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Abstract

Domain Adaption tasks have recently attracted substantial attention in computer vision as they
improve the transferability of deep network models from a source to a target domain with different
characteristics. A large body of state-of-the-art domain-adaptation methods was developed for image
classification purposes, which may be inadequate for segmentation tasks. We propose to adapt segmen-
tation networks with a constrained formulation, which embeds domain-invariant prior knowledge about
the segmentation regions. Such knowledge may take the form of anatomical information, for instance,
structure size or shape, which can be known a priori or learned from the source samples via an auxiliary
task. Our general formulation imposes inequality constraints on the network predictions of unlabeled
or weakly labeled target samples, thereby matching implicitly the prediction statistics of the target and
source domains, with permitted uncertainty of prior knowledge. Furthermore, our inequality constraints
easily integrate weak annotations of the target data, such as image-level tags. We address the ensuing
constrained optimization problem with differentiable penalties, fully suited for conventional stochastic
gradient descent approaches. Unlike common two-step adversarial training, our formulation is based on a
single segmentation network, which simplifies adaptation, while improving training quality. Comparison
with state-of-the-art adaptation methods reveals considerably better performance of our model on two
challenging tasks. Particularly, it consistently yields a performance gain of 1-4% Dice across architectures
and datasets. Our results also show robustness to imprecision in the prior knowledge. The versatility of
our novel approach can be readily used in various segmentation problems, with code available publicly.

Index Terms: CNN, Deep learning, Domain Adaptation, Multi-modal imaging, Segmentation.

1 Introduction

Building accurate automatic image analysis systems is a key problem for many biomedical applications. In
recent years, Convolutional Neural Networks (CNN) have made a substantial impact and became the de-
facto choice in a breadth of computer vision and medical imaging tasks, including classification, detection,
semantic segmentation, [1, 2], achieving state-of-the-art or even human-level performances. Nonetheless,
CNN typically require a huge quantity of annotated data to perform well. This is especially the case for
semantic segmentation, an important first step of the diagnosis and treatment pipeline. To train CNNs
for segmentation, pixel or voxel-level annotations of large datasets are commonly used. In 3D medical
images, such voxel-level annotations are very cumbersome to obtain, as they require scarce expert knowledge.
This has led to many recent efforts, both in computer vision [3–5] and medical imaging [6–8], to develop
methodologies mitigating the lack of full annotations, such as semi- or weakly-supervised models [3, 9–11].

Typically, segmentation ground-truth is available for very limited data, and the performances of super-
vised models might drop significantly with new unlabeled samples (target data) that differ from the labeled
training samples (source data). These under-performances are a major drawback of standard deep learning

∗This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grant
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Figure 1: Visualization of severe domain shifts between source and target modalities in two applications. Top:
2 aligned spine images from Water and In-Phase MRI and the corresponding ground-truth segmentation,
with the intervertebral disks depicted in brown and the background in black. Bottom: 2 cardiac images from
MRI and CT, and their ground-truth segmentations. The cardiac structures of AA, LVC and and MYO are
depicted in blue, purple and brown, respectively.

techniques, which impedes their deployment in practical scenarios with domain shifts. In medical imaging,
such domain-shift scenarios occur frequently when acquisition machines come from different vendors and
clinical sites, or when images are acquired across multiple protocols, such as Computed Tomography (CT)
and Magnetic Resonance Imaging (MRI) modalities. Acquiring images across different modalities is often
very useful to capture different physical properties, which play complementary roles in the clinical procedures
for disease diagnosis and treatment. In Figure 1, the lower spine is shown across two distinct MRI modal-
ities (Water and In-Phase), and the heart across MRI and CT. In both cases, one can observe significant
differences in contrast, intensity histograms and demarcation between the structures in the two modalities.

Domain adaptation (DA) techniques aim at learning models robust to such distribution shifts. Early
deep-learning approaches for domain adaptation investigated minimizing a distance between the features
learned from the source and target domains, e.g., the Maximum Mean Discrepancy (MMD) work in [12],
thereby aligning the source and target distributions in the latent feature space. With the recent success
of generative adversarial networks (GANs) [13], adversarial learning has become the dominating choice for
domain adaptation [14–18].

Unlike adversarial methods, we introduce our Constrained Domain Adaptation to guide the network
learning with domain knowledge, e.g., anatomical or learned priors. By enforcing inequality constraints
on the network output in the target domain, our method enables to implicitly match prediction statistics
between source and target domains, without the burden of two-step adversarial training such as in GANs.
Moreover, based on inequality constraints, our framework allows uncertainty in the domain knowledge and
can therefore leverage weak labels of the target samples, for instance, in the form of image-level tags for
segmentation tasks.

1.1 Related work

Domain adaptation is currently attracting substantial research efforts, both in computer vision [14,19,20] and
medical imaging [21–24]. The first attempts to tackle domain shifts were proposed in the vision community,
for classification tasks [20,25]. When the labels are not available for the target domain, the problem is referred
to as unsupervised domain adaptation (UDA), and is often formulated as a domain-divergence minimization.
These methods rely on the minimization of a discrepancy between distributions, and can be performed at
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various levels. For instance, they could be deployed in the input space, transforming the images from the
source domain so that they look ‘’similar” to those from the target domain, or vice-versa. This approach
has enabled a new line of works in both computer vision [14–17] and medical imaging [18], but still remains
inadequate when the domain shift is too large, which may limit its broad applicability. Such a discrepancy
minimization could also operate on the representation learned by the CNN. This amounts to aligning the
intermediate features from both domains [22, 26–28], potentially helping the learned representation to be
both useful for classification and invariant with respect to domain shifts [29]. The most common discrepancy
minimization technique uses an adversarial formulation: a discriminator tries to distinguish between the
source and the target domain, while the classifier performs the original task of classifying images from both
domains.

