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Abstract. Accurate matching of cortical surfaces is necessary in many neu-
roscience applications. In this context diffeomorphisms are often sought, be-
cause they facilitate further statistical analysis and atlas building. Present
methods for computing diffeomorphisms are based on optimizing flows or on
inflating surfaces to a common template, but they are often computationally
expensive. It typically takes several hours on a conventional desktop com-
puter to match a single pair of cortical surfaces having a few hundred thou-
sand vertices. We propose a very fast alternative based on an application of
spectral graph theory on a novel association graph. Our symmetric approach
can generate a diffeomorphic correspondence map within a few minutes on
high-resolution meshes while avoiding the sign and multiplicity ambiguities
of conventional spectral matching methods. The eigenfunctions are shared
between surfaces and provide a smooth parameterization of surfaces. These
properties are exploited to compute differentials on highly folded cortical
surfaces. Diffeomorphisms can thus be verified and invalid surface folding
detected. Our method is demonstrated to attain a vertex accuracy that is
at least as good as that of FreeSurfer and Spherical Demons but in only a
fraction of their processing time. As a practical experiment, we construct an
unbiased atlas of cortical surfaces with a speed several orders of magnitude
faster than current methods.

1 Introduction

The cerebral cortex is the center of many important functional activities, includ-
ing vision and perception, and these are often studied by establishing properties
which hold across a large population. These studies thus require fast and accurate
algorithms for cortical surface matching are often sought. Early approaches based
on volumetric comparisons [1] ignore the complex geometry of cortical folds, and
therefore, produce misaligned cortical areas [2]. Recent surface-based approaches
either optimize flows on surfaces [3–5] or inflate cortical surfaces to a spherical tem-
plate [6–8]. Methods that “flow” surfaces into one another, such as LDDMM [9]
and Currents [10, 11], provide an elegant mathematical framework that guarantees
diffeomorphic deformations between surfaces, i.e., they provide smooth and invert-
ible correspondence maps. However, these methods are computationally expensive
and typically require several hours on a conventional desktop computer to process
meshes containing a few thousand vertices. On the other hand, spherical methods,
such as FreeSurfer [6] and Spherical Demons [8], establish correspondences on sim-
plified spherical models of the cortex. They handle the complexity of the cortical
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folds by exploiting metrics that are derived from the original surfaces, such as sulcal
depth and mean curvature. Unfortunately, in these approaches, the surfaces need to
be inflated to spheres via an expensive process [12]. They too require a few hours to
process high-resolution meshes. Current methods may therefore be computationally
prohibitive for neuro-studies that involve several thousands of individuals.

Spectral graph theory [13] offers a fast alternative where surfaces containing sev-
eral hundred thousand vertices can be matched within minutes on a conventional
computer [14, 15]. Spectral methods facilitate the correspondence problem by match-
ing shapes in the spectral domain. Their spectral representations are in fact invariant
to isometry, i.e., two shapes with identical geodesic distances between points have
identical spectral representations. However, perturbations in shape isometry, such as
expansion and compression of surfaces, change these spectral representations, and
thus, alter the matching accuracy. This has limited the use of spectral methods in
matching coarse hierarchical structures [16] or in defining global metrics for shape
analysis [17]. Previous work attempted to correct these spectral representations with
rigid [18] and nonrigid transformations [19, 14, 15]. In addition, a vertex accuracy of
up to 88% of FreeSurfer’s performance is achieved in [14] by embedding additional
information, such as sulcal depth, in extra dimensions to the spectral representations.
However, these extended representations may no longer be smooth and, consequently,
the correspondence maps are not guaranteed to be diffeomorphic.

