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Abstract—Cardiac fibers, as well as their local arrangement
in laminar sheets, have a complex spatial variation of their
orientation that has an important role in mechanical and elec-
trical cardiac functions. In this paper, a statistical atlas of this
cardiac fiber architecture is built for the first time using human
datasets. This atlas provides an average description of the human
cardiac fiber architecture along with its variability within the
population. In this study, the population is composed of 10
healthy human hearts whose cardiac fiber architecture is imaged
ex vivo with DT-MRI acquisitions. The atlas construction is based
on a computational framework that minimizes user interactions
and combines most recent advances in image analysis: Graph
Cuts for segmentation, Symmetric Log-domain Diffeomorphic
Demons for registration, and Log-Euclidean metric for diffusion
tensor processing and statistical analysis. Results show that the
helix angle of the average fiber orientation is highly correlated to
the transmural depth and ranges from −41

◦ on the epicardium
to +66

◦ on the endocardium. Moreover, we find that the fiber
orientation dispersion across the population (±13

◦) is lower than
for the laminar sheets (±31

◦). This study, based on human hearts,
extends previous studies on other mammals with concurring
conclusions and provides a description of the cardiac fiber
architecture more specific to human and better suited for clinical
applications. Indeed, this statistical atlas can help to improve the
computational models used for radiofrequency ablation (RFA),
cardiac resynchronization therapy (CRT), surgical ventricular
restoration, or diagnosis and follow-ups of heart diseases due to
fiber architecture anomalies.

Index Terms—Diffusion weighted imaging, Heart, Atlases

I. INTRODUCTION

C
ARDIOVASCULAR disease is a leading cause of death

in developed countries. The understanding of the cardiac

muscle structure and functions is essential for the diagnosis

and the treatment of many heart pathologies. The cardiac fiber

architecture, a complex organization of the myocardium fibers

[45], [28], determines various cardiac mechanical functions
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[10], cardiac electrophysiology patterns [24], and remodeling

processes [53]. The assessment of structural variability is

important for a better understanding of the human heart

physiology [8], [9] and for a more accurate modeling of the

heart. Such models with a complete description of the fiber

architecture can be used for clinical applications. For instance,

the planning of radiofrequency ablation (RFA) [40] or cardiac

resynchronization therapy (CRT) [44], with respectively the

localization of the zone to ablate and the positioning of the

pacing electrodes, can be optimized using electro-mechanical

models of the heart whose fiber structure is a key information

for more accurate simulations and predictions.

The fibrous nature of the heart has been known for centuries,

Harvey reported as early as 1628 in De Motu Cordis [18] the

functional role of the cardiac fibers. In the modern era, Streeter

[45] suggested that the cardiac fibers are organized as nested

surfaces. Further studies on the cardiac fiber architecture also

revealed common features among species [6]. The fibers,

locally organized as laminar sheets, appear to be consistently

structured as two counter wound spirals wrapping around the

heart clockwise on the epicardial surface and counterclockwise

on the endocardial surface [45], [28]. The helical myocardial

band of Torrent-Guasp [47] is another model (triggering con-

troversial discussions [52]) that hypothesizes the existence of

a single muscular band folding onto itself to form the whole

heart. Nevertheless, cardiac fiber studies mainly focus on the

local orientation of fibers with their angle on the tangent plane

and on the horizontally normal plane of the epicardium called

respectively the helix and the transverse angles. In humans,

the variability of the cardiac fiber architecture was studied

using tedious work on histological slices [16], and thus hard

to assess completely in 3D. So far, more detailed cardiac fiber

architecture has been mainly speculated from studies on other

species [33].

The cardiac fiber architecture of single human hearts have

already been visualized and studied using DT-MRI [55], [41],

[43]. However, due to an extreme rarity of healthy human

hearts (they are rather transplanted than used for research),

no statistical study has yet been performed on humans. With

an access to a unique post-mortem human dataset [12], [13],

[39], the presented work aimed at building, for the first time, a

statistical atlas of the human cardiac fiber architecture from 10

healthy ex vivo hearts imaged with DT-MRI. This work is an

extended version of preliminary results [29]. Here, the method

is fully explained and we provide an extensive statistical study

on the fiber variability as well as a refined analysis of the

transmural distribution of the fiber helix and transverse angle.
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Fig. 1. Construction of the morphological atlas: From the acquired images, the myocardium and the blood masses are segmented as described in Section II-B1.
The images are then aligned and deformed toward a reference image. The registration is performed using Non-rigid Symmetric Diffeomorphic Log-Demons
as explained in Section II-B2. The atlas is constructed iteratively by averaging acquired images in the average shape of the atlas as explained in Section II-B3.
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Fig. 2. Construction of the statistical atlas of the human cardiac fiber
architecture. All acquired tensors are warped using the transformation found
during the construction of the morphological atlas. With the average tensor
and its covariance matrix, the statistical analysis is carried on. The tensor field
illustrations show tractographies generated with MedINRIA.