Beyond image classification tasks, for which excellent performances were reported [20, 25], there is a
rapidly growing interest in adapting segmentation networks [19, 22, 30], as building pixel-level labels for
each new domain is even more tedious. A recent body of work extended domain adaptation ideas for the
segmentation of images from different domains [31]. Most of the studies adapting segmentation networks,
either for medical [22,32–35] or natural images [14,19,36,37] use adversarial training. The latter alternates
the training of two networks, one learning a discriminator between source and target features and the other
generating segmentations. However, the dimensionality of the learned features and the label space in a
segmentation task is much higher than in classification tasks. This might invalidate the assumption that the
source and target share the same representation at all the abstraction levels of a deep network. To address this
problem, Tsai et al. [19] proposed to minimize the discrepancy in the softmax-output space, outperforming
feature-matching techniques for unsupervised adaptation in the context of color image segmentation. The
underlying motivation is that the output space conveys domain-invariant information about segmentation
structures, for instance, shape and spatial layout, even when the inputs across domains are substantially
different.

Despite the clear benefits of adversarial techniques in DA for classification [20], our experiments suggest
that adversarial training may not be well suited to adapt segmentation networks. As pointed out in a few
recent work in computer vision [38, 39], learning a discriminator boundary between the source and target
domains is much more complex for segmentation, as it involves predictions in an exponentially large label
space. Instead, it has been shown that self-training [38], which generates masks of unlabeled target images
via the network’s own predictions and uses priors on the spatial layout of the segmentation regions, can yield
better performances. In an approach related to our work [38], but investigated for color images, the authors
showed that a curriculum learning strategy, which minimizes a Kullback–Leibler (KL) divergence between
image-level distributions, for instance, region proportions, can be more effective than adversarial techniques.
Finally, it is worth mentioning the recent classification study in [25], which argued that adversarial training
is not sufficient for high-capacity models, as is the case for segmentation. For deep architectures, the authors
of [25] showed experimentally that jointly minimizing source generalization error and feature divergence does
not yield high accuracy on the target task.

Our study draws upon several recent weakly- and semi-supervised segmentation work [7, 8, 11, 40–42],
which imposed regularization or prior-knowledge terms on the predictions of deep networks, leveraging
unlabeled or weakly labeled data. For instance, the work in [11,41] showed that regularization losses, in the
form of a dense conditional random field (CRF) or a balanced graph clustering loss, can achieve excellent
segmentation results using only a small fraction of labeled pixels, approaching full-supervision performances
in the context of colour images. Along this same vein of research, the work in [7, 8] incorporated priors on
the sizes of the segmentation regions via additional loss functions. In this weakly or semi-supervised setting,
the main assumption is that the unlabeled data is assumed to be drawn from the same distribution as the
labeled data (i.e., there are no domain shifts), which makes the task less challenging than unsupervised or
weakly supervised domain adaptation.

1.2 Contributions

We propose a general Constrained Domain Adaptation (CDA) formulation for semantic segmentation, which
embeds domain-invariant prior knowledge about the segmentation regions. In medical imaging, such knowl-
edge may take the form of simple anatomical information, for instance, structure size or shape, which can
be either known a priori or learned from the source samples via an auxiliary task. Our general formulation
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Figure 2: (Left) Pipeline of the proposed CDA framework. The prior knowledge can be learned and predicted
with an auxiliary regression network. (Right) The training process of the auxiliary regression network.

imposes inequality constraints on the network predictions of unlabeled or weakly labeled target samples,
thereby matching implicitly the prediction statistics of the target and source domains, with permitted un-
certainty of prior knowledge. Furthermore, our inequality constraints enable to leverage weak annotations
of the target data, for instance, in the form of simple image-level tags. We address the ensuing constrained
optimization problem with differentiable penalties, fully suited for conventional stochastic gradient descent
approaches. Unlike current two-step adversarial training methods, our formulation is based on a single seg-
mentation network, which simplifies adaptation by avoiding extra adversarial steps, while improving training
quality.

We report comprehensive evaluations and comparisons on two public segmentation challenges: the
intervertebral-disc MICCAI IVD 2018 and the cardiac substructure segmentation MMWHS 2017 challenge.
For the adaptation of a segmentation network from one modality to another, our proposed inequality-
constrained formulation yielded significant improvements over the state-of-the-art adversarial domain adap-
tation method in [19]. Moreover, CDA is much faster than adversarial techniques, as the constraints can be
learned offline, while the adaptation phase only requires the training of a single segmentation network. The
benchmark provided by [43] shows that our formulation outperforms all state-of-the art adversarial methods
on the cardiac dataset, including the one proposed in [43]. We further provide a comprehensive experimental
analysis of CDA, which confirms its robustness to imprecision in the prior-knowledge information. First,
we showed that prior knowledge at the image level, for instance, region size, can be learned and estimated
via an auxiliary network.Second, we showed that region size could also be estimated from statistics from
the source domain, approaching textbook anatomical knowledge. While these estimations are uncertain, we
obtained very competitive results of our segmentation network constrained with such priors. Indeed, our
method outperforms the recent curriculum adaptation method in [38], which does not allow uncertainty in
the prior knowledge, in both applications. In addition to our contributions, our code is publicly available1.

A preliminary conference version of this work appeared at MICCAI 2019 [44]. This journal version
provides (1) a broader treatment of the subject with a more detailed description of the method; (2) a
new application, the adaptation of cardiac substructure segmentation between MRI and CT images (3) new
ablation studies that demonstrate the practical usefulness and robustness of CDA with respect to uncertainty
in the prior knowledge, as well as its application to a weak-supervision setting. In particular, we performed
comprehensive evaluations for the more realistic and broader setting where prior constraints about the target
region are not known/precise, but rather estimated via (a) an auxiliary network, and (b) derived from source
statistics, with substantial imprecision.

