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Abstract. Learning surface data is fundamental to neuroscience. Recent
advances has enabled the use of graph convolution filters directly within
neural network frameworks. These filters are, however, constrained to a
single fixed-graph structure. A pooling strategy remains yet to be defined
for learning graph-node data in non-predefined graph structures. This
lack of flexibility in graph convolutional architectures currently limits
applications on brain surfaces. Graph structures and number of mesh
nodes, indeed, highly vary across brain geometries. This paper proposes a
new general graph-based pooling method for processing full-sized surface-
valued data, as input layers of graph neural networks, towards predicting
subject-based variables, as output information. This novel method learns
an intrinsic aggregation of input graph nodes based on the geometry
of the input graph. This is leveraged using recent advances in spectral
graph alignment where the surface parameterization becomes common
across multiple brain geometries. These novel adaptive intrinsic pooling
layers enable the exploration of entirely new architectures of graph neural
networks, which were previously constrained to one single fixed structure
in a dataset. We demonstrate the flexibility of the new pooling strategy
in two proof-of-concept applications, namely, the classification of disease
stages and regression of subject’s ages using directly the surface data
from varying mesh geometries.

1 Introduction

The analysis of brain surface data is essential for understanding the underlying
mechanisms of cognition and perception. This surface has, however, a complex
geometry. Its complex folding notably hinders current computational approaches
for analyzing brain imaging data. Existing methods [1] are either volumetric or
surface-based. On the one hand, volumetric approaches [2] operates over the
whole brain, which is ideal for studying the brain fiber structure within the
brain. The volumetric representation of imaging data, however, mostly ignore
the geometry of the brain surface. Neighboring voxels in a volume may be quite
far apart on the surface of a brain (see Fig. 1), posing a challenge for analyz-
ing surface data. On the other hand, surface-based approaches [3,4] often over
simplify the brain geometry to a sphere. Although topologically equivalent, the
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Fig. 1. Complex geometry of the cerebral cortex. As illustrated, two nearby points in
the volume may in fact be far apart on the cortical surface.

important metric distortions, between a brain surface and a sphere, severely bur-
den computations. For instance, FreeSurfer [3], a widely popular framework for
brain analysis, requires several hours to inflate a brain into a sphere and parcel-
late its surface. Spherical harmonics approaches [5] also fundamentally rely on
a spherical simplification of the brain.

Machine learning approaches has made recent breakthroughs in computer
vision. In particular, convolutional neural networks [6] offer a computational
advantage in terms of speed and accuracy over conventional approaches. They
are, for instance, used in brain imaging for image segmentation [7,8]. However,
they were limited to grid-structured data, such as images or volumes organized
in a lattice. Recent advances [9,10,11,12] enable convolution operations over
graphs by exploiting spectral analysis where convolutions translates into multi-
plications in a Fourier space. Convolutions are manipulated with eigenfunctions
of graph Laplacian operators [13], approximated with Chebyshev [11] or Cay-
ley polynomials [14]. These learned convolution filters are expressed in terms of
mixtures of Gaussians [12] or splines [15]. These methods are, however, limited
to a fixed graph structure, inadequate for brain imaging. Brain surfaces have,
indeed, varying geometries with non-fixed degrees of nodes and edges across
meshes. These variabilities pose a geometrical challenge [16] since the values
of a Laplacian eigenfunction can drastically differ between brains with differ-
ent surface geometries. To this effect, a learned synchronization [17] corrects for
changes in eigenfunctions. An alignment of eigenbases [18] similarly provides a
common parameterization of brain surfaces. Such aligned eigenbases enabled the
direct learning of surface data across multiple brain geometries [19]. The archi-
tecture of these graph convolutional neural networks are, however, limited to use
fixed sizes across hidden layers since pooling strategies remain to be defined on
graph neural networks. Currently, heuristics are often used to mimic max pool-
ing strategies [9,11,20]. They include varying the number of feature dimensions
across layers [9] while retaining fixed sizes of layers, or relying on binary trees
[11] or Graclus clustering methods [20] to coarsen the initial graph. They usually
constrain choices of sizes in hidden layers or, more generally, architectural flex-
ibility in pooling operations. This limits graph convolutional networks to fixed
architectures or point-wise operations [12], such as node classification [21]. This
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Fig. 2. An overview of the proposed graph convolutional network for subject-specific
cortical surface analysis.

limitation prevents, for instance, whole subject classification of diseases under
graphs of varying sizes.