The atlas construction and the population variability study

are performed using a refined version of the computational

framework proposed by Peyrat et al. [38]. The method has

been automated and adapted to process the available images,

which are at a lower resolution than in [38]. It is described in

details for reproducibility and can easily be reused for studies

that includes a large number of hearts. Firstly, we present the

strategy for the construction of the atlas eased by the use of a

more recent registration method, the Symmetric Log-demons

[50], [32]. The registration is also guided by a segmentation

step involving minimal user interaction using Graph Cuts [5]

to cope with topological issues that could occur with a basic
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Fig. 3. Average geometry and fiber orientations with (upper left) the average
shape of the myocardium, (upper right) short axial view from top, (lower left)

apical view from foot, (lower right) long axial view from front. The r,g,b color
of the tracked fibers indicates the x,y,z components of the local orientation of
the fiber.

thresholding on images with lower resolution than in [38].

Secondly, we use the same statistical framework on diffusion

tensors as in [38] to analyze the variability of the fiber

architecture. Thirdly, we present the main contribution: the
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Fig. 4. Average fiber orientation seen on a short axis slice. The left ventricle
is on the foreground and the right ventricle on the background. The cylinders
indicates the direction of the first eigenvector in the average diffusion tensor
field. Color indicates the local orientation of the fiber. The transmural variation
is visible in the left ventricle and in the midwall. The vertical papillary muscles
are visible in darker blue.

provision and analysis of a human statistical atlas, performed

both globally over the whole myocardium and locally within

several myocardial segments. Common features of the cardiac

fiber architecture along their variabilities are shown for the

first time in a population of healthy human subjects. Finally,

we discuss possible improvements of our method and give

perspectives on our results.

II. MATERIAL AND METHOD

The dataset and its acquisition protocol, consisting of

anatomical b = 0 images and their associated DT-MRI

tensor fields, is first presented. The transverse anisotropy

in each tensor field provides confidence for the presence

of a secondary fiber structure (i.e., the laminar sheet). The

method constructing the DT-MRI atlas is described with the

semi-automatic segmentation of the myocardium followed by

the fully automatic groupwise registration of the anatomical

images (Fig. 1), and with thereafter the warping of the tensor

fields (Fig. 2). Finally, the statistical framework on diffusion

tensors is explained. It provides an average representation

(Fig. 3 and 4) of the cardiac fiber architecture as well as its

variability in terms of fiber and laminar sheet orientations.

A. Data Acquisition

The hearts were explanted within 24 hours after death and

ex vivo imaging was performed without any additional delay.

The hearts did not exhibit any patent contracture compared

to what is commonly observed in organs of more than a

few days after death. Special care was taken to carefully

remove any remaining blood or mural thrombi by flushing

the ventricles with an isotonic solution. The ventricles were

then filled with an hydrophilic and isotonic gel to remove any

air and to restore a normal anatomic configuration. Finally,

the hearts were placed in a plastic container filled with the

same hydrophilic gel. The posterior wall of the atria were

partially removed to give access to the atria-ventricular valves.

The preparation and handling of the hearts were established

with forensic specialists to avoid any additional delay and any

potential changes to the common forensic procedure that was

performed after imaging on the fresh non-fixed entire hearts.

Each heart with its plastic container was placed in a 16

element head coil and was imaged with a 1.5T MR scanner

(Avanto Siemens). The main MRI parameters of the diffusion

weighted EPI sequence (bipolar scheme) are: TE/TR =
69/6500 ms, 6 excitations (with polarity alternation), voxels

of 2×2×2 mm3, parallel imaging (GRAPPA with acceleration

factor 2), partial Fourier (6/8), base resolution matrix of 128,

BW = 1628 Hz/Px, echo spacing of 0.7 ms, 12 directions,

and b = 1000 s.mm2 with a PSNR = 16.44 dB. The acqui-

sition protocol is detailed in [12], [13]. The b=0 images along

their myocardial masks and illustrative fiber tractographies

(generated using a spin glass model [11]) are shown on Fig. 5.

DT-MRI measures the local spatial diffusion within one

voxel. The maximal local direction of diffusion, revealed by

the primary eigenvector v1 of the diffusion tensor matrix

D, occurs along the main structure, i.e., the fiber, while the

secondary eigenvector, v2, is assumed to lay within the laminar

sheet. The tertiary eigenvector, v3, would thus be related to the

normal of the laminar sheet (illustrated in Fig. 6(a)). Although

strong evidences exist toward this assumption [22], [23], [42],

[49], we first need to ensure that pairs of eigenvectors and

eigenvalues are distinguishable and hold meaningful struc-

tural information. The corresponding null hypothesis would

imply transverse isotropy (i.e., equal secondary and tertiary

eigenvalues d2 = d3). Rejecting it, by observing a transverse

anisotropy, would give an indication that a secondary structure

exists in the transverse plane of the primary eigenvector. We

do so by showing that the eigenvalues are not equal and that

the eigenvectors are locally structured.

Since d2 > d3 > 0, the ratio d3/d2 is defined between

0 and 1 and the mode of the ratio distribution should be

close to one in case of transverse isotropy. The figure 7 shows

that even though the distributions of the eigenvalues are very

close, the peak of the ratio distribution d3/d2 is at 0.86 and

suggests that the secondary and the tertiary eigenvalues are not

equal. Furthermore, Helm et al. [23], [21] explain that in case

of transverse isotropy the secondary and tertiary eigenvectors

should rotate randomly around the principal axis of diffusion.