2 Methodology

2.1 The proposed Constrained Domain Adaptation

Let us denote Is : Ωs ⊂ R2,3 → R, s = 1, . . . , S, as the training images of the source domain, each of them
having a corresponding ground-truth segmentation, which, for each pixel (or voxel) i ∈ Ωs, takes the form of

1https://github.com/mathilde-b/CDA
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binary simplex vector ys(i) = (y1
s(i), . . . , yKs (i)) ∈ {0, 1}K , with K the number of classes, or segmentation

regions. If we now consider T images from the target domain, It : Ωt ⊂ R2,3 → R, t = 1, . . . , T , we can state
domain adaptation for segmentation as the following constrained optimization problem with respect to the
network parameters θ:

min
θ

∑
s

∑
i∈Ωs

L(ys(i),ps(i, θ))

s.t. fc(Pt(θ)) ≤ 0 c = 1, . . . , C; t = 1, . . . , T

(1)

where px(i, θ) = (p1
x(i, θ), . . . , pKx (i, θ)) ∈ [0, 1]K is the softmax output of the network at pixel/voxel i in

image x ∈ {t = 1, . . . , T} ∪ {s = 1, . . . , S}, and Px(θ) is a K × |Ωx| matrix whose columns are the vectors
of network outputs px(i, θ), i ∈ Ωx. In problem (1), L is a standard supervised-learning loss defined solely
over the source data (both images and ground-truth masks), e.g., the cross-entropy:

L(ys(i),ps(i, θ)) = −
∑
k

yks (i) log pks(i, θ) (2)

fc denote the functions that embed constraints on unlabeled or weakly-labeled target-domain images.
Embedding prior knowledge via inequality constraints imposed on the network outputs for target-domain

data can be very practical. Assume, for instance, that we have prior knowledge about the size (or cardinality)
of the target segmentation region (or class) k. Inequality constraints allow imprecision (or uncertainty) in
this knowledge, in the form of lower and upper bounds on region size, unlike [8, 38, 45]. For instance, when
we have an upper bound a on the size of region k, we can impose the following inequality constraint on the
network outputs: ∑

i∈Ωt

pkt (i, θ)− a ≤ 0 (3)

In this case, the corresponding constraint c in the general-form constrained problem in Eq. (1) uses the
following particular function:

fc(Pt(θ)) =
∑
i∈Ωt

pkt (i, θ)− a (4)

Similarly, we can impose a lower bound b on the size of region k by using the following function instead:

fc(Pt(θ)) = b−
∑
i∈Ωt

pkt (i, θ) (5)

Our framework can be easily extended to more descriptive constraints, e.g., invariant shape moments [46],
which do not change from one modality to another2.

An advantage of our formulation is that it can easily integrate weak supervision taking the form of image-
level annotations, or tags, in the target domain. Such weak annotations indicate whether a segmentation
region k is present or absent in a given image and, therefore, are much less time consuming than full
supervision of segmentation, which requires a label for each pixel. Observe that image-level weak supervision
can be written conveniently with an inequality constraint in the case of a negative image that does not contain
target region k: ∑

i∈Ωt

pkt (i, θ) ≤ 0

Similarly, for a positive image containing the target region k, we can impose the following constraint:∑
i∈Ωt

pkt (i, θ) > 0

Imposing constraints is common in non-deep image analysis, as it allows to incorporate many types
of prior knowledge, such as geometry, context or texture, and has proven effective in many applications,
including medical image segmentation [46–48]. However, with non-convex deep segmentation models, even
when the constraints are convex with respect to the network probability outputs, the general problem

2In fact, region size is the 0-order shape moment; one can use higher-order shape moments for richer descriptions of shape.
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in (1) is challenging. In standard convex-optimization problems, a common technique to deal with hard
inequality constraints relies on the minimization of the corresponding Lagrangian dual, solving primal and
dual problems in an alternating scheme [49]. For the problem in (1), this would involve alternating the
optimization of a CNN for the primal with stochastic optimization, e.g., SGD, and projected gradient-ascent
iterates for the dual. For semantic segmentation networks involving millions of parameters, this might
be computationally intractable. Moreover, the interplay between the primal and dual optimization in the
context of deep CNNs might lead to instabilities, seriously affecting the performances of Lagrangian-dual
optimization. Therefore, and as pointed out in several recent works [7, 42, 50], despite the clear benefits of
imposing hard constraints on CNNs in various applications and problems, such a standard Lagrangian-dual
optimization is avoided in the context of modern deep networks.

Instead, in deep networks, equality or inequality constraints are typically handled in a ‘’soft” manner by
augmenting the loss with a penalty function [7, 8, 51]. The penalty-based approach is a simple alternative
to Lagrangian optimization, and is well-known in the general context of constrained optimization; see [49],
Chapter 4. In general, these penalty-based methods approximate a constrained minimization problem with
an unconstrained one by adding a term, which increases when the constraints are violated. A disadvantage
of the penalty-based approach is that, contrary to Lagrangian optimization, it does not guarantee that the
constraints will be satisfied. But it is convenient for deep networks because it removes the requirement
for explicit Lagrangian-dual optimization. The inequality constraints are fully integrated with stochastic
optimization, as in standard unconstrained losses. This optimization avoids gradient ascent projections over
the dual variables, and reduces the computational cost for training. Therefore, in this work, we use a penalty
approach, and replace the constrained problem in (1) by the following unconstrained one:

min
θ

∑
s

∑
i∈Ωs

L(ys(i),p(i, θ)) + γF(θ) (6)

where γ is a positive constant and F a penalty, which takes the following form for the inequality constraints
in (1):

F(θ) =

C∑
c=1

T∑
t=1

[fc(Pt(θ))]
2
+ (7)

with [x]+ = max(0, x) denoting the rectifier linear unit function. Clearly, when a constraint is violated, the
penalty function is strictly positive; the further we get from the constraint satisfaction boundary, the larger
the penalty. A satisfied constraint corresponds to a null cost.

2.2 Learning the constraints

An important question is how to best derive useful constraints for CDA. Depending on the application, such
priors may be obtained from domain or contextual knowledge, such as anatomical knowledge for medical
imaging. For instance, in the first application we tackle in our experiments, we can use human spine
measurements that are well known in the clinical literature [52] for constraining the sizes of the intervertebral
discs in axial MRI slices. When priors are invariant across domains, as is the case for the size of a segmentation
region, the statistics of the priors in the source domain can be used. Another option is to train an auxiliary
network to learn an estimation of the prior constraints. In our applications below, an auxiliary regression
network is trained on the images Is from the source domain S, where the ground truth size τs is known.
Then, the learned model is used to predict region-size constraints on the target images. Of course, this
might lead to errors in size-constraint predictions over the target images due to the domain shift between
the source images used for learning and the target images for inference. To help the regression network, one
can add the images It from the target domain, using the following ”fake” sizes labels for each structure k:

τt =

{
τ̄S if region k is within image t.