This paper proposes a new accurate surface matching approach that retains the
speed advantage of spectral matching methods while guaranteeing diffeomorphic
correspondence maps between cortical models of several hundred thousand vertices.
Our method exploits a novel association graph that is formed with two meshes and
a preliminary correspondence map generated from conventional spectral matching.
The spectral decomposition of this unique association graph creates a shared set of
eigenvectors that enables a direct comparison between meshes. This contrasts with
the conventional spectral methods that produce two separate sets of eigenvectors, and
thus, need to handle ambiguities inherent to the sign and multiplicity of eigenvectors,
as well as perturbations in isometry. Additionally, the eigenvectors computed with
our method provide a smooth parameterization of surfaces. We exploit this property
to compute differentials on highly curved cortical surfaces. More precisely, we define
a novel Jacobian operator on surfaces to verify diffeomorphisms of correspondence
maps and to detect invalid folding of surfaces. Our new diffeomorphic method is
demonstrated to produce, in only 350 seconds on a conventional laptop computer
(2.53GHz Intel Core 2 Duo), a vertex accuracy that is at least as good as that of
FreeSurfer and Spherical Demons. We finally show that our method can be used
to construct accurate and unbiased atlases with a significant speed advantage over
current competing methods.

2 Spectral Matching

We begin by reviewing the basic concepts for matching two shapes with spectral
methods.
Graph Laplacian – Let us build the graph G = {V ,E } from the set of vertices
(with position x) and edges of a surface model S. We may define the |V | × |V |
weighted adjacency matrix W in terms of node affinities, e.g., wij = ‖xi − xj‖

−2
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Fig. 1. Spectral matching – Correspondences are made using spectral representations of
surfaces (built with Laplacian eigenmodes). To aid visualization, equivalent points have a
unique color on the above surfaces (rgb = u(1,2,3)).

if ∃ eij ∈ E (the inverse distance between neighboring points) or 0 otherwise. The
diagonal node degree matrix D is the sum of all point affinities di =

∑

jWij . The

general Laplacian operator on a graph was formulated in [20] as a |V | × |V | matrix
with the form L = G−1 (D −W ) where G is the diagonal node weighting matrix
(G = I, G = D or any meaningful node weighting). It was found [14, 15] that setting
higher weights on gyral points produces better cortical matchings, e.g., the node
weighting, gi = exp(−hi), is the exponential of the sulcal depth hi (computed with
FreeSurfer) at point i.

Spectral Coordinates – The spectral decomposition of the graph Laplacian L =
UΛU−1 provides the eigenvalues Λ = diag(λ0, λ1, . . . , λ|V |) and the associated eigen-

vectors U =
(

u(0), u(1), . . . , u(|V |)
)

, where u(·) is a column of U . The values of u(·)

depict in fact a vibration mode of the shape S, which is a surface function, [13], and
thus, the term eigenmode is used. These eigenmodes must be additionally corrected
for their sign ambiguity, multiplicity, and perturbation in isometry (see [14, 15] for
more details). We denote as the spectral representation, spec(S), a k-dimensional em-
bedding of the shape S where a point has the spectral coordinates defined as u(1,...,k),
which is a row of the truncated matrix Uk.

Spectral Matching with Vertex Accuracy – The correspondence problem is to
match a point xi on S1, with yc(i) on S2. The map c : xi 7→ yc(i) (also denoted here
as S1 7→ S2 ◦ c) is established with pairs of closest points (u, v) between spectral
representations spec(S1) and spec(S2), as illustrated in Fig. 1. However, in order to
achieve vertex accuracy in cortical surface matching, [14, 15] proposed to incorporate
extra information, such as sulcal depth h, in extended spectral representations where
point coordinates are then (u, h). The map c(i) = argminj ‖(ui, hi)S1

− (uj , hj)S2
‖2

is solved with a simple nearest-neighbor search between these extended representa-
tions. Unfortunately, this incorporation of extra information creates discontinuities
in the correspondence map in the sense that neighbors in space may no longer be
neighbors in the extended spectral representations.

3 Diffeomorphic Spectral Matching

We now show that the spectral decomposition of a novel associative graph provides
the ability to compute diffeomorphic maps between two surfaces.
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Fig. 2. Correspondence Graph – Left : Conventional spectral matching decomposes 2 inde-
pendent graphs (built from 2 surfaces) – Right : Our approach decomposes 1 correspondence
graph (built from one volumetric entity formed with the surfaces and a map c between
them). Note that in our approach eigenmodes (u, v) do match without the explicit handling
of their sign flips, reordering or changes in isometry. They are smooth even if c is irregular
(shown here with many-to-one and crossing links c).