They reject this null hypothesis with a Kolmogorov-Smirnov

(K-S) test where the local distribution of the angle α =
cos−1 (|v2 · vn|), between the secondary eigenvector v2 and a

local reference vector vn defined in each myocardial segment,

is not uniform (i.e., testing if α is randomly distributed, or

not, on the transverse plane). The local reference, vn, is fixed

and is chosen to be the best orthogonal vector to the set of

first eigenvectors within each AHA segment. Furthermore, the

maximal distance between the cumulative distribution Fα(θ)
of the angle α and the cumulative distribution θ/π of the

uniform distribution gives a measure of confidence with the

R-value: R = maxθ=[0,2π] {|θ/π − Fα(θ)|} (see [23], [21] for

more details). The critical R-value Rc = 0.06 is chosen [21]

using the average number of pixels in each AHA segment

(1247 pixels), i.e., if R > Rc, the distribution of the angle

α can be considered non-uniform. The table II shows for all
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Fig. 5. Dataset consisting of 10 healthy ex vivo human hearts. On the left, the b=0 images acquired in the DTI studies. In the middle, segmented myocardium
(in blue) with left (in dark gray) and right (in light gray) ventricular chambers. On the right, tractographies of a few fibers that illustrates the fiber orientation
(computed with MedINRIA, where coloring indicates the local fiber orientation).

Subject Weight Height Age Heart Weight (limit) Sex Septal thick.

1 60 Kg 158 cm 74 385 g (420 g) F 12 mm
2 74 Kg 166 cm 47 385 g (444 g) M 14 mm
3 102 Kg 192 cm 17 435 g (521 g) M 10 mm
4 74 Kg 180 cm 47 430 g (444 g) M 11 mm
5 77 Kg 165 cm 27 350 g (425 g) F 11 mm
6 85 Kg 189 cm 21 365 g (473 g) M 14 mm
7 63 Kg 175 cm 20 320 g (406 g) M 12 mm
8 97 Kg 187 cm 21 410 g (506 g) M 11 mm
9 77 Kg 179 cm 21 380 g (450 g) M 12 mm

10 84 Kg 177 cm 50 460 g (473 g) M 10 mm

TABLE I
CHARACTERISTICS OF THE HUMAN DATASET OF 10 HEALTHY HEARTS (SUBJECT WEIGHT, HEIGHT AND AGE, WITH MYOCARDIAL WEIGHT, MAX

ALLOWED WEIGHT, AND SEPTAL THICKNESS.).
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(a) Tensor eigenvectors with respect 

to the fiber and laminar sheet 

(b) Atlas fiber tractography of the 

left ventricle and a short axis slice 

Fig. 6. Fiber architecture: (a) Illustration of the Tensor eigenvectors, v1,2,3,
with respect to the fiber and the laminar sheet (adapted from [28]). (b) The
transmural variation of the fiber orientations in the left ventricle is visible in
the fiber tractography (computed with MedINRIA) of the average tensor field.
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Fig. 7. Transverse anisotropy. (a) Distribution of the eigenvalues for all
subjects. (b) Distribution of the ratio between the third and second eigenvalues,
d3/d2, showing a transverse anisotropy for all subjects (i.e., the ratio peak
at 0.86).

AHA segments of all hearts R-values with a significance level

of 1% consistently well above Rc = 0.06 (away from the

uniform distribution) which give another indication that the

diffusion is transversely anisotropic, i.e., there is a secondary

structure in the human fiber architecture.

B. Atlas Construction

The statistical atlas is constructed using four steps, il-

lustrated in Fig. 1. First, the myocardium of each heart is

segmented out on the b = 0 image of the DT-MRI ac-

quisition. They are similar to T2-weighted images providing

anatomical information with the advantage of being acquired

and corrected for motion together with diffusion-weighted

images (DWI) and thus aligned with the estimated DT-MRI.

Information on the fiber architecture (i.e., any directional data

such as DT-MRI or corresponding DWI) is purposely omitted

AHA R Value AHA R Value AHA R Value

1 0.18 (± 0.10) 7 0.24 (± 0.06) 13 0.25 (± 0.13)

2 0.21 (± 0.10) 8 0.19 (± 0.07) 14 0.18 (± 0.10)

3 0.23 (± 0.09) 9 0.21 (± 0.06) 15 0.23 (± 0.09)

4 0.21 (± 0.10) 10 0.18 (± 0.08) 16 0.22 (± 0.10)

5 0.18 (± 0.12) 11 0.20 (± 0.06) 17 0.23 (± 0.09)

6 0.24 (± 0.06) 12 0.19 (± 0.05)

TABLE II
R VALUE, CONFIDENCE THAT THE ANGULAR DISTRIBUTION OF THE 2nd

EIGENVECTOR AROUND THE 1st EIGENVECTOR IS NOT UNIFORM (I.E.,
TRANSVERSE ANISOTROPY). MEAN VALUE FOR EACH AHA SEGMENT

WITH ITS STANDARD DEVIATION.

