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Abstract. Efficiently quantifying predictive uncertainty in medical im-
ages remains a challenge. While Bayesian neural networks (BNN) offer
reliable predictive uncertainty, they require substantial computational
resources to train. Although Bayesian approximations such as ensembles
have shown promise, they still suffer from high training costs. Existing
approaches to reducing computational burden primarily focus on lower-
ing the costs of BNN inference, with limited efforts to improve training
efficiency and minimize parameter complexity. This study introduces a
training procedure for a sparse (partial) Bayesian network. Our method
selectively assigns a subset of parameters as Bayesian by assessing their
deterministic saliency through gradient sensitivity analysis. The resulting
network combines deterministic and Bayesian parameters, exploiting the
advantages of both representations to achieve high task-specific perfor-
mance and minimize predictive uncertainty. Demonstrated on multi-label
ChestMNIST for classification and ISIC, LIDC-IDRI for segmentation,
our approach achieves competitive performance and predictive uncer-
tainty estimation by reducing Bayesian parameters by over 95%, signifi-
cantly reducing computational expenses compared to fully Bayesian and
ensemble methods.

Keywords: Uncertainty · Sparsity · Sensitivty Analysis · Bayesian Net-
works · Segmentation · Classification

1 Introduction

Unlocking the full potential of deep learning (DL) diagnostic systems in medical
imaging crucially depends on precision in gauging predictive uncertainty. With
a firm grasp on uncertainty, effectively quantifying and conveying the risks tied
to model predictions becomes easier for clinicians [23]. As opposed to qualitative
measures of uncertainty, such as saliency maps [27], predictive uncertainty is a
quantitative measure of confidence or lack thereof in model prediction [23]. DL
algorithms often fail to estimate model uncertainty, leading to unreliable predic-
tions with overconfident false predictions [12,10]. This issue arises as DL models
commonly assign poorly calibrated probabilities, posing risks in interpretation
and decision-making [12,10]. BNNs represent parameters as random variables,
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(a) Deterministic (b) Bayes (c) Layer-Partial (d) Sparse-Partial

Fig. 1: Various model implementations of deterministic (a), Bayesian (b), and
partial Bayesian (c, d), where black connections are deterministic, and red are
probabilistic (Bayesian). Partial Bayesian models can be implemented in two
distinct approaches: (c) where a single or multiple layers can be set as Bayesian,
or (d) sparse approach where a selected number of connections can be set as
Bayesian.

characterized by distributions rather than single point estimates (Figure 1b).
BNNs, therefore, provide average predictions and uncertainty estimates by sam-
pling from parameter distributions. The major limitations of BNNs stem from
their significant computational costs and noisy loss landscape associated with
increased training complexity and high parameter count [18].

Recent attempts have been made to reduce the computational costs associ-
ated with Bayesian inference by post-hoc processing methods [17,31,29]; how-
ever, they do not address the costs associated with training. Few studies have
utilized a strategy of conducting Bayesian inference on the output layer of a
given neural network [3,18,30] as a means of reducing the computational over-
head (see Figure 1c). While previous research has explored strategies for op-
timizing Bayesian layer placement and justifying its selection [36,26,30], there
remains a lack of investigation into further decreasing the parameter complex-
ity of Bayesian training and inference. A Bayesian subnetwork selection using
second-order Hessian analysis approximating a fully Hamiltonian-Monte-Carlo
(HMC) [25] Bayesian network was proposed, achieving competitive uncertainty
quantification [6]. However, the method requires computing and storing the full
covariance matrix, making it impractical for more complex tasks such as seman-
tic segmentation [6]. While there exist other Bayesian approximation methods,
such as Monte-Carlo (MC) dropout [11] and deep ensembles [21], they have their
limitations. MC-dropout exhibits overconfidence, posing risks in safety-critical
applications, while deep ensembles incur high computational costs due to the
requirement of training and storage of multiple models for inference.

In contrast to Bayesian models, there have been successful attempts to uti-
lize sparsity for reducing model parameter complexities in deterministic models
[13,22,7,8]. Parameter sparsity involves pruning connections within a neural net-
work to accelerate model convergence and reduce computational overhead. Early
studies involve reducing network size by pruning the weights and re-training
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through saliency analysis [22]. LeCun et al. [22] show that reducing the number
of parameters by more than 30% resulted in no impact on the model perfor-
mance. Other methods have used second-order Hessian-based analysis [24,14] to
prune weights; however, such approaches are impractical with larger and more
complex modern networks. More recent approaches introduce parameter spar-
sity through pre-defined randomized sparsity [7], structured sparsity [34], and
dynamic in-training drop-and-grow algorithm [8,9]. Introducing sparsity in neu-
ral networks has improved model performance, accelerated convergence, and
regularized the network, improving model generalization [16].

This study aims to reduce the computational cost of training Bayesian neural
networks by decreasing the number of Bayesian parameters. We achieve this by:

1. Promoting sparsity among Bayesian parameters based on strong determin-
istic predictive performance (Figure 1d).

2. Introducing a training method to integrate mixed deterministic and Bayesian
parameters into the network architecture.

3. Demonstrating our training approach for medical image classification and
segmentation, achieving competitive performance with over 95% reduction
in Bayesian parameters.