3.1 Correspondence Graph

We define the correspondence graph Gc = {V1,2,E1,2,c} as the union of the set of
vertices and edges of two surfaces S1,2 with an initial set of correspondence links c
between both surfaces. The initial map c, not necessarily dense, may be computed
with a conventional spectral matching methods. We used [14] since it is optimized for
cortical matching. This correspondence graph is a 2-split graph, where each surface
is a separable set, and has its |V1 ∪ V2| × |V1 ∪ V2| weighted adjacency matrix in the
form:

Wc =

[

W1 W12

W21 W2

]

, (1)

where W1 and W2 are the weighted adjacency matrices of both surfaces and W12,
W21 are the weighted adjacency matrices defined by the links c between surfaces,
i.e., wij = ‖xi − xj‖

−2 if nodes (i, j) or (j, i) are connected. The graph Laplacian
operator Lc of Gc is defined as previously. Such a graph is illustrated in Fig. 2 where
surfaces have been simplified to small patches to ease illustration.

Shared Parameterization – The graph Gc embeds both surfaces within one single
entity Sc, which is a double layered graph that represents two cortical surfaces in-
terconnected with c. The spectral decomposition, Lc = UcΛcU

−1
c , therefore provides

one orthonormal basis of the whole entity Sc. This contrasts with conventional spec-
tral matching methods that produce two independent sets of eigenmodes. Moreover,

each eigenmode u
(·)
c , a |V1 ∪ V2| column vector of Uc, is separable back into two

functions: u(·), the first |V1| values of u
(·)
c , is a surface function on S1, and v

(·), which

is the last |V2| values of u
(·)
c , is a surface function on S2 (illustrated in Fig. 3). They

share in fact the same eigenvalue and represent the same vibration mode. There is
therefore no need to correct for a sign flip between u(·) and v(·), nor to reorder the
set of eigenmodes or correct for perturbations in isometry since the surface functions
u(·) and v(·) are derived from the same single entity and not from two independent
surfaces.
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Fig. 3. Spectral Decomposition of the Correspondence Graph – One graph is decomposed
(rather than two as in conventional methods). This produces a smooth and shared param-
eterization (u, v) (color-coded between [−1,+1]) between surfaces. This prevents handling
sign flips, reordering and corrections in isometry of (u, v). The principal eigenmodes are
shown on smoothed meshes to aid visualization.

Smooth Parameterization – Courant’s nodal line theorem [21–23] demonstrates
that any nth eigenmode of the graph Laplacian has the remarkable property of being
smooth and monotonous between at most n poles of vibrations. This phenomenon is
observed on Fig. 3 where u(1) and u(2) have two poles (red and blue spots), u(3) has
three poles, u(4) has four poles, and so on.

Since Sc always remains one single double-layered entity, the function u(·) varies
smoothly within the global shape formed by Sc (as illustrated in Fig. 2 right, both
u(1) and v(1) always increase smoothly in the same direction even if c has crossing
links). The coordinate system formed by u(1,...,k) and v(1,...,k) provides, therefore, a
smooth parameterization within the entity Sc and is shared between surfaces S1,2.

Differentiable Space – We further consider each eigenmode u(·) as continuous
and differentiable between the discrete values at the mesh nodes. This is motivated
by the fact that the graph Laplacian approximates the Laplace-Beltrami operator
on Riemannian manifolds [24]. Since the mesh nodes associate a smooth spectral
coordinate with a position in space, u 7→ x on S1 and v 7→ y on S2, it is possible
to model the positions of points on S1 and S2 that have equal spectral coordinates,
using any type of differentiable interpolation. We chose the Gaussian kernel for its
regularity (differentiable in C∞) and asymptotic behavior [25]. For instance, the
node i on S1 has its equivalent point on S2 with position:

y′i =

∑

j∈Nψ(i)
ωijyj

∑

j∈Nψ(i)
ωij

, (2)

where Nψ(i) is the set of neighboring nodes of ψ(i) on S2; ψ(i) is the node on S2

with the closest spectral coordinate to ui (the mapping ψ is found as previously

with a nearest-neighbor search ψ(i) = argminj ‖ui − vj‖
2
); and ωij is the spectral

similarity, e.g, ωij = exp
(

−‖vi − vj‖
2/2σ2

)

. This simple modeling scheme creates a

k-D differentiable space Sk between S1 and S2.