from the registration process in order to avoid introducing

any bias in the study of the fiber variability. Second, each

myocardium is registered to a reference image using solely the

b=0 images and the myocardium masks. Third, the reference

image is deformed toward the morphological average of all

hearts by repeating the second and this third step iteratively

until convergence. Fourth, and last, the resulting deformation

fields computed from the registration process are used to warp

all tensor fields to the morphological atlas (Fig. 2).
1) Myocardium Segmentation: Due to the noisy nature of

the available images, the boundary between the myocardium

and the surrounding gel can not be captured with a simple

thresholding segmentation. This is in contrast with the canine

dataset used in [22], [23], [21], [46], [38], [37], [38] where the

myocardium was clearly outstanding from its background. A

semi-automatic method has thus been designed with minimal

user interaction in mind. The Graph Cut algorithm [5] has

been chosen for its efficiency and ease of use. The following

details are provided for reproducibility of the results. An

underlying 3D graph is constructed from a 3D image and

a global optimal solution partitions the graph into an object

and a background. The graph edges between neighboring

pixels, say p and q with intensities ip and iq , are weighted

with wp,q = exp(−(ip − iq)
2/2σ2), where σ is a penalizing

term (e.g., the standard deviation of intensity differences). By

setting different weights on both directions, boundaries from

dark objects to bright backgrounds (e.g., dark myocardium

within bright gel) can be favored (or vice versa, for bright

objects on dark backgrounds). A directional edge from a dark

pixel p to a bright pixel q (i.e., ip < iq) is privileged when

its weight is wp→q = λwp,q with λ < 1, while wq→p = wp,q

remains the same. Two special nodes are added in the graph,

a source representing the object and a sink representing the

background. The algorithm needs only a few seed points,

connected to the two special nodes, in the object and in the

background. The Graph Cut algorithm finds a global optimal

cut separating the nodes connected to the source from those

connected to the sink, thus segmenting the object from its

background. Fast interactions are also possible to correct any

missed segmentation. Further details are available in [5]. In

our workflow, the user marks on any 3D slice of a b=0 image

a few points in the left ventricular and in the right ventricular

blood pools. From these marks, three automatic 3D binary

segmentations are performed:

• Finding the Heart: A graph is constructed from the whole

image and the heart, including the blood pool, is isolated

from its background using the marked points as object

seeds and using the points (found automatically) lying on

a sphere surrounding the initial marked points (a sphere

large enough to be outside the heart) as background seeds.

A boundary from a dark object (the dark myocardium)

to a bright object (bright gel) is privileged with λ = 0.95
when ip < iq .

• Finding the Myocardium: A smaller graph is constructed

from the previous heart mask and the myocardium is

outlined from the blood pool using the initial marked

points as background seeds and using the voxels lying

on the inner boundary of the heart mask as object seeds.
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Here again, edges from dark to bright are privileged with

λ = 0.95.

• Differentiating the Ventricles: A graph is constructed from

the myocardium mask and the blood pool is partitioned

into the left and the right sides using the initial marked

points in the left and in the right ventricles as object

and background seeds. As both ventricular fillings have

similar intensities, directional edges are identical (i.e.,

λ = 1).

This strategy ensures a topologically valid myocardium mask.

Indeed, the first two graph cuts correspond to the epicardium

and the endocardium and isolate the myocardium with no

unconnected pieces while guaranteeing a mask of at least one

voxel thick. Holes are thus not possible across the myocardial

wall which is really thin in the right ventricle. From the

generated binary masks, a 3D segmented image is created

with four labels: background, left and right ventricles, and

myocardium. The labeled images are shown on Fig. 5.

2) Heart Registration: The pairwise registrations of N
hearts, {Ii}i=1,...,N , to a reference image, Iref , give the diffeo-

morphic transformations, {φIi→Iref}i=1,...,N , required for the

warping of the tensor fields. Fig. 1 shows three hearts before

and after registration. To obtain a better registration and a fast

convergence, the registration is performed in three steps:

• Ventricle Rigid Alignment: First, the labeled images are

reoriented by aligning the centers of mass of each ven-

tricle. A block matching algorithm [34] refines this rigid

registration.

• Mask Non-rigid Registration: Second, the aligned labeled

images are transformed using a non-rigid registration

[50], [32].

• b = 0 Non-rigid Registration Refinement: Third, and

last, the previous transformation initializes the non-rigid

registration of the masked b=0 images where only the

myocardial regions are considered.

The pairwise registrations are performed with the Symmet-

ric Log-domain Diffeomorphic Demons [50], [32]. In this ex-

tension of the Diffeomorphic Demons [51], the transformation

φ is constrained to be in the one parameter subgroup of diffeo-

morphisms with stationary velocity field by parameterizing φ
with the velocity field v, such that φ = exp(v). Thus, the Log-

domain Diffeomorphic Demons algorithm can be formulated

as an alternate optimization scheme of the following energy

with respect to the velocity fields vc (hidden variable) and v:

E(Iref , Iflo, v, vc) =
1
σ2
i

‖ Iref − Iflo ◦ exp(vc) ‖2

+ 1
σ2
x
‖ log(exp(−v) ◦ exp(vc) ‖2 + 1

σ2
T

‖ ∇v ‖2,

where σi,x,T are penalizing terms, Iref , a reference im-

age, Iflo, a floating image, v, the velocity field such that

Iflo ◦ exp(v) ≡ Iref , and the velocity field vc, a hidden

variable whose exponential is called the correspondence. The

optimization of this energy is implemented in [51] with two

consecutive smoothing steps which use two parameters. Both

are widths of smoothing kernels, one for the smoothing of

the update field, σKfluid
= 1.4, and has a fluid behavior, and

the second is for the smoothing of the displacement field,

σKdiff
= 1.0, and has an elastic behavior.

Since the Demons algorithm is based on a sum of squared

differences (SSD) and applied to MR images, whose intensities

are not standardized, a histogram matching with the reference

image is performed before each non-linear registration of

b=0 images.

