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Abstract

This method [[1] exploits spectral representations of shapes to classify surface
data. This learning approach is relevant for problems involving data living on
surfaces, such as in brain surface parcellation. Current neuroimaging studies
relies on slow mesh deformation towards pre-labeled atlases, requiring hours of
computation. Learning techniques offer an attractive computational advantage,
however, their representation of spatial information, typically defined in a Euclidean
domain, may be inadequate for analyzing surface data, such as cortical parcellation.
Indeed, cortical data resides on surfaces that are highly variable in space and shape.
Consequently, Euclidean representations of surface data may be inconsistent across
individuals. We propose to fundamentally change the spatial representation of
surface data, by exploiting spectral coordinates derived, for instance, from the
Laplacian eigenfunctions of shapes. They have the advantage to be geometry
aware. This change of paradigm, from Euclidean to Spectral representations,
enables a classifier to be applied directly on surface data via spectral coordinates.
As an illustration, we extend one learning method, for instance, the Random
Decision Forests. Our spectral learning method is shown to significantly improve
the accuracy of cortical parcellation over its standard version.

1 Introduction

Efficient algorithms for surface processing and analysis are often sought. In particular, the accurate
segmentation of cortical surfaces into sulcal areas is fundamental to neuroscience. Two strategies exist
for cortical parcellation. They are either template based [2, 13} 14} 5/ 16], via iterative deformations of a
pre-labeled atlas, or subject based, via costly processing of sulcal data [[7, 8} 9, 10, |11]. Unfortunately,
machine learning techniques in cortical analysis [12] has been limited due to the high geometrical
variability of the folding pattern across individuals. They raise the fundamental question on how
to learn data directly on surfaces. Neighborhood structures, often exploited in image segmentation
[13]], may be ambiguous on surfaces, and more challenging to interpret on highly convoluted cortical
surfaces [14]]. Neighboring points in 3D may not necessarily lie on a surface, and be even several
folds away on the cortex. Consequently, standard learning approaches that use features defined in the
Euclidean domain, may not be adequate for analyzing surface data [[L5]]. We propose to represent
instead spatial information with geometry-aware features. The spectral decomposition of shapes
[[L6} [17] provides means to efficiently parameterize cortical surfaces with few spectral coordinates
[18]. These spectral coordinates constitute, in fact, an explicit parameterization of surfaces. A
learning technique could thus exploit such spectral coordinates to learn data directly on surfaces. In
this paper, we improve, for instance, the Random Decision Forests (RF) [19, [20], to process surface
data via spectral representations of shapes, and name our method Spectral Forests (SF).

2 Method

Spectral Coordinates — Let us build the graph &4 = {¥', &'} from the set of vertices with position
x, and edges of a surface model S. Its graph Laplacian operator is defined [[17] as the matrix
L = D7D — W), with D, the node degree matrix, and W, the affinity matrix, e.g., W;; =||
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Figure 1: Spectral Learning of Brain Parcels — (Left) Best cortical parcellation using RF (31.0%),
(Middle) Parcellation using SF (77.6%, our method), (Right) using FS, considered as gold standard.
Inflated surfaces show 77 color-coded parcels.

T — Xy ||*1 if de;; € &, 0 otherwise. Its spectral decomposition, £ = UAU -1 provides the
eigenvalues A = diag(Xo, ...\|y|) and eigenfunctions U = (u(®, ..., uIVD), where u() depicts
a vibration mode of shape S [Iﬁl] The spectral coordinates of points p € ¥ are defined as their

1 _1
normalized eigenfunction values [21], spectral(p) = {\, 2u(® (p), ..., Avi ulVD(p)}. Since these
coordinates are defined on surfaces, navigating with them would move us over the surface, whereas

an increase in Euclidean coordinates may bring us away from the surface. We correct for slight

perturbations in shape isometry using a realignment to an arbitrary reference, A~ U Ti—ret, Where
the transformation 7" is found, for instance, with [22]]. In practice [18| 22], only the first k = 5
spectral coordinates are sufficient to capture the main geometrical properties. The spectral coordinates

spectral(p) for a point p of subject 4, are the first k elements of the ™" row of matrix A~ U T sref-

Spectral Learning — We extend one learning technique beyond the Euclidean domain to classify
surface data. As an example, we use Random Forests (RF) [19] 20]. We name the method Spectral
Forests (SF). To do so, spatial features are represented using spectral coordinates rather than Euclidean
coordinates. These surface basis functions are geometry aware and have the property to be invariant
to shape isometry. Spectral representations effectively capture intrinsic shape information. Location
and neighborhoods are defined explicitly on surfaces, which contrasts with the implicit representation
of surfaces with Euclidean coordinates. This change of paradigm enables Spectral Forests to process
data directly on surfaces.

Cortical Parcellation — The labeling of cortical points into major sulci and gyri, is an application
where learning should be performed on surfaces. Our Spectral Forests algorithm represents spatial
information with spectral coordinates, which naturally parameterize surfaces in an intrinsic spectral
domain rather than in an extrinsic Euclidean space. The simplest form of feature representation could
be, for instance, f, = (depth(p), spectral(p)), which includes data information, such as the sulcal
depth at each point, and spatial information, where standard (x, y, z) point values are replaced with k
spectral coordinates. This change of paradigm enables a standard RF classifier to be applied on the
spectral representation f, for learning and inferring the major parcels over the brain surface.

3 Results & Conclusion

We segmented 77 cortical parcels on 16 brain surfaces, and validated using leave-one-out. Running
standard RF produces an average overlap, for all 77 parcels on 16 surfaces, of 27.9% (4 17.0,
min/max parcels = 4.9/65.9), with 21 seconds for training and 66 seconds for testing. Running
Spectral Forests (SF) produces an average overlap of 74.3% (+ 8.32, min/max parcels = 38.9/94.9),
with 17 seconds for training and 23 seconds for testing. Fig. [T|shows the best scoring parcellation of
RF, with an average overlap of 31.0% (& 15.5), which contrasts with the SF parcellation on the same
subject of 77.6% (4 11.41). In comparison, FreeSurfer (F'S), which is considered here as a gold
standard, performs with an average overlap of 74.4% (£ 9.7, min/max parcels = 41.2/96.6) among
all possible transfers of parcellation maps from all subjects onto all possible reference subjects.

The change from extrinsic to intrinsic shape representations enables learning techniques to process
data directly on surfaces. We implemented this strategy using Random Forests. We found that
revisiting the fundamentals of spatial representations, from Euclidean to spectral-based features,
improves the parcellation accuracy from 27.9% to 74.3%, which is comparable to the present state-
of-the-art, but with a clear speed advantage (23 seconds vs. hours).
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