Diffeomorphic Mapping – The differentiable space Sk allows us to establish sym-
metric correspondences between surfaces by locating points on S1 and S2 that have
equal spectral coordinates, φ1 7→2 : xi 7→ y′i using Eq. 2 and conversely φ2 7→1 : yj 7→ x′j .
Such a mapping prevents an invalid folding of space (crossing of links is avoided since
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Sk is monotonous between poles of vibration) as well as the collapse of space (many-
to-one correspondences are prevented since equivalent points (xi, y

′
i) have unique

spectral coordinates). The mapping φ between S1,2 is consequently diffeomorphic (φ
is smooth, bijective, and invertible φ−1

1 7→2 = φ2 7→1).
Jabocian Operator on Surfaces – The continuous spectral parameterization (u, v)
may be used to compute differentials on the curved space defined by S1,2. We express
the correspondence map φ in terms of (u, v) with φu : ui 7→ v′i and define its Jacobian

matrix as J(φu) =
(

∂φ
u(1)

∂u(1) · · ·
∂φ

u(1)

∂u(k) ; · · · ;
∂φ

u(k)

∂u(1) · · ·
∂φ

u(k)

∂u(k)

)

where ∂φ
u
(·)
i

and ∂u
(·)
i

are estimated in the neighborhood Ni using Taylor series approximation for central
differences. Its determinant is simply denoted as the Jacobian |J |. To illustrate, two
equivalent surface elements on S1,2 may appear flipped in space, and thus, generate a
negative Jacobian |J(φ)| when it is expressed in Cartesian coordinates, while in fact,
these vectors may have been always pointing outwards from the surface. Expressing
the variations in the spectral coordinates generates in this case a positive Jacobian
|J(φu)|. We, therefore, propose to study the variations of a surface map φ using the
Jacobian matrix J(φu) expressed in terms of spectral coordinates (u, v).
Objective Function – The initial map c is generated using [14], which minimizes
Ec = (uS1 −uS2◦c)

2+(hS1 −hS2◦c)
2. To summarize our method, c is reused to build

the correspondence graph Gc, whose spectral decomposition creates a differentiable
parameterization (u, v)Sc in spec(Sc). A symmetric and diffeomorphic map φ is then
found by minimizing Eφ = (uSc − vSc ◦ φ)

2 via simple nearest-neighbor searches.

3.2 Unbiased Atlas Construction

The computation of an average shape typically relies on an iterative evolution of
an initial reference shape [26, 27, 27]. This process may, however, be biased by the
choice of the initial reference [28]. We define the average cortical surface S0 as the
geometric mean of all surfaces in a dataset S . The position of its vertices is defined

with x̄i =
1

|S |

∑

t∈S
x
′(t)
i , where x

′(t)
i is the interpolated position of point i on surface

St, computed with Eq. 2. This requires the computation of mappings {φ0 7→t}t∈S , as
well as an initial reference surface Sinit

0 .
Transitivity – Since φ is diffeomorphic, it is also transitive [29]. The composition
of mappings φs 7→t ◦ φt 7→u, from Ss to St to Su, is therefore identical to the mapping
φs 7→u, from Ss to Su. This transitive relation implies that the mapping from the
initial reference φ0 7→t is equivalent to the composition with any other intermediate
mapping, φ0 7→t = φ0 7→s◦φs 7→t, and the average position x̄i is consequently unbiased to
the choice of Sinit

0 since the mapping φ0 7→t could be composed with any intermediate
surface Ss in the dataset. Our diffeomorphic spectral method, therefore, has the
advantage that it constructs an unbiased atlas with a direct, one-step, approach
(without the need for an iterative evolution of Sinit

0 [28]).