We use here the symmetric version of the Log-demons

[50] where the registration is independent from the choice

of the reference image, i.e., φ−1
Iflo→Iref

= φIref→Iflo . The

forward and backward velocity fields, vIflo→Iref and vIref→Iflo ,

are computed independently as detailed previously and then

averaged.

The Log-domain Diffeomorphic Demons has the advantage

of providing stationary velocity fields that can be averaged or

negated to respectively average and invert corresponding dif-

feomorphic transformations [2]. This property is particularly

useful and efficient in the iterative steps of atlas construction

detailed in the following subsection II-B3.

3) Construction of the Morphological Atlas: The con-

struction of the atlas follows Guimond’s et al. method [17]

where the reference heart converges iteratively toward an

average heart shape. In practice, only 5 iterations are re-

quired and the process is independent to the initial reference

heart. At each iteration (t + 1), the reference heart from

previous iteration (t), I
(t)
ref , is recomputed using the aver-

age of all inverse transforms, i.e., I
(t+1)
ref = 1

N

∑N
i=1 Ii ◦

φ
Ii→I

(t)
ref

◦ φ
I
(t)
ref→I

(t+1)
ref

to converge to an average heart shape

and intensities. The transformation updating the reference

image is φ
I
(t)
ref→I

(t+1)
ref

= exp
(

1
N

∑N
i=1 vI(t)

ref→Ii

)

. This can

be computed in the Log-domain using the negated ve-

locity fields: v
I
(t)
ref→Ii

= −v
Ii→I

(t)
ref

, where all v
Ii→I

(t)
ref

’s

were previously computed during the pairwise registration

of all hearts to the reference image, thus: φ
I
(t)
ref→I

(t+1)
ref

=

exp
(

− 1
N

∑N
i=1 vIi→I

(t)
ref

)

. All steps and iterations of the atlas

construction, the N pairwise registrations (times the number

of iterations), are fully automated with no user interaction

required. This is again in contrast with the method used in

[38] which required numerous user interaction with manual

landmarks positioning.

4) Tensor Warping: The original tensor fields,

{D̃(i)}i=1,...,N , associated with each b = 0 image, are

warped to the converged average heart shape using the final

transformations {φIi→Iref}i=1,...,N . Since diffusion tensors

hold directional information, the warping of diffusion tensor

fields includes a tensor reorientation step. Among two most

common reorientation strategies [1], the Finite Strain strategy

is preferred to the Preservation of the Principal Direction for

its preservation of geometric features [38]. With the Finite

Strain strategy, the reorientation of diffusion tensors is defined

as the rotational component R = (AAt)−1/2A of the local

linear approximation A = ∇φ−1 of the first derivative of the

inverse transformation φ at each voxel. In the next sections,

the warped tensor fields are referred as {D(i)}i=1,...,N such

that D(i) = R · D̃(i) ◦ φIi→Iref ·Rt.
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C. Statistics on Tensor Fields

Statistics on diffusion tensor fields is not straightforward

due to the nature of the diffusion tensor space. Indeed, the

diffusion tensor space of symmetric positive definite matrices

does not have a vector space structure with the standard

Euclidean metric [26]. Among valid metrics proposed in the

literature [36], the Log-Euclidean metric [3] is preferred for

its simple and fast framework with a closed form solution.

Usual statistics, such as the mean and the covariance, are thus

computed with:

D = exp

(

1

N

N
∑

i=1

log(D(i))

)

(1)

Σ =
1

N − 1

N
∑

i=1

vec(∆D(i)) · vec(∆D(i))t, (2)

where ∆D(i) = log(D(i)) − log(D) and vec(D) = (D11,√
2D12, D22,

√
2D31,

√
2D32, D33)

t is the condensed form

of a diffusion tensor (redundant terms of the symmetric matrix

(Dij)i,j=1,2,3 are gathered). The mean diffusion tensor field,

D, is computed from N warped tensor fields {D(i)}i=1,...,N .

Fig. 5 shows the tractography of a few fibers from six

subjects. Fig. 6 (b) shows the tractography of the average

diffusion tensor field. The variability of the diffusion tensors,

for a particular voxel, is embedded in the covariance matrix,

Σ.

The measure of the global variability can be assessed with

the trace of the covariance matrix:

√

Trace(Σ) =

√

√

√

√

1

N − 1

N
∑

i=1

‖vec(∆D(i))‖2 (3)

In the Log-space, ∆D(i) = log
(

D(i)
)

− log
(

D
)

is equivalent

to a ratio. The square root
√

Trace(Σ) expresses, therefore,

a relative ratio of all diffusion tensors, {D(i)}i=1,...,N , to the

mean D.

The measure of local variability of the cardiac fiber struc-

tures relies on the analysis of the eigenvectors of the mean

diffusion tensor, v1,2,3 extracted from D. The standard devi-

ations of orientation differences, {σθi,j}i,j=1,2,3, between the

coupled (vi,vj) axes around vk (i.e., the variability of how

the orthogonal axes (vi,vj) rotates around vk) are computed

by projecting the covariance matrix Σ onto the orthonormal

bases {Wi,j}i,j=1,2,3:

σθi,j = arctan

(

1

2(λi − λj)2
[vec(Wi,j)

t · Σ · vec(Wi,j)]

)
1
2

(4)

where λ1,2,3 are the tensor eigenvalues in the Log-space, and

the orthonormal bases are defined with:

W2,3 =
(

v3 · v2
t + v2 · v3

t
)

/
√
2

W1,3 =
(

v3 · v1
t + v1 · v3

t
)

/
√
2

W1,2 =
(

v2 · v1
t + v1 · v2

t
)

/
√
2.