0 otherwise.
(8)

where τ̄S is the median of ground truth sizes for structure k in the source images Is. This corresponds to a
weakly-supervised setting, where the image-level tag information in the target domain is available. In our

6



experiments, the auxiliary regression network R with parameters θ̃ is trained to predict the segmentation-
region size τx, within an image x, with the following squared L2 loss:

min
θ̃

∑
x∈S∪T

(
R(x|θ̃)− τx

)2

(9)

As we will see in our experiments, our inequality-constraint formulation is robust to imprecision in the
prior-knowledge information. While the size prior learned and predicted via an auxiliary network is noisy
(uncertain), we obtained very competitive results of our segmentation network constrained with such a prior.
We recapitulate the proposed constrained domain adaptation pipeline in Figure 2.

3 Experiments and results

3.1 Experiments set-up

3.1.1 Dataset

IVDM3Seg The proposed CDA method is first evaluated on the dataset from the MICCAI 2018 IVDM3Seg
Challenge3, a study investigating intervertebral discs (IVD) degeneration. This dataset contains 16 3D multi-
modal magnetic resonance (MR) scans of the lower spine, with their corresponding manual segmentations.
The 8 subjects were scanned with a 1.5-Tesla MRI Scanner from Siemens using Dixon protocol, at two dif-
ferent stages. In our experiments, models are trained on fully annotated volumes from the Water modality
(source domain S), and validated on the In-Phase modality (target domain T ). In this setting, the differ-
ent MRI modalities are acquired from the same patient. To reproduce a more realistic scenario, we have
considered that the source and target images are not aligned. This contrasts with the experiments in [44],
where source and target images were registered. From this dataset, 13 scans were used for training, and the
remaining 3 scans for validation. As the constraints are imposed axial-wise, we resampled the 36 coronal
slices of size 256×256 pixels into 256 slices of 256×36 pixels, as shown in Figure 2. Images were normalized
between 0 and 1. No additional pre-processing or data augmentation was performed.

MMWHS We employed the 2017 Multi-Modality Whole Heart Segmentation (MMWHS) Challenge dataset
for cardiac segmentation [53]. The data consist of 20 MRI (source domain S) and 20 CT volumes (target
domain T ) of non-overlapping subjects, with ground-truth masks being provided for both modalities. We
aim to adapt the segmentation network for parsing four cardiac structures: the ascending aorta (AA), the
left atrium blood cavity (LA), the left ventricle blood cavity (LV) and the myocardium of the left ventricle
(MYO). We employed the pre-processed data provided by [43], as well as their data split, with 16 subjects
used for training and validation and 4 for testing. In order to obtain a similar field of view for all volumes,
they cropped the original scans to center the structures to segment. For each modality, a 3D bounding box
with a fixed coronal plane size of 256 × 256 centered at the heart was used to crop each volume. In [43],
a data augmentation based on affine transformations was employed on both the source and target domains
for the benchmark (NoAdap, DANN, ADDA, CycleGAN, Pnp-AdaNet). Similarly, for all the methods we
implemented (NoAdap, Adversarial [19], KLAdap [38], ConstraintAdap, Oracle), we used a randomized se-
quence of augmentation steps (contrast shifts, flips) as a data augmentation strategy in the source domain.
We did not use any augmentation for the target domain.

Quantitative evaluations and comparisons with state-of-the-art methods are reported. First, to evaluate
the impact of domain shift on performance, we compared the proposed loss function to the baselines described
in Section 3.1.2. We then implemented our proposed CDA in a weakly supervised setting, as described in
Section 3.1.4. To juxtapose the performance of CDA to other domain adaptation methods under the same
conditions, we provide quantitative and qualitative results of two current state-of-the-art methods for domain
adaptation, using an adversarial [19] or a curriculum strategy [38]. We also report benchmark results from [43]
on MMWHS. Additionally, we provide a comprehensive analysis of the robustness of CDA to imprecision
in the prior knowledge. In the first ablation study, we remove the size-regression network, and use source

3https://ivdm3seg.weebly.com/
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statistics as size priors instead. In the second, we remove the weak image-level tag annotation in the target
domain, to test the robustness of our method in a fully unsupervised domain adaptation setting.

3.1.2 Baselines

Lower and upper baselines To evaluate the impact of the different domain adaptation approaches, we
trained a segmentation network in a fully-supervised manner, in both source and target images. Training
these fully supervised models reduces to minimizing a standard loss function that evaluates the discrepancy
between the CNN predictions and the corresponding ground-truth segmentations: minθ

∑
d∈D

∑
i∈Ωd

L(yd(i),pd(i, θ)),
where D indicates the image domain. Thus, the model trained with the source images, i.e., D=S, will be
referred to as NoAdap, and will represent the lower baseline. The model employing the target images for
training, i.e., D=T , will be denoted as Oracle, and will serve as the upper baseline.

Adversarial domain adaptation We compared our CDA model to the adversarial approach proposed
in [19], which has demonstrated state-of-the-art performances in the task of unsupervised domain adaptation
for natural colour-image scenes. To do so, the penalty F in Eq. (6) is replaced by an adversarial loss, which
enforces the alignment between the distributions of source and target segmentations. During training, non-
aligned pairs of images from the source and target domain are fed into the segmentation network. Then,
a discriminator uses the generated segmentation masks as inputs and attempts to identify the domain of
each of these masks (either source or target). In this setting, we focused on single-level adversarial learning
(see [19] for more details). For a fair comparison, we adopted and improved significantly the performance
of the adversarial method in [19]. Following the recent work in [54, 55], in the weakly-supervised setting,
we boosted the performance of [19] using exactly the same image-level (tag) class information available to
CDA. Specifically, we modified the discriminator loss so as to account for the tag of both source and target
images. We experimented with various settings, and found that training the discriminator with only the
positive images from both domains increased significantly the performance of [19]. In fact, the use of negative
(or mixed) pairs, in which the source and/or target images do not contain the region of interest, confuses
adversarial training, reducing its performance in both applications.