4 Results

We begin our validation by verifying the key properties of our method and then
assess its matching accuracy using synthetic and real cortical surfaces. Our dataset
consists of 16 real cortical surfaces ranging from 109k to 174k vertices with an average
resolution of 0.88mm, generated from MRI.
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Average overlap error (SSDu,v):  0.31 (±0.43) Average overlap error (SSDu,v):  0.01 (±0.01) 

Eigenmodes (u,v) from 2 separate surfaces 
(conventional approach) 

Eigenmodes (u,v) from 1 correspondence graph 
(our approach gives stable (u,v) ) 

Fig. 4. Shared Parameterization – Surfaces show eigenmodes (u(1), v(1)) color-coded be-
tween [−1,+1]. The eigenmodes computed on separate surfaces may not overlap on them
(left), whereas the spectral decomposition of 1 correspondence graph produces a common
set of eigenmodes (right). 3 samples out of 1000 are shown. Overlap errors are measured
with SSDu,v.

4.1 Verifying Properties of our Method

We verify through a series of simple experiments that our method produces a) a
shared parameterization between surfaces, b) diffeomorphic mappings from irregular
(i.e., non-smooth) correspondences, and c) mappings that maintain transitivity.
Shared Parameterization – We study the stability of eigenmodes on circular
shapes. Since these shapes have ambiguous axes of symmetry, spec(S1) and spec(S2)
should differ by an arbitrary rotation on disks. However, spec(Sc) should theoreti-
cally produce a shared set of eigenmodes (u, v) between surfaces. We use two uniform
meshes of a disk, whose node positions have been perturbed with Gaussian noise (this
perturbs isometry between disks). Their ground truth correspondence map is defined
as their direct overlap, c(i) = i. This mapping c is then perturbed with Gaussian
noise c′(i) = argminj ‖(yi + noise)− yj‖

2) (as shown in Fig. 4). Firstly, we generate
u = spec(S1) and v = spec(S2) for both disks. This is the conventional spectral
matching approach. Secondly, we generate (u, v) = spec(Sc) using the correspon-
dence graph formed by c′. We repeat the experiment a thousand times and measure
the overlap SSDu,v =

∑

i∈S1
‖ui−vi‖

2. As expected, (u, v) rotates arbitrarily on the
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Fig. 5. Diffeomorphic Mapping — An arbitrary and randomly perturbed correspondence
map c (seen in the sliced views) folds over triangles on a sphere (blue indicates a face
normal pointing inward), whereas the diffeomorphic map generated from c (by decomposing
Gc) recovers the original correspondences c and guarantees no folding of space by φ. The
mapping φ is therefore diffeomorphic since (u, v) is smooth and bijective between surfaces.
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Fig. 6. Transitive Mapping – The average distance error between 4,096 (163) composed
surfaces S1 ◦ φ1 7→2 ◦ φ2 7→3 and S1 ◦ φ1 7→3. FreeSurfer and the Spherical Demons have an
error below the mesh resolution (0.88mm). The non-diffeomorphic spectral matching fails
to achieve transitivity since it does not generate diffeomorphic maps. The new diffeomorphic
spectral matching demonstrates transitivity with an error of 0.00292(±0.00432) mm.

disks when they are computed separately. The worst overlap among the thousand
samples gives SSDu,v = 0.95. In contrast, (u, v) demonstrate a better overlap when
decomposing the correspondence graph. The worst overlap, at SSDu,v = 0.05, actu-
ally still produces aligned eigenmodes (Fig. 4). The decomposition of a correspon-
dence graph is therefore demonstrated to generate a stable set (u, v) of eigenmodes
that is in common between surfaces.

Diffeomorphic Mapping – We now verify the smoothness of correspondence maps
by testing for folding of the triangulation between S1 and S2 ◦φ. We use two uniform
models S1,2 of a sphere and rotate them arbitrarily. The face normals on both models
are all initially pointing outward. We use the direct mapping c(i) = i between S1,2

as ground truth. We randomly perturb it as in the previous experiment (see slice
view in Fig. 5). A discontinuity in c′ is detected with a triangle fold-over (we check
if a face normal points inward from the sphere). We generate a diffeomorphic map
φ by decomposing the correspondence graph formed with c′ and check if any face
normal points inward. We repeat the experiment a thousand times with random per-
turbation of c and random rotations of spheres. Each time, φ is found to be identical
to c (a one-to-one map) and no triangle fold-over is observed across the experiment
(smooth map). The map φ produced by our method is, therefore, demonstrated to
be diffeomorphic (smooth and bijective).