This paper proposes a new geometric, adaptive pooling strategy for graph
convolutional networks. Its flexibility enables arbitrary architectures in graph
neural networks for extracting global subject-wise information from node-wise
surface data in varying brain geometries. To do so, the novel pooling strategy
learns node associations between layers from the surface data. The leverage of
spectral node coordinates [18] enables a precise localization of prominent asso-
ciations between hidden layers. This, for instance, contrasts with hierarchical
approaches [22] where nodes lack intrinsic localization within a graph. The flex-
ibility of the new pooling strategy is demonstrated in two proof-of-concept ap-
plications, with the classification of disease stages and the regression of subject
ages directly from node-wise surface data. Both are shown to improve recent
state-of-the-art on the ADNI dataset [23]. This is, to the best of our knowledge,
the first application of graph convolutional networks with pooling layers for clas-
sifying or regressing subject-wise information from full-sized surface-valued data
using varying brain geometries.

2 Method

We start by explaining how standard convolutions can be extended to non-
rigid geometries such as surfaces. We describe next our end-to-end learnable
pooling strategy which provides subject-specific aggregation of cortical features.
Subsequently, we present how our proposed graph convolutional neural network
operates with pooling layers to predict subject-based information such as stage
of disease or brain age, directly from surface-valued data.

2.1 Geometric convolutions on surfaces

In a standard CNN, the input of the network is given as a set of features ob-
served over a regular grid of points, such as pixels in 2D or voxels in 3D. The
network processes information from input to output predictions with a cascade
of convolutional layers, typically composed of a convolution operation followed
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by a non-linear activation function, typically a sigmoid or ReLU. This can be
formalized as follows. Let Y(l) ∈ RN×Ml be the input feature map at convolution

layer l, such that y
(l)
iq is the q-th feature of the i-th input node. The input feature

map consists of N input nodes, each with Ml dimensions. Assuming a 1D grid
for simplicity, the output feature map of layer l, convoluted with one kernel of

size Kl, is given by y
(l+1)
ip = f(z

(l)
ip ), where

z
(l)
ip =

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
i+k, q + b(l)p . (1)

In this formulation, w
(l)
pqk are the convolution kernel weights; b

(l)
p , the bias weights

of the layer; and f , the activation function.
In the case of a general surface, points are not necessarily defined on a regular

grid and can lie anywhere in a 3D Euclidean space. Such surface can conveniently
be represented as a mesh graph G = {V, E}, where V is the set of nodes cor-
responding to points and E is the set of edges between the graph nodes. Given
a node i ∈ V, we denote as Ni = {j | (i, j) ∈ E} the set of nodes connected to
i, called neighbors. We extend the concept of convolution to arbitrary graphs
using the more general definition of geometric convolution [12,19,15]:

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
jq · ϕij(θ

(l)
k ) + b(l)p , (2)

Here, ϕij is a symmetric kernel parameterized by θk, relating the relative position
of neighboring nodes j to nodes i when computing the convolutions. In [12], ϕij
is defined as a Gaussian kernel with learnable parameters θk = {µk,Σk} on the
local polar coordinate uij = (φij , θij) from node i to j:

ϕij(θk) = exp
(
− 1

2 (uij − µk)
>

Σ−1k (uij − µk)
)
. (3)

Fig. 3 illustrates the relationship between conventional and geometrical con-
volutions. The standard convolution (left) can in fact be seen as a special case
of a geometric convolution (right), for which nodes are placed on a regular grid
and kernels are unit impulses placed at the grid position of neighbor nodes,
effectively spherical Gaussian kernels with zero variance.

