classification performance on the OAI
dataset, reaching a quadratic weighted Cohen’s Kappa of 0.807. This result sur-
passes larger baselines like ResNet-34, while requiring over 85 times fewer pa-
rameters (0.25M vs. 21.3M). The efficiency of our model, coupled with its high
accuracy, is complemented by its explainability. The attention-weighted saliency
maps precisely localize key pathological features such as osteophytes, joint space
narrowing and tibial tubercles, confirming that the model learns clinically valid
representations.

The small size of our model makes it potentially deployable on resource-
constrained hardware, suitable for point-of-care applications. A current depen-
dency of the framework is the initial, accurate detection of bone contours. Future
work could thus focus on enhancing the robustness of this anatomical local-
ization step. More broadly, the principles of this anatomy-guided, patch-based
framework are not limited to knee OA. This methodology could be extended to
other medical imaging tasks where diagnosis relies on localized features within
a broader anatomical context, such as grading pathologies in dental radiographs
or identifying abnormalities in soft-tissue imaging. This work therefore presents
a new direction for creating more accurate, efficient, and trustworthy diagnostic
models by directly embedding anatomical information into the learning process.
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