For the adaptation of the cardiac sub-structure segmentation task, we also report the results by PnP-
AdaNet [43], an adversarial method designed specifically for cross-modality DA composed of two independent
domain-specific encoders and a decoder, along with a customized network architecture. [43] also provided
extensive comparisons to other state-of-the-art adversarial adaptation methods (DANN [56], ADDA [20],
CycleGAN [57]), used in conjunction with the same backbone segmentation architecture as in PnP-AdaNet,
which we refer to as AdaNet. These methods are included in Table 2 for comparison.

Kullback-Leibler divergence adaptation We further compare our approach to the recent curriculum
domain method proposed in [38], which first learns region-proportion priors, i.e., label distributions. Then,
the adaptation phase in [38] is based on minimizing a Kullback–Leibler divergence, thereby matching the net-
work predictions’ label distributions to these priors. While conceptually related to our approach, the method
in [38] does not allow imprecision in the priors. Moreover, given the steeper profile of the Kullback–Leibler
divergence compared to our penalty function in Eq. (7), its optimisation may be less robust than CDA to a
noisy prior. For a fair comparison, we used the same prior estimation obtained by the auxiliary regression
network R as in CDA (see Section 3.1.4), and adapted the framework in [38] to a weakly-supervised setting.
Specifically, for each target image, the label distribution prior to be used for Kullback–Leibler divergence
matching is:

d̂t =

{
1
|Ωt| τ̂t if region k is within image t.

0 otherwise.
(10)

where τ̂t is the predicted size by R on the target image t. For comparability and simplicity, we focused on
matching label distributions at the image level, removing the additional superpixel level (see [38] for more
details). In the experiments below, this method is referred to as KLAdap.
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3.1.3 Supervised Constraints

The proposed CDA method can accommodate both precise and imprecise (or uncertain) prior information
about the target region, e.g. size, in the target domain. This is done by imposing inequality constraints of
the general form in Eq. (1) on the target images. Such inequality constraints could be either tight, when
we have precise priors, or loose otherwise. In all the following experiments, we imposed lower and upper
bounds for each slice. We trained several models under the same setting, using different constraint values
for the size priors on the target images.

First, we investigate the capability of the proposed CDA approach when precise information about the
size of the segmentation regions is known. To this end, for each image t and each structure k, of the target
domain, we constrained the segmentation size by two prior values, which were derived from the ground-truth
size τt:

τt =
∑
i∈Ωt

y1
t (i) (11)

We start by introducing a relatively small uncertainty on this prior information, by adding a ± 10% margin.
With the notations from Eqs. (4) and (5), we have the lower and upper bounds:

a, b =

{
0.9τt, 1.1τt if τt > 0.

0, 0 otherwise.
(12)

This setting is later on referred to as Constraint10. Then, to evaluate the robustness of the proposed
approach to imprecision in the prior knowledge about region size, we also investigated the effect of different
levels of tightness of the bounds, by allowing larger margins from the exact size. In particular, we trained
additional models with margins on the bounds equal to ± 25%, ± 50%, and ± 75%, which are referred to
as Constraint25, Constraint50 and Constraint75, respectively. The aim of this setting is to evaluate how
precise the target size information should be. This is different from the main experiments, where the ground
truth target size τt is unknown.

3.1.4 Learning constraints via an auxiliary task

Instead of using bounds derived from the ground-truth size, in this setting, we employ bounds derived from
the size estimations produced by the regression model R introduced in Section 2.2. In addition to the
fully-labeled masks for the source images, we assume that weak image-level annotations are available for
the target-domain images. These are image tags indicating whether a given image t contains a region of
interest k or not. For each target image, the bounds to be used for adapting the segmentation network with
constraints (4) and (5) are:

a, b =

{
0.9τ̂t, 1.1τ̂t if region k is within image t.

0, 0 otherwise.
(13)

where τ̂t is the predicted size by R on the target image t. This setting will be referred to as ConstraintAdap
in the following experiments.

3.1.5 Deriving constraints from estimated anatomical knowledge

To investigate to possibility to circumvent the auxiliary network, in this setting, we derive the size estimations
from the source statistics, which aims at approaching textbook anatomical knowledge. For each 2D target
image t and each structure k, the bounds to be used for adapting the segmentation network with constraints
(4) and (5) are:

a, b =

{
0.9τ̄S , 1.1τ̄S if region k is within image t.

0, 0 otherwise,
(14)

where τ̄S is the median of ground truth sizes for structure k in the source images Is from the training set.
We refer to this ablation study as ConstraintLit in the following.
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3.1.6 Evaluation on Segmentation Performance

In all our experiments, we employed two commonly-used metrics to quantitatively evaluate the segmentation
performance of models. First, the Dice similarity coefficient (DSC) which evaluates the degree of overlap
between the segmentation regions and the ground truth. Second, the Hausdorff distance (HD) which measures
boundary distances. We used the 95-th percentile of the Hausdorff distance (HD95) to mitigate noisy
ground truth and/or segmentation regions. Therefore, higher DSC values, and lower HD95 values indicate
better segmentation performances. As the data is volumetric, these metrics were computed over the 3D
segmentations.

3.1.7 Training and Implementation Details

For the segmentation networks, we employed ENet [58], since it achieves good segmentation performance in
a reduced time. We also showed additional results with UNet in order to compare with a different backbone
architecture. We employed the standard cross-entropy (CE) for the source segmentation loss, along with
results combined with the DiceLoss (Dice+CE) [59,60]. All adaptation models were initialized by training
the network with the segmentation loss only, on the source domain, for 150 epochs. For γ in Eq. (6) we
adopt a grid search to choose the best value of the weighting γ parameter for each setting. In the adversarial
DA setting, we employ the same segmentation network and include the discriminator proposed in [19], while
for KLAdap, the Kullback-Leibler divergence in [38] was included. In all the domain adaptation experiments,
we use Adam optimizer for minimizing the respective loss functions, with an initial learning rate of 1×10−3.
The best model was chosen based on the validation set.

Finally, in the ConstraintAdap and KLAdap settings, the regression network used to learn the size prior
is a ResNeXt 101 [61], trained from scratch. We trained it via standard stochastic gradient descent, with
a learning rate of 5 × 10−6. The code is implemented in PyTorch. We ran the experiments on a machine
equipped with an AMD Ryzen 1950X 16-Core Processor, 32 GB of RAM and an NVIDIA Titan XP GPU.