2.2 Extension to multiple complex surfaces

An important limitation of the geometric convolution model presented above is
its inability to process surfaces which are aligned differently. Since local coordi-
nates uij are determined using a fixed coordinate system, any rotation or scaling
of the surface mesh will produce a different response for a given set of kernels.
Additionally, as illustrated in Figure 1, geometric convolutions in a Euclidean
space is not well suited for complex surfaces such as the highly folded brain,
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Fig. 3. Illustration of standard grid-based 2D convolutions (left) and geometric graph
convolution (right). The challenge is to exploit kernels on arbitrary graph structures,
and to add pooling operations over convolutional layers of graph nodes.

where nearby points in space may actually be far apart on the surface in terms
of geodesic distance.

We address the issues of inter-surface alignment and intra-surface distance
using a graph spectral embedding approach. Specifically, we map a surface graph
G to a low-dimensional subspace using the eigencomponents of its normalized
Laplacian L = I −D−

1
2 AD−

1
2 , where A is the weighted adjacency matrix and

D is the diagonal degree matrix with Dii =
∑
j Dij . While binary adjacency

values could be used in A, we instead define the weight between two adjacent
nodes as the inverse of their Euclidean distance. Denoting as UΛU> the eigen-
decomposition of L, we compute the normalized spectral coordinates of nodes
as the rows of matrix U

∧

= Λ−
1
2 U. Because the most relevant characteristics

of the embedded graph are captured by the principal spectral components of
L, as in [24], we limit the decomposition to the d = 3 first smallest non-zero
eigenvalues of L. The use of a low number of main spectral components is also
computationally efficient.

Since the spectral embedding of L is only defined up to an orthogonal trans-
formation, we must align spectral representations of different surface graphs to

a common reference. Let U
∧(0)

be the normalized spectral embedding of this ref-

erence. We align an embedding U
∧

to U
∧(0)

with an iterative closest point (ICP)
method [18]. In this method, each node i ∈ V is mapped to its nearest reference
node π(i) ∈ V(0) in the embedding space. The transformation R between corre-

sponding nodes is found by approximating R = (U
∧>

U
∧

)−1(U
∧>

U
∧(0)

). Denote as
u
∧
i the normalized spectral coordinates of node i, the overall alignment process

can be expressed as

arg min
π,R

N∑
i=1

∥∥u∧i R − u
∧(0)
π(i)

∥∥2
2
. (4)

This optimization is solved by updating the node correspondence mapping π
and the transformation matrix R as described above, until convergence [18].

We use the aligned spectral embedding Ũ = U
∧

R to define the local coordi-
nates corresponding to an edge (i, j) ∈ E : uij = ũj−ũi. As on Fig. 3 (right), and
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based on Eq. (2), the convolution at node i therefore considers kernel responses

ϕij(θ
(l)
k ) for neighbor nodes j, with respect to the spectral coordinates of i.

2.3 Adaptive graph convolution pooling

In standard CNNs, pooling is typically carried out by aggregating values inside
non-overlapping sub-regions of features maps. In graph convolutional networks
[9,10,11,12], this approach is not applicable for several reasons. First, nodes are
not laid out on a regular grid. This prevents aggregation of features in pre-defined
regions. Second, the density of points may spatially vary in the embedding space.
Pooling regions of fixed size or fixed shape are, therefore, not suitable for graphs
with different geometries. Lastly, and more importantly, input surface graphs
may have a different number of nodes, while the output may have a fixed size.
This is the case when predicting a fixed number of class probabilities from dif-
ferent brain geometries.

The limitations of traditional pooling techniques for graph convolutional net-
works can be addressed using different strategies. A first strategy is to aggregate
features across all nodes in a global pooling step, typically after the last convo-
lutional layer. A major problem with this strategy is the loss of all geometric
and structural information during pooling. Another strategy, proposed by Wang
et al. [25], performs a hierarchical clustering of nodes using their spectral coor-
dinates, with a subsequent pooling of node features within each cluster. While
this approach considers the graph structure, it is restricted by the chosen num-
ber of clusters. Furthermore, clusters are defined based only on node proximity
in the embedding space, and the values to predict are ignored. Consequently,
this unsupervised pooling strategy may not be optimal for the classification or
regression task at hand.