The statistics are performed directly on tensors, i.e., eigende-

composition is only necessary on the average diffusion tensor

field. There is thus no need to account for the sign ambiguity,

which is inherent from the eigenvector extraction [4], when

computing statistics.

The variability of the tensor eigenvalues measures the

coherence of the diffusion along the three principal directions.

The eigenvalues of all the tensors are expressed in the Log-

space, {λ(i)
1,2,3}i=1,...,N such that λ = log(d) where d is the

eigenvalue in the Euclidean-space. Their standard deviations

σλ1 , σλ2 , and σλ3 , are the projections of the covariance matrix

Σ onto the orthonormal bases W1,1, W2,2, and W3,3:

σλi
=

√

vec(Wi)t · Σ · vec(Wi), (5)

where the orthonormal bases are defined with:

W1 = v1 · vt
1

W2 = v2 · vt
2

W3 = v3 · vt
3.

In the Log-space, the standard deviation σλ is a ratio of all

eigenvalues expressed in the Euclidean space, {d(i)}i=1,...,N ,

relative to their mean d.

III. EXPERIMENTAL RESULTS

The statistical study of the human cardiac fiber architecture

is presented here from a global point of view, showing the

variability within a population of the whole diffusion tensor,

to a more detailed approach, showing the variability of the

principal directions of diffusion.

Due to many external factors, such as the temperature during

acquisition (known to affect the diffusion values), the tensor

fields have different scalings among all hearts. The histograms

of the traces of the tensor matrices show significant disparities

among a population. Therefore, before using them for statis-

tical analysis, all acquired tensor fields, {D̃(i)}i=1,...,N , are

normalized using the modes of the histograms of the tensor

traces for each patient. For the ith patient:

D̃(i) ← D̃(i)

1
N

∑N
j=1 mode

(

Trace(D̃(j))
)

mode
(

Trace(D̃(i))
)

The eigenvectors of the tensors fields remain unchanged with

this normalization, and the eigenvalues are equally scaled in

order to be able to compare all tensor fields on a common

reference.

A. Fiber Variability

The global variability of the tensor field is measured with

the square root of the trace of the covariance matrix (Eq. 3). Its

histogram shows a peak of variability at 13.2% (Fig. 8(a,b)).

It is important to note that this variability also includes

acquisition and registration errors. While certain areas, such as

around the apex, might show a higher variability due to a less

organized fiber structure, other areas, such as the right ven-

tricle, show an increased variability maybe due to registration

errors. Indeed, large deformations in low resolution images

make the registration challenging.
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Fig. 8. Global variability: (a) Variability of the eigenvalues in the statistical
atlas of the tensor fields. The distribution of the primary eigenvalue standard
deviations (expressed in percentage) of all hearts have a mode of σλ1

=
5.35% from the statistical mean. The second eigenvalues have a mode of
σλ2

= 6.35%. The tertiary eigenvalues have a mode of σλ3
= 8.69%.

(b) The histogram of the global variability (
√

Tr(Σ), Eq. 3) (expressed in
percentage) of the whole diffusion tensor shows a mode of 13.2%.

The distributions of the standard deviations of the three

eigenvalues are presented on Fig. 8(b). The primary eigenvalue

is less variable than the two other eigenvalues. The mode of

the standard deviations (Eq. 5) of the primary eigenvalue from

the one of the statistical mean, expressed in percentage, is

σλ1 = 5.35% compared to σλ2 = 6.35% and σλ3 = 8.69%.

The orientation of the diffusion in human cardiac fibers

has a different variability in each principal direction. The

variability around v1, v2, and v3, is measured with the rotation

of the tensor transverse (v2,v3), longitudinal (v1,v3), and

equatorial (v1,v2) planes around their normals. The standard

deviations are formulated by Eq. 4. These angular variabilities

are presented in Fig. 9. The dispersion of the fiber orientation,

v1, has a standard deviation of rotation in the tensor longitu-

dinal plane with a mode of σθ1,3 = 11.5◦, and in the tensor

equatorial plane, σθ1,2 = 13.0◦. The variability of the laminar

sheet orientation is described with the rotation of the tensor

transverse plane around the fiber. Its standard deviation is

σθ2,3 = 31.1◦. The laminar sheet structure is, thus, in humans,

much more variable than the fiber structure. This concurs with

previous canine studies [22], [23], [38], [15] where the fiber

orientation (with σθ1,3 = 7.9◦ and σθ1,2 = 7.7◦) is more stable

than the laminar sheet orientation (with σθ2,3 = 22.7◦).

B. Transmural Distribution

The variability of the fiber orientation is also analyzed by

measuring the distribution of the helix angle (vertical angle, or

helical pitch, of the fiber, Fig. 10(a)) and the transverse angle

(horizontal angle of the fiber, Fig. 10(b)) along the transmural

depth. These angles are defined to range from −90◦ to +90◦.

For instance, an helix angle of −90◦ is a fiber pointing toward

the base of the heart, an helix angle of +90◦ is a fiber pointing

toward the apex, and a transverse angle of −90◦ is a fiber

pointing toward the ventricular cavity, a transverse angle of

+90◦ is a fiber pointing outward the ventricular cavity.