Transitive Mapping – We check for transitivity of our correspondence maps using
real cortical surfaces. We first compute all 256 correspondence maps φ between all
pairs of cortical surfaces with four methods: FreeSurfer (FS) [6], Spherical Demons
(SD) [8], Spectral Matching (SM) [14], and our diffeomorphic spectral matching.
We then generate pairs of surfaces S1 ◦ φ1 7→2 ◦ φ2 7→3 and S1 ◦ φ1 7→3 using all 4,096
(163) possible compositions φ1 7→2 ◦ φ2 7→3 (using Eq. 2 and compositions of vertex
indexing). We finally verify transitivity by measuring the distances between equiv-
alent points (x, y) on composed surfaces, sqrt

(
∑

i∈S1
‖xφ1 7→2◦φ2 7→3(i) − yφ1 7→2 7→3(i)‖

2
)

(Fig. 6). The non-diffeomorphic SM did not satisfy transitivity with an error of
4.54 mm, i.e., S1 7→2 7→3 6= S1 7→3. FS and SD demonstrated transitivity with errors of
0.43mm, 0.36mm (below the mesh resolution of 0.88mm) while our method produced
a lower error of 0.003mm, i.e., S1 7→2 7→3 ≈ S1 7→3.
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Fig. 7. Robustness to Deformation – We monitor the correspondence error between two
meshes while increasing the deformation strength. The errors at maximal deformation (in
mm) and the Jacobian of the correspondence map are shown. Our diffeomorphic spectral
matching produces smaller errors and smoother correspondence maps.

4.2 Validating Correspondence Maps

We now assess the matching accuracy by testing for robustness to deformation and
we compare our method with FreeSurfer and Spherical Demons.
Robustness to Deformation – The matching accuracy is evaluated in this syn-
thetic experiment by monitoring the difference between the computed map φ and
the ground truth c(i) = i, while increasing the level of deformation of the surface.
A surface is deformed with the transformation z′ = (1 − α)z. This simulated head
compression creates a controlled environment that does not produce any triangle
fold-over, nor any intersecting face. We deform all 16 cortical surfaces by varying
α ∈ [0; 0.5] and observe the differences between conventional spectral matching [14]
and our diffeomorphic method. At maximal deformation α = 0.5, SM gives an av-
erage error of 0.58mm (±1.68) while our method gives an error of 0.29mm (±0.08).
The Jacobian |J(φu)| is strikingly different in both methods (Fig. 7): SM produces
negative Jacobians (non-smooth map, breaking diffeomorphism) with an average
|J(φu)| = 1.01(±1.38), while our method gives strictly positive Jacobian (i.e., al-
ways diffeomorphic) with |J(φu)| = 1.00(±0.08).
Benchmark with FreeSurfer and Spherical Demons – A ground truth map-
ping between real cortical surfaces is unfortunately unknown. However, the widely
used FreeSurfer and Spherical Demons methods, can be used as a benchmark for
evaluating the matching accuracy of our method. Our dataset has for all surfaces a
labeling of cortical parcellations [30]. We verify how our method aligns these par-
cellations between individuals and compare these overlaps with the performance of
FS, SD and SM. We measure the Dice overlap (2|A ∩ B|/(|A| + |B|)) for 12 major
parcellations between all 256 pairs of cortices (Fig. 8) and found an average Dice
overlap of 0.84 (±0.08) for FS (one matching took 3 hours), 0.85 (±0.07) for SD
(one matching took 2 hours), 0.82 (±0.08) for SM (one matching took 250 seconds),
and 0.83 (±0.08) for our method (one matching took 350 seconds). Timing was mea-
sured on a 2.53GHz Core 2 Duo laptop with 8GB of RAM. The matching accuracy
of spectral methods is arguably similar, achieving 99% accuracy of FS and SD, but
they have a clear speed advantage. Clearly, conventional SM produces highly irregu-
lar, or non-smooth, maps with an average Jacobian of |J(φu)| = 1.61(±1.00). This is
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Fig. 8. Accuracy of Parcellation Alignments – Bar plot on Top: Average accuracy of 256
alignments of cortical parcellations (measured with Dice Index), using FreeSurfer (dark
blue), Spherical Demons (light blue), Spectral Matching (yellow), and our Diffeomorphic
Spectral Matching (red) – Middle: One example showing the alignment of 12 major par-
cellations (light blue for first cortex, light red for projected second cortex) – Bottom: De-
terminant of Jacobian (conventional spectral matching produces non-smooth maps). Our
method yields similar accuracy than the state-of-the-art but in a fraction of its time.