The proposed method, depicted in Figure 2, initializes a partial Bayesian
NN3 using estimated points from a trained deterministic NN. Specific param-
eters are designated as Bayesian based on their saliency, with the degree of
“Bayesian-ness” controlled by a hyperparameter. Experimental results in classi-
fication and segmentation demonstrate that assigning 1% the network parame-
ters as Bayesian can yield high-quality predictive uncertainty while preserving
model performance. This approach accelerates BNN convergence with significant
savings in computational cost.

2 Methods

2.1 Problem Setup

Consider a dataset D = {xn, yn}Nn=1 where xn ∈ RW×H×C , where W , H, C,
represent the width, height, and number of channels for an input image, re-

spectively. For segmentation {y(r)n ∈ YW×H} represents the mask for rater r,
for classification {yn ∈ 1, ..., c} represents the categorical class c. The goal is to
train a neural network to model the probabilistic distribution pθ(y|x) where θ
represents the network parameters. Let θd represent the deterministic point esti-

mates, and θb represent Bayesian parameters, such that θ
(i)
b for the ith parameter

is parameterized by {µi, σi}, the mean and standard deviation of the Gaussian
distribution Ni(µi, σi). The objective is to learn the probabilistic distribution
of pθ(y|x) where θ = {θd, θb} comprises a blend of deterministic and Bayesian
parameters and reduce the number of Bayesian parameters to optimize model
complexity and performance.

3 Note we will use sparse and partial Bayesian interchangeably, as promoting sparsity
in the Bayesian parameters renders the network partially Bayesian.
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Step 1: Deterministic Step 2: Sensitivity Analysis Step 3: Sparse Bayes

Fig. 2: Our proposed training of sparse (partial) Bayesian network. Step 1: Train
a deterministic model by minimizing the negative log likelihood L(y, ygt) where
the parameters are represented as point estimates. Step 2: Perform a gradient-
based sensitivity analysis, denoted as ∇θ, and identify the Topk connections
corresponding to the highest gradients (in red). Step 3: Train a sparse (par-
tial) Bayesian model with the Topk connections as Bayesian parameters and
the remaining network as deterministic by minimizing the evidence lower bound
(ELBO) loss L(y, ygt)+β ·DKL (qb(θ), pb(θ)), where pb(θ) and qb(θ) are the prior
and posterior distributions for the θb Bayesian parameters.

2.2 Sparse Bayesian Networks

We introduce a simple procedure to train a mixed-parameter model, regardless
of the chosen architecture or application: (1) train a deterministic model, (2)
compute parameter gradients to select the Topk predictive parameters, and (3)
train a partial Bayesian model. The following is a detailed description of each
step:

(1) Train a deterministic model: given a dataset D, train a neural network
fd(·) by minimizing the negative log likelihood L = − log pθ(y|x) (Figure 2-Step
1).

(2) Sensitivity analysis: Performing a gradient-based sensitivity analysis is
seamlessly integrated into the backward pass through the network, thus incur-
ring no additional computational overhead. Subsequently, select the Topk pa-
rameters, i.e. Topk(|∇θi|), where k is the number of parameters designated as
Bayesian. (see Figure 2-Step 2).

(3) Train a partial Bayesian model: A sparse masked-gradient approach
is employed to have a mixture of deterministic and Bayesian parameters within
the network layers.

Initialization: Firstly, point estimates from the deterministic model are set
to the mean µi parameter values to initialize the partial Bayesian model. This
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initialization ensures a robust starting point for optimizing uncertainty learn-
ing within the Bayesian network. Then, for each layer within the model, a
mask is generated based on the Topk gradient magnitudes of its weights. These
masks serve two primary purposes: initializing the σi parameter associated with
Bayesian weights and facilitating sparse gradient updates. The masks, therefore,
enable modeling mixed-parameter types within a given layer, i.e., deterministic
and Bayesian. The deterministic weights do not contribute to the Kullback-
Leibler (KL) divergence term. Consequently, deterministic weights are repre-
sented as δi(µi) Dirac-delta functions, whereas Bayesian weights are modeled
as normal distributions Ni(µi, σi). The extent of the Bayesian expression of the
model is hyper-parameterized by rbayes, which determines the rate (or percent-
age) of Bayesian parameters over the total number of parameters.

Training: The partial Bayesian model is trained with variational inference [19]
using the reparameterization trick [20]. Five posterior samples were used at train
and inference time to reduce the computational overhead associated with larger
posterior samples. The network is trained by minimizing the evidence lower
bound (ELBO) loss E [− log pθ(y|x)]+β ·DKL (q(θb), p(θb)) where β is the weight
of the KL divergence term that minimizes the difference between the prior dis-
tribution p(θb) and the posterior q(θb). The prior distribution is the standard
normal N (0, 1) (see Figure 2-Step 3).

It is important to emphasize that the training procedure described above ap-
plies to supervised training, regardless of the task. The experimental setup pre-
sented next aims to illustrate the effectiveness of our proposed training scheme
for both medical image classification and segmentation tasks, enabling the esti-
mation of uncertainty in both objectives.

3 Experimental Results

The objective of the following experimental setup is to showcase the applicability
of the training paradigm in both medical image classification and segmentation
tasks rather than achieving state-of-the-art performance. A standard determin-
istic model, a fully Bayesian model, and an ensemble approach are comparative
baselines for task performance and uncertainty quantification. The proposed
method is demonstrated on the classification of ChestMNIST dataset [35,33] and
binary segmentation of LIDC-IDRI [1,2