(i.e., fiber pointing toward the base of the heart) to +90◦

(i.e., fiber pointing toward the apex). A prolate ellipsoidal

model of the heart [33] is fitted to the morphology of the

statistical atlas. The transmural variation of the fiber orien-

tation is, thus, easier to measure with the mapped prolate

ellipsoidal coordinates. The distributions are presented in a

joint histogram (Fig. 10(c,d)) where the angle distribution, on

the vertical axis, is plotted against all transmural distances, on

the horizontal axis.

The helix angle varies globally from −41◦(±26◦) (plus

or minus its standard deviation) on the epicardium to

+66◦(±15◦) on the endocardium. The mode of the helix angle

is −48◦ on the epicardium and +64◦ on the endocardium. The

range of the helix angle in humans, 107◦, concurs with the

results of a canine study [37] that showed a range of 110◦.

It appears to be consistent across the myocardium, as seen

on Fig. 11, only the apex presents a drastic difference. The

helix angle is strongly correlated to the transmural distance

with a correlation factor of ρ = 0.831, i.e., this suggests a

linear dependence between the helix angle and the transmural

location. This correlation also concurs with the findings of

the histological study [16] of postmortem human hearts. Their

sparse distribution of helix angles varies from about −40◦ on

the epicardium to about +40◦ on the endocardium. The main

difference between our results and the ones in [16] (human

data) and [37] (canine data) is the absence of inflection points

in the shape of the helix angle distribution. This might be

due to the low resolution of our dataset. On the other hand,

the transverse angle is less correlated with ρ = 0.286, i.e.,

it depends less on the fiber location. The average transverse

angles suggest indeed that the fibers are relatively parallel

to the epicardium with an average angle of +7◦(±31◦). The

angles appear to be more stable in the midwall with an average

transverse angle of +9◦(±12◦). The transverse angles are

higher on the endocardium with +34◦(±29◦).
The delineation of the myocardium into 17 AHA segments

(by the American Heart Association [7]) in the left ventricle

gives more details in each of these regions. The angular

variability is summarized in Fig. 11. The correlation factor

of the helix angle appears to be high across all myocardial

segments. The apex (segment 17), however, shows a low

correlation factor of ρ = 0.355. A canine study [37] showed

similar results with a coherent helix angle, also with small

dissimilarities across the segments.

IV. LIMITATIONS

The statistical analysis brings out a challenging task, still

unsolved: distinguishing the true variability of the fiber struc-

ture from errors due to acquisition and registration. The

statistical analysis is likely to suffer from several limitations.

Starting with the imaging of the cardiac fibers, the choice

of the acquisition protocol affects the image resolution and

noise. It was shown in [14] that among a panel of acquisition
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Fig. 10. Transmural variability: (a) Illustration of the helix angle in a
myocardial segment (angle on the tangent plane of the epicardium, in green),
(b) of the transverse angle (angle on the horizontal normal plane, in orange),
(c) joint histogram showing the distribution of the helix angle, varying from
−41◦ to +66◦, and (d) the transverse angle, which shows fibers more parallel
to the epicardium. The x axis is the transmural distance from epicardium (left)

to endocardium (right). The y axis is the helix or transverse angle. The color
is the probability distribution of an angle for a particular transmural distance.
The thick blues lines are the average angles across the wall, and the dashed
lines are the one-standard-deviation envelope. The correlation factor between
the angle and the transmural distance is given.

protocols applied specifically to human heart ex vivo DWI with

a comparison of different sets of directions and repetitions, the

use of 12 directions with 4 repetitions gives for ex vivo the

best results in terms of fiber direction coherence, while only 6

directions are preferred in [19]. Using 48 unique directions

might for instance provide a better angular resolution in

addition to a better signal to noise ratio. The imaging protocol

described in [12], [13] shows that the peak signal-to-noise ratio

during acquisition of the dataset is 16.44 dB. The variability

due to acquisition can be assessed more precisely by imaging

several times the same heart, or with bootstrapping resampling

methods [25], [20], [35] when the number of acquisitions is

limited. Our results include these inherent uncertainties and

can be further refined with more precise acquisition schemes.

The variability study can also be limited by a partial volume

effect which is enhanced in the presence of larger voxel

sizes. For instance, the myocardium in our dataset (which has

a resolution of 2mm3) appears as 6 or 7 voxel wide. The

spatial resolution was mostly limited due to time constraints.

Indeed, the hearts had to be imaged soon after death within a

limited amount of time before being given back for autopsy

in its original state. Additionally, the lack of fixative or any

solutions to prevent contracture may have influenced the fiber

architecture. Nonetheless, our framework is independent of the

acquisition protocol and our results can be refined in the future

with any improved diffusion tensor imaging protocol.

The method used to construct the atlas also has limitations.