observed as holes and island patches in the projected parcels in Fig. 8. Our method
has the notable advantage of producing diffeomorphic maps with strictly positive
and smooth |J(φu)| = 1.00(±0.12).

4.3 Building Unbiased Atlases

We conclude by building atlases of cortical surfaces and verify that their constructions
are unbiased to an initial reference. To do so, an arbitrary initial reference is first
defined as one of the cortical surfaces in the dataset, e.g., Sinit

0 = S1. All surfaces are
then matched to this reference and the atlas is built using the average position x̄ of
all mapped points as described in Sec. 3.2. We build 16 different atlases by iterating
Sinit
0 = Si. The bias to the initial reference is evaluated by measuring the average

standard deviation of the distances between equivalent points across all 16 different
atlases. This measures the variability of distances between atlas boundaries. We find
a boundary variability of 0.29mm (±0.07) for FS, 0.28mm (±0.08) for SD, 1.96mm
(±0.81) for SM, and 0.0014mm (±0.0009) for our method. Fig. 9 shows the contour
overlays of all 16 atlases and shows that our method produces stable atlases that are
unbiased to the choice of initial reference, i.e., they all overlap.
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FreeSurfer 
Average dist. error: 0.29 mm 

(±0.068, max 1.10 mm) 

Spherical Demons 
Average dist. error: 0.28 mm 

(±0.075, max 0.97 mm) 

Spectral Matching 
Average dist. error: 1.96 mm 

(±0.811, max 5.83 mm) 

Diffeomorphic Spectral Matching 
Average dist. error: 0.0014 mm 

(±0.00094, max 0.021 mm) 

Fig. 9. Unbiased Atlas Construction – Overlap of 16 average shapes computed from 16
different initial references using FS, SD, SM, and our method. To aid visualization, surface
contours are of the same slice. Our method produces average shapes that are unbiased to
the initial reference (all contours overlap with a variability of 0.001mm).

5 Conclusion

Our method contributes to the challenging problem of cortical matching. First, we
enhanced current spectral approaches to achieve diffeomorphism, and second, we
provided a very fast algorithm that has a vertex accuracy comparable to FreeSurfer
and Spherical Demons, in fact, 20 times faster with equivalent accuracy. Besides the
clear speed advantage, we tackled the diffeomorphic matching problem with a direct,
one-step approach that fundamentally contrasts with current iterative solutions. Our
smooth and bijective correspondences are found via simple nearest-neighbor searches
in the spectral domain rather than with an optimization of flows or with an inflation
of surfaces to spheres. In fact, these current iterative approaches, including the LD-
DMM, could even reuse our diffeomorphic maps as initialization, and perhaps, gain
speed and accuracy. Our method currently relies on an initial correspondence map c.
We used the map generated from [14], which allowed us to obtain our high-accuracy
maps. Our spectral approach can also be regarded as an action that builds a diffeo-
morphic map φ from an irregular map c. In this context, it would be interesting to see
how our method performs with other maps. For instance, c could be built from fast
graph matching methods [31, 32] or even from manual pairing of surface landmarks.
Moreover, our approach may also be related to methods based on the heat kernel
[33], however, we do not exploit their multiscale properties. To conclude, our new
diffeomorphic spectral matching method provides a fast and accurate alternative to
current methods specialized for cortical matching.
Acknowledgments – The authors would like to thank Stanley Durrleman and BT
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