3.2 Results

Quantitative results Table 1 reports the quantitative performance of different methods in spine images.
With ENet as the backbone architecture, we observe that NoAdap achieves the worst performance, with a
46.8% mean DSC. This is not surprising, since the distributions of source and target images are significantly
different due to the presence of the domain shift. This indicates that direct transfer of segmentation models
trained on the source cannot handle properly the domain gap. Adopting an adversarial strategy allows
to stabilize and improve the results over the lower baseline, achieving a mean DSC of 57.3%. The largest
improvement is observed when the domain adaptation strategy incorporates a constrained term on the target
predictions. First, we observe in Table 3 that if the target size is known, the DSC obtained by Constraint10

is 80.4%, which corresponds to 95% of the full supervised model, i.e., Oracle. However, knowing with
precision the size of the structure to be segmented is not always feasible. In the more realistic scenario
ConstraintAdap, where this size prior is estimated, the mean DSC value only drops to 72.3%, achieving
86% of the performance of the upper bound, Oracle. Moreover, our model outperforms KLAdap by 3.5%,
which uses the same size prior estimation but a Kullback-Leibler divergence as a regularisation loss. This
demonstrates the usefulness of using inequality constraints around the estimated prior and a less aggressive
loss such as Eq. 7. The HD values present a similar pattern across the different models. While the adversarial
approach reduced the HD to the half (10.3 mm) compared to the lower baseline model (20.7 mm), KLAdap
obtained a HD of 6.3 mm. Our proposed model ConstraintAdap further improved the results, achieving a HD
of 5.4 mm. To demonstrate that our approach is model-agnostic, and generalizes well to other architectures,
we replace ENet by UNet. We observe that the results are consistent with those observed with ENet. In
particular, while replacing the segmentation network by UNet brings performance gains across methods, the
rankings are maintained, with our approach outperforming prior state-of-the-art models. Last, even though
the improvement gap is lesser with UNet, it still shows the effect of domain transfer across the various
training settings.

Table 2 presents the results for segmentation in cardiac images from the MM-WHS MICCAI Dataset.
With no adaptation strategy, the performance of a model learnt on MRI images degrades when it is tested
on CT images, with an average DSC of 17.3%. On the other hand, our proposed ConstraintAdap achieves
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Table 1: Performance comparison of the proposed formulation with different domain adaptation methods
for spine segmentation.

BackboneMethods TargetDSC(%) HD95(mm)
Tags mean±sd mean±sd

ENet

NoAdap × 46.8±11.1 20.7±6.7
Adversarial [19] X 57.3±6.5 10.3±2.6
KLAdap [38] X 68.8±2.2 6.3±0.5
ConstraintAdap (ours) X 72.3±2.6 5.4±1.5
Oracle X 84.5±1.6 3.0±0.3

UNet

NoAdap × 63.9±7.5 9.6±7.0
Adversarial [19] X 69.0±3.8 6.4±1.5
KLAdap [38] X 73.3±1.5 5.9±2.0
ConstraintAdap (ours) X 73.4±2.4 4.7±0.9
Oracle X 85.4±3.0 2.3±0.3

Table 2: Performance comparison of the proposed formulation with different domain adaptation methods for
cardiac segmentation, in terms of DSC (mean±std) and HD (mean±std). (Note: - means that the results
are not reported in the original papers)

BackboneMethods Target Myo LA LV AA Mean
Tags DSC HD DSC HD DSC HD DSC HD DSC HD

ENet

NoAdap × 9.0±11.2 38.6±13.5 26.2±30.2 60.5±16.3 1.5±2.3 36.2±24.032.6±37.262.8±14.1 17.3±20.2 49.5±17.0
Adversarial [19] X 19.3±8.3 32.5±10.9 58.1±14.5 54.8±22.4 22.5±18.6 45.9±15.864.5±14.8 50.4±8.7 41.1±14.0 45.9±14.5
KLAdap [38] X 61.3±6.5 11.2±5.1 77.9±7.3 21.6±24.1 64.4±10.7 9.8±2.4 79.0±5.6 8.5±0.9 70.7±7.6 12.8±8.1
ConstraintAdap(ours) X 61.9±0.9 16.1±6.5 72.8±12.6 8.7±2.7 73.7±5.7 10.0±3.1 77.3±6.2 9.0±1.9 71.4±6.4 11.0±3.5
Oracle X 85.8± 3.3 2.9±1.6 90.1±3.2 4.5±3.0 90.8±3.4 3.0±1.5 91.0±7.3 2.9±1.6 89.4±4.3 3.3±1.9

AdaNet

NoAdap × 15.3±17.2 - 2.7±0.8 - 3.4±5.8 - 31.5±23.9 - 13.2±11.9 -
DANN [56] × 25.7±13.2 - 45.1±23.6 - 28.3±11.8 - 39.0±35.1 - 34.5±20.9 -
ADDA [20] × 29.2±16.4 - 60.9±13.2 - 11.2±13.1 - 47.6±15.2 - 37.2±14.5 -
CycleGAN [57] × 28.7±13.3 - 75.7± 4.3 - 52.3±21.0 - 73.8±7.4 - 57.6±11.5 -
PnP-AdaNet [43] × 50.8±7.0 - 68.9± 5.2 - 61.9±10.7 - 74.0±7.3 - 63.9± 7.5 -

an average HD of 11.0 mm, and an average DSC of 71.4%, representing 80% of the upper bound model, i.e.,
Oracle, trained on target images. Our method significantly outperforms other state-of-the-art approaches
on both metrics. Specifically, the adversarial method in [19] only yields a 41.1% average DSC and an average
HD of 45.9 mm, whereas KLAdap obtains closer values, with an average DSC of 70.7%, and an average HD
of 12.8 mm. Quantitative results from [43] are also provided, which shows that our method outperforms
prior works also on this dataset. It is important to highlight that direct comparison is not appropriate, as
the backbone architecture of these methods is different.