In this work, we propose an end-to-end learnable pooling strategy for the
subject-specific aggregation of cortical features. Inspired by the recently-proposed
differential pooling technique of Ying et al. [22], this method splits the network
in two separate paths, one for computing latent features for each node of the in-
put graph, and another for predicting the node clusters by which the features are
aggregated. This two-path architecture is shown in Fig. 2. The feature encoding
path is similar to a conventional CNN, and produces a sequence of convolutional
feature maps {Y(1), . . . ,Y(l)} with Y(l) ∈ RN×Ml . The clustering path consists
of sequential convolutional blocks, but replaces the activation function of the last
block with a node-wise softmax. The output of this last block, S ∈ [0, 1]N×C ,
gives for each node i the probability sic that i belongs to cluster c. Pooled features
Ypool ∈ RC×Ml are computed as the expected sum of convolutional features in
each cluster:

ypoolcp =

N∑
i=1

sic · y(l)ip , Ypool = S>Y(l) (5)

At this stage, nodes are now replaced by clusters. The convolutions of node
features, downstream the pooling operation, requires computing the adjacency
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matrix of node clusters, Apool. The adjacency weights between pooling clusters
c and d are defined as

apoolcd =

N∑
i=1

N∑
j=1

sic · sjd · aij , Apool = S>AS. (6)

As described in [22], the bilinear formulation of Eq. (5) faces a challenging op-
timization problem with several local minima. To facilitate the learning process
and obtain spatially smooth clusters, our approach adds the following regular-
ization term:

Lreg(S) =

N∑
i=1

N∑
j=1

aij · ‖si − sj‖2 = tr(SLS>), (7)

where si denotes the cluster probability vector of node i.

2.4 Architecture details

The overall architecture of the proposed graph convolution network is shown
in Fig. 2. As input to the network, we give the cortical surface features xi and
aligned spectral coordinates ũi of each node i. Although various features could
be considered to model the local geometry of the cortical surface [3], we used
sulcal depth and cortical thickness, since the first one helps delineate anatomical
brain regions [26] and the latter is related to ageing [27] and neurodegenerative
diseases such as Alzheimer’s [28].

The network is composed of two cascaded convolution-pooling blocks, fol-
lowed by two fully-connected (FC) layers. The first block generates an N × 8
feature map and an N × 16 cluster assignment matrix, in two separate paths,
and combines them using the pooling formulation of Eq. (5) to obtain a pooled
feature map of 16× 8. In the second block, pooled features are used to produce
a 16× 16 map of features, pooled in a single cluster. Hence, the second pooling
step acts as an attention module selecting the features of most relevant clusters.
The resulting 1× 16 representation is converted to a 1× 8 vector using the first
FC layer, and then to a 1× nb.outputs vector with the second FC layer.

Except for the cluster probabilities and network output, all layers employ the

Leaky ReLU as activation function: y
(l)
ip = max(0.01z

(l)
ip , z

(l)
ip ). Moreover, for the

graph convolution kernel ϕij of Eq. (2), we used the B-spline kernels proposed by
Fey et al. [15]. Compare to Gaussian kernels [12], this kernel has the advantage
of making computation time independent from the kernel size.

For training, the loss function combines the output prediction loss and cluster
regularization loss on the convolution-pooling block:

L(θ) = Lout(θ) + αLreg

(
S(1)(θ)

)
, (8)

where α is a parameter controlling the amount of regularization. For classification
tasks (i.e., disease prediction), Lout is set as the cross-entropy between one-
hot encoded ground-truth labels and output class probabilities. In the case of
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Increase in alpha (𝛼)
𝛼 = 0.001 𝛼 = 1 𝛼 = 1000

Fig. 4. Effect of α on clustering: The clusters learned with different strength of
α. Smaller values of α produces multiple (10) spatially inconsistent clusters (left).
Anatomically meaningful regions (middle) are learned with α = 1 with 5 different
clusters. α = 1000 (right) results mimicking global pooling with 3 clusters. Nodes are
color-coded to highlight the clustering.

regression (i.e., brain age prediction), we use mean squared error (MSE) for
this loss. Network parameters are optimized with stochastic gradient descent
(SGD) using the Adam optimizer. Experiments were carried out on an i7 desktop
computer with 16GB of RAM and a Nvidia Titan X GPU. The model takes less
than a second for disease classification or age regression.

3 Results

We now validate our adaptive pooling approach. As a benchmark, we perform a
disease classification and a brain age prediction using the ADNI dataset [29]. We
use all available 731 brain surfaces, generated by FreeSurfer and manually labeled
as normal cognition (NC), mild cognitive impairment (MCI), and Alzheimer’s
disease (AD). Each surface includes pointwise cortical thickness and sulcal depth.
Meshes have a varying number of vertices and different triangulation. In a first
experiment, we evaluate the influence of the regularization parameters α on the
clustering of our learning framework. In a second experiment, we highlight the
advantages of working in the spectral domain for disease classification (NC vs
AD, MCI vs AD, and NC vs MCI). Finally, learning performance is measured
when regressing the brain age operating directly in a spectral domain.

3.1 Effect of regularization on clustering

In practice, we use the Laplacian regularization Lreg within the loss function to
avoid early spurious local minima when training for clustering. We have a hyper-
parameter in our formulation α controlling regularization. We randomly split the
ADNI dataset into a 70-10-20% ratio for training, validation and testing.

To evaluate the effect of α, we first set C1 = 16 in the pooling path as
a maximum number of possible clusters in a pooling layer. The goal of this
experiment is to study how the spatial consistency of clusters varies with an
increasing regularization. Fig. 4 shows the change in cluster assignments when
increasing α in the NC vs AD classification task.
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The spatial consistency of the clusters obtained with lower α = 0.0001, en-
forcing a lower regularization, results in highly scattered regions, as seen on the
left of Fig. 4. Equal weighting of Lout and Lreg, with α = 1, results in consistent
clustered regions in the pooling layer. The middle of Fig. 4 shows clustered re-
gions corresponding to prominent anatomical regions on the surface of the brain.
A strong regularization, with α ≥ 10, results in higher level pooled regions, as
seen on the right of Fig. 4. There are fewer clusters, with consistent regions that
may relate with anatomical brain lobes.

3.2 Disease classification

Our method is now evaluated in a classification problem. To do so, we validate
the performance of our algorithm on the ADNI dataset for NC vs AD, MCI vs
AD and NC vs MCI binary classification problem, using all available 731 brain
surfaces, generated by FreeSurfer. We compare our method with a random forest-
based approach [30]. This baseline processes similar surface-based information,
such as cortical thickness and sulcal depth, using the same dataset.

One of our contributions is to provide pooling operations in a geometry-aware
domain. This is enabled by aligning spectral embeddings of brain surfaces across
various mesh geometries. We first illustrate the current limitations of learning
pooling operations without local spectral features. Models are trained models
with only cortical thickness and sulcal depth. We also evaluate the improvement
of our model performance by adding geometric information as spectral coordi-
nates to the graph learning framework. We train three independents models to
classify NC vs AD, MCI vs AD, or NC vs MCI. We use the same random split
using the same architecture described earlier for each of our three models.

The performance on classification task is reported in Table 1. The accuracy
for NC vs MCI is 76% without the use of geometric information. Our graph
convolution network with spectral information indicates an accuracy of 89.33%
for the same task. This is a 13.33% improvement. This gain in performance
illustrates the advantage of using geometric information when processing surface
data. Improvements are also observed when classifying MCI vs AD and NC vs
MCI, with an increase of 2.89% and 6.20% respectively.

Table 1. Evaluation of the proposed work: Average accuracy of disease classifica-
tion, in %, with standard deviation over the complete ADNI dataset. First row shows
performance of a random forest with multiple cortical-based features [30]. Second row
shows performance of our graph convolutional model without geometrical information
(spectral). Last row indicates the results of our model with spectral shape information.

Input NC vs AD MCI vs AD NC vs MCI

Random forest (Cortical-based) [30] 80 ± 5 65 ± 6 63 ± 4

Ours (Thick. + Depth) 76.00 ± 6.06 74.03 ± 8.63 63.71 ± 5.72
Ours (Spectral + Thick. + Depth) 89.33 ± 4.30 76.92 ± 4.78 70.79 ± 6.40
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Fig. 5. Distribution of absolute prediction error (left) and predicted minus real
age (right), for NC and AD test subjects. Our adaptive pooling strategy yielded graph
models that could correctly capture age discrepancies between real and geometry-based
ages, as expected between subjects with NC and AD.

3.3 Brain age prediction

In this experiment, our method is demonstrated in a regression problem where
the brain age is predicted using pointwise surface-based measurements. We train
our model on NC brains to regress brain ages. A model is learned with mean
square error between real and predicted age with Lout as regularization. The
graph convolution model uses cortical thickness, sulcal depth and spectral in-
formation as input. The model trained only on NC brain surfaces is then used
to predict the real age of NC and AD subjects. Finally, we assess improvement
due to the use of spectral coordinates, by comparing a model trained with and
without geometric information.

The network architecture is illustrated in Fig. 2. The mean absolute error for
the model predicting the real age on the NC subject is 4.35 ± 3.19 years. How-
ever, when the model is tested on the AD subjects, the prediction mean absolute
error increases to 6.80 ± 6 years. The brain age calculated as the difference be-
tween prediction of our model and real age for NC and AD subjects indicate a
statistically significance with a p-value of 0.0032. The real versus predicted ages
over NC and AD is shown in Fig. 5.

4 Conclusion

We presented a novel strategy that enables pooling operations on graph con-
volutional networks of arbitrary graph structures. The ability to learn pooling
patterns among graph nodes offers the possibility of exploring new graph-based
neural network architectures. This new flexibility in designing network archi-
tectures is highly relevant for brain surface analysis. Subject-based prediction
is, indeed, often drawn from surface-based values that resides on heterogeneous
geometries.

Our experiments explore two different applications. In a first evaluation, the
stage of Alzheimer’s disease is learned from surface data, including cortical thick-
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ness and sulcal depth. Our results show that point-wise surface values can be
efficiently aggregated into a fixed number of class probabilities using a simple
network architecture. The classification accuracy in recent state-of-the-art ap-
proaches exploiting directly surface-based features, such as cortical areas, thick-
ness and other measurements [30], indicates that our graph pooling strategy
provides an increase in accuracy from 63–80% to 70–89% on the ADNI dataset
(Table 1). This is an 11% improvement. A closer evaluation also reveals that
most of the performance gain occurs when spectral localization of graph nodes
is used in the learning of pooling patterns. This indicates that node localization
is essential to learn pooling strategies. Our method enables, therefore, on the
one hand, new graph neural network architectures, via our proposed spectral
pooling strategy, and on the other hand, a novel spatially varying learning of
pooling patterns, via the spectral localization of probable graph patterns. In a
second evaluation, the age of subjects are predicted using the geometry of their
brains with point-wise surface data. Whole subject-based values, in this case, the
subject’s age, is regressed using our flexible pooling strategy. The architecture of
the graph convolutional neural network can combine pooled layers of decreasing
sizes, from full-sized cortical feature vectors to a single output for the predicted
age. This experiment indicates that such new architectures can yield graph-based
regressor of subject’s characteristics directly from surface-based features lying
on diverse brain geometries. The results shows that our graph networks could
correctly capture the age discrepancies between the real age of a subject and
its predicted geometry-based age. As expected, subjects with Alzheimer’s have
higher discrepancies than subjects with normal cognition (Fig. 5).

To summarize, our pooling strategy enables the exploration of a new family
of architectures for graph convolutional neural networks. However, the proposed
method depends on having datasets of comparable brain geometries. The spec-
tral decomposition of graph Laplacian, indeed, assumes that shapes are topolog-
ically equivalent. Heterogeneity in holes and cuts in datasets of surfaces remains
challenging to exploit since they may produce incompatible sets of Laplacian
eigenvectors. This method is consequently inadequate for applications where
major geometrical changes exist, such as when tumors are ablated. Neverthe-
less, our proposed pooling strategy remains highly relevant for a wide range of
applications where surface data needs to be pooled sequentially in layers from
full-size surface-valued vectors to single whole-subject characteristics.
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