For instance, the segmentation of the myocardium has not

been designed to remove the few voxels representing the

fat lying on the myocardium. This is for instance observed

in subject 1 (Fig. 5) where darker voxels surrounds part of
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Fig. 11. Joint histograms showing the distribution along the transmural depth of (a) the helix angle and (b) the transverse angle of the human cardiac fibers,
from the epicardium (left side of histogram) to the endocardium (right side of histogram), in the 17 AHA segments of the left ventricle. The thick blue lines
are the average angles across the wall, and the light gray lines are the one-standard-deviation envelope. The correlation factor between the angle and the
transmural distance is given for each segment.

the myocardium. Another limitation comes from the large

variability in the heart shapes among a population, which

makes the registration a challenging step with the presence

of large deformations. This is for example particularly true

in the right ventricular and apical regions. The Diffeomorphic

Demons, guaranteeing smooth direct and inverse deformation

fields, were chosen for this reason. Although no ground

truth is available to assess the registration accuracy, the Dice

metrics between the myocardium masks of all subjects and

the atlas (defined as the ratio of intersection to addition

set: 2 (|S| ∩ |T |) / (|S|+ |T |), with |S| and |T | being mask

volumes), which range from 0.86 to 0.88, can provide a certain

confidence that there is a good boundary overlap between all

registered hearts and the atlas. Moreover, the statistical study is

currently limited [54] by the number of available hearts. Since

human hearts classified as healthy are extremely difficult to

obtain, we chose to use the maximal number of hearts available

to us. Our analysis on the variability of the fiber architecture

is thus limited by the inherent errors due to acquisition and

registration.

V. DISCUSSION AND CONCLUSION

The work reported in this paper provides the first statistical

atlas of the human cardiac fiber architecture that enabled a

quantitative analysis of the fiber variability among a healthy

population. The statistical atlas has been constructed from 10
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ex vivo hearts with a method minimizing user interaction. The

hearts were non-rigidly registered by purposely omitting any

micro structure information (e.g., fiber orientations) in order

to avoid a bias in the statistical study of the fiber architecture

(e.g., similarly to studying the variability of fingerprint lines,

we would not include information on these line orientations,

as this is exactly what we want to measure; we want to

see how variable the line orientations are in different regions

and across a population; registering directly these fingerprint

lines would in fact remove, or lessen, any variability in their

orientations). The transmural walls were all registered in a

similar manner, all based on the myocardium shapes. The

spatial variability of the fiber architecture were thus preserved

in the registered tensor fields. The deformation fields, obtained

while constructing the morphological atlas of the heart, were

used to warp all tensor fields, with the finite strain reorientation

strategy, to the atlas reference. Another approach would have

been to warp directly the diffusion-weighted images and

reestimate the diffusion tensor. This approach would have

required a strategy for the local deformation of the gradient

orientations which is also not necessarily trivial. A mean

tensor field was computed using the Log-Euclidean metric.

The variability of the mean tensor field is expressed in a

covariance matrix. Global statistics on the whole diffusion

tensor highlights myocardial regions of high variability. The

diffusion tensors in the compact left ventricular myocardium

remain stable with a global variability of 13.2%. The statistical

framework provides means to study the variability of the

eigenvectors in specific directions, where, the fibers are shown

to vary with ±11.5◦ in the v1,3 plane and with ±13.0◦
in the v1,2 plane. Their variability is coherent across the

whole myocardium. The secondary and tertiary eigenvectors,

assumed to be associated with the laminar sheet normal, are,

however, less stable compared to the fiber structure with a

variability of ±31.1◦. This concurs with a previous canine

study [38]. Such high variability either shows that the laminar

sheet structure is less organized than the fiber structure (e.g.

the presence of two populations of orthogonal laminar sheets

randomly distributed over a given heart [21], [31]), or not

be present everywhere. Additionally, the distribution of the

actual angular values of the fiber orientation has been studied

across several myocardial segments. The helix angle spans

from −41◦(±26◦) on the epicardium to +66◦(±15◦) on the

endocardium. The angular transmural distribution shows an

helix angle highly correlated with the transmural depth. The

histological study of postmortem human hearts [16] similarly

observe a transmural correlation of the helix angle. Differences

in the shape and in the variance of the helix angle distribution

between our results and the ones in [16], [38] might be due

to our coarser resolution. The average transverse angle shows

that the cardiac fibers are relatively parallel to the myocardium

epicardium. The small deviations from the average transverse

angle might also be due to an underlying spiral architecture

of the fibers, where fibers tracked initially on the epicardium

create a spiral around the ventricle and find themselves at

last to be on the endocardium. This change might occur in

the apical sections where the deviations from zero are more

apparent than in the basal sections.

The statistical study of the fiber architecture which plays a

key role in mechanical and electrical cardiac functions, gives

a better understanding of the human heart by providing the

spatial distribution of fiber angles with their variations. These

numbers will eventually be refined with the availability of

more ex vivo human hearts and with DT-MRI acquisitions at

higher resolutions. Moreover, the computation of the statistical

atlas is simplified with the developed semi-automatic method.

The human statistical atlas will thus be easily refined with

future acquisitions of healthy hearts. Larger multi-population

studies involving many hearts will likewise benefit from our

method. For instance, cardiac pathologies could be character-

ized by comparing the fiber architecture against this atlas of

healthy hearts [30]. A more appropriate comprehension of the

human cardiac fiber architecture is also relevant to the creation

of more elaborate computational models that could for instance

be used for the planning of radiofrequency ablation (RFA)

and cardiac resynchronization therapy (CRT), or to fiber-

based surgical treatments [8], [9], which offer a promising

perspective to the restoration of failing ventricles. The use

of this human statistical atlas could also ideally improve the

diagnosis and the follow-up of cardiac diseases related to fiber

structural defects. With ongoing research in in vivo DT-MRI

or in Shear Wave Imaging [27], extrapolation of sparse in

vivo acquisitions with an accurate human atlas could pave the

way for more personalized in vivo imaging [48] and cardiac

modeling.
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