Finally, we should note that in both applications, the size estimation obtained by the size regression
network R is quite noisy, as shown in Figure 3. This suggests robustness to prior imprecision of CDA models
as we further explore in the ablation study below.

Ablation study on bound precision We also investigated the impact of prior size imprecision in the
target domain on the quality of CDA models. To this end, we increase the lower and upper margins around
the true size, as explained in Section 3.1.3. Results from this study are reported in Table 3 and in Figures
6 and 7. As expected, having precise size constraints result in higher performing models, close to the full-
supervision setting on target images. Nevertheless, allowing large ambiguities on the size of the region of
interest (± 25-50%) only degrades the DSC performance by up to 6% on spine images, and to 5% on cardiac
images. In the ablation study ConstraintLit, we replaced the size regressor by simple source statistics as
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Table 3: Performance comparison for the proposed formulation with constraints derived from the ground
truth (Constraint25,50,75) and from the source-domain statistics (ConstraintLit). ENet is employed as back-
bone architecture.

Dataset Methods DSC (%) HD95(mm)
mean±sd mean±sd

IVDM3Seg

NoAdap 46.8±11.1 20.7±6.7
ConstraintLit 60.7±2.8 7.2±2.4
Constraint75 65.7±4.2 6.9±1.7
Constraint50 74.6±2.1 4.5±0.7
Constraint25 77.5±0.7 4.1±0.5
Constraint10 80.4±1.5 3.7±0.9
Oracle 84.5±1.6 3.5±0.3

MMWHS

NoAdap 38.2±11.4 N/Aa

ConstraintLit 64.2±6.0 11.6±6.4
Constraint75 69.4±11.1 10.4±5.9
Constraint50 79.9±6.8 7.5±2.6
Constraint25 82.5±6.4 7.5±5.3
Constraint10 84.6±5.3 7.2±6.0
Oracle 89.4±4.3 6.5±5.6

aN/A means that the value cannot be calculated due
to no prediction for that structure.

Table 4: Performance of the different domain adaptation methods obtained when removing the weak image-
tag annotations. ENet is employed as backbone architecture.

Dataset Methods DSC (%) HD95 (mm)
mean±sd mean±sd

IVDM3Seg
Adversarial [19] 48.7±2.4 18.0±7.8
KLAdap [38] 52.2±5.9 12.5±4.2
ConstraintAdap(ours) 58.3±2.1 7.4±3.1

MMWHS
Adversarial [19] 38.9±14.6 32.1±10.4
KLAdap [38] 33.3±13.8 N/A
ConstraintAdap(ours) 49.4±14.8 42.3±11.5

explained in Section 3.1.5. Interestingly, results are well above the baseline for spine and cardiac images,
yielding 60.7% DSC and 64.2% average DSC, respectively. This indicates that having a coarse knowledge
of the target size can be enough to guide adaptation with CDA. Furthermore, if the target image tag is
available, it is possible to circumvent the auxiliary network size regressor R.

Assessing the impact of the target image tags We investigated the effect of removing the image-
level tag annotation in the target domain. Particularly, we removed the target image tags for both the size
regressor and the adaptation phase, as explained in Section 3.1.4. Results from this study are reported in
Table 4. As expected, having image-level tag information considerably helps all the models, which can be
observed from the performance decrease in comparison to the results in Table 1 and 2. Indeed, the size
estimation degrades without the image tag and, as a result, models using a size prior to guide adaptation
also see their performance decrease.

An interesting observation in this scenario, however, is the larger gap between the proposed model and
prior work, particularly compared to KLAdap.

Qualitative results Figure 4 and 6 depict visual segmentation results for spine images, for the 3 subjects
used in validation sets. We visualize the results at the best epoch. It can be seen that without adaptation, the
network trained only on source images is unable to recover the 7 distinct IVDs present in all the subjects, and
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Table 5: Performance comparison of the proposed formulation with different segmentation losses defined
over the source spine data. UNet is employed as backbone architecture.

Method Source DSC(%) HD95(mm)
Loss mean±sd mean±sd

NoAdap CE 63.9±7.5 9.6±7.0
ConstraintAdap (ours) CE 73.4±2.4 4.7±0.9

NoAdap Dice+CE 65.5±2.1 6.0±0.8
ConstraintAdap (ours) Dice+CE 75.7±1.8 4.7±0.7

Figure 3: Normalized histograms of the relative size difference between ground truth size and size estimated
by the auxiliary task in the target domain for spine images (a) and cardiac images (b, clockwise for Myo,
LA, AA, LV). This size estimation is used as a prior to guide domain adaptation (see Section 3.1.4).

the model trained with adversarial adaptation also struggles (see the second row in Figure 4). In contrast, our
proposed CDA model - both with supervised and learned constraints - is able to detect the 7 IVD structures in
almost all examples. Moreover, the segmentations achieved by all models using the proposed CDA framework
have more regular shapes. Figure 5 and 7 show the visual comparison results on the cardiac dataset, for the
4 subjects in the test set. As illustrated in Figure 5, the segmentation results produced by ConstraintAdap
are more similar to the ground truth, in terms of shape and boundary, especially for the MYO and LV
structures. Finally, we can visually observe in Figure 6 and 7 that all constrained models Constraint10,
..., Constraint75, yield much better segmentations than the lower baseline without any adaptation strategy.
Furthermore, as expected, the quality of the segmentations slowly degrades with a more imprecise size prior
used for constraining the adaptation.

Efficiency The computational efficiency of constrained formulations, benchmark adaptation formulations
and baselines are compared in Table 6. The lower (NoAdap) and upper (Oracle) baselines only need to
compute one loss per pass, i.e., cross-entropy, and only use images from the domain on which it is calculated,
i.e., source (NoAdap) or target (Oracle), respectively. As expected, training times are lower for these
methods. All other methods employ images from both domains at each forward pass. Including the quadratic
loss with supervised size constraints adds little to the computational time. Using learned priors, such as
in models ConstraintAdap and KLAdap, does not significantly change the computational time either, even
when including the size-regressor training. Particularly, if we consider a two-step process, assuming the same
number of epochs for all the models, the proposed constrained framework is still nearly twice faster than the
adversarial approach in [19]. The overhead is much higher with the adversarial adaptation, which alternates
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Figure 4: Example of the segmentations achieved by our constrained formulation (ConstraintAdap), bench-
mark models in [38] and [19] and lower (NoAdap) and upper baselines (Oracle) for intervertebral disks images
in the MRI In-Phase modality. Each row shows a different test subject. Images and masks are rotated in
the sagittal plane and cropped for better viewing. The IVDs are contoured in red.

Table 6: Training times of the various adaptation learning strategies and Oracle for a batch size of 12, for
spine segmentation

Backbone Methods Average Time (s/batch)

ResNeXt101 R (size regressor) 0.2

ENet

NoAdap 0.4
Adversarial [19] 1.4
KLAdap [38] 0.6
ConstraintAdap (ours) 0.6
Constraint10,25,50,75 0.6
Oracle 0.4

at each pass between the training of the segmentation network and the training of the discriminator, the
latter also requiring inputs from both domains.

4 Discussion

We presented a method to guide a segmentation network learned on a source domain to perform well on a
different target domain, with minimal additional information, for instance, in the form of image-level tags.
We showed the versatility of our DA approach, implementing it for drastically different types of images, multi-
modal spine MRI images and MRI to CT cardiac images. Our model consistently yields a performance gain
of 1-4% in terms of DSC across architectures and datasets, and 4-14% when comparing to state-of-the-art
adversarial adaptation approaches. Even though we have evaluated our method on multi-modal (multi-
MRI and CT to MRI) spine and cardiac images, it can be applied to other multi-modal scenarios, such as
multimodal photoacoustic and optical coherence tomography [62], for example. Unlike adversarial strategies,
which are based on two-step training, our method tackles the adaptation problem with a single constrained
loss, simplifying the adaptation of the segmentation network. In our implementation, the constrained loss
matches image-level statistics–the size of the structure to be segmented here–in the target domain through
the use of a simple quadratic loss. As demonstrated in our experiments, the performance is significantly
improved over the lower baseline. Surprisingly, state-of-the-art adversarial methods [19, 20, 56, 57] yield
smaller improvements. We hypothesize that this is due, in part, to the difficulty of learning a decision
boundary between source and target domains in huge dimensionality. When a very precise size prior is
known on the target domain, our framework leveraged this information to improve results up to 95% of the
upper bound (the full supervision regime on the target) on two different tasks. As shown quantitatively
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Figure 5: Examples of the segmentations achieved by our constrained formulation (ConstraintAdap), bench-
mark models in [38] and [19] and lower (NoAdap) and upper baselines (Oracle) for cardiac CT images. The
cardiac structures of MYO, LA, LV and AA are depicted in brown, purple, yellow and blue, respectively.
Each row shows a different test subject.

and qualitatively by our experiments, the structures of interests are much better detected in each patient
in the target domain, while the segmentations achieved are greatly improved. Furthermore, we have shown
that our method tolerates a substantial imprecision around the true size of structures, and that we can
learn a sufficiently accurate size prior with a simple regression network. Although the estimated size prior
obtained in our application is quite noisy, and our uncertainty margins very simple, our formulation with
learned constraints reaches 86% and 80% of full supervision in spine and cardiac images respectively. We
also demonstrate the superiority of our method compared to a domain adaptation model using size statistics
matching with a steeper loss and no handling of prior imprecision [38].

Arguably, the main limitation of our method relies on obtaining an accurate estimation of region size,
which guides segmentation training during the phase of domain adaptation. Learning region size through an
auxiliary regression network could be challenging when there is a large shift between the source and target
domains. However, we show in Table 3 that, even with large ambiguities on size estimation, the performance
of the proposed model drops by only 5-6% on both datasets. An interesting finding from our results is that
adding the weak image-level class information, i.e., the presence or absence of the target region, for each slice
in the target domain greatly helped the auxiliary size regressor network. The need of this weak annotation
to approach the performances of full supervision might be seen as another drawback of our method. This
contrasts with fully unsupervised domain adaptation methods, which do not require weak annotations, but
are usually unstable and hard to train. Nevertheless, we showed in Table 4 that a fully unsupervised version
of our method, without access to image-tag information, still outperforms several state-of-the-art adaptation
methods based on adversarial training [19,38]. We argue that, despite these drawbacks, our method provides
an optimization framework that is simpler and more stable than fully unsupervised adaptation methods.

Future developments could involve a 3D extension, for which some questions related to the incorporation
of textbook medical knowledge remain undefined, as it is common to use volumes patches as input to
3D networks [2]. Learning other priors from domain information, such as constraints derived from shape
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Figure 6: Example of the segmentations achieved on spine images by our constrained formulation with tighter
to looser constraints (Constraint10 being the tightest), i.e., increasing prior uncertainty, showing robustness
to prior imprecision. Each row shows a different test subject. Images and masks are rotated in the sagittal
plane and cropped for better viewing. The IVDs are contoured in red.

moments [46], and better addressing the uncertainty of size estimations, for instance, from deriving more
sophisticated margins, are other potential improvements left for future work. For difficult domain adaptation
tasks with substantial domain shift, the initial network trained on the source domain may be incapable of
detecting any structure in the target domain, complicating the initialization of our method. In such cases,
as an alternative approach, weak annotations such as bounding boxes [3, 6] in the target domain could be
used. Another open question for such difficult applications is the usefulness of enforcing multiple constraints
and how to handle the ensuing optimisation problem.

5 Conclusion

This study investigated domain adaptation for segmentation with applications for intervertebral discs seg-
mentation in multi-modal MRI and MRI to CT cardiac substructure segmentation. We proposed a con-
strained formulation for adapting a segmentation network learned on one modality (source domain) to a
different modality (target domain), by enforcing image-level statistics in the target domain which we showed
could be learned directly from the source domain. Despite its simplicity, the performance of our method comes
near that of full supervision with only image-level annotations in the target domain, and very small compu-
tation overhead, using basic linear constraints, e.g., target-region size. Extensive experiments demonstrated
that our formulation also outperformed multiple state-of-the-art adaptation methods. Our framework offers,
therefore, flexibility, is model-agnostic and opens the door to promising research directions on incorporating
a wide variety of new anatomical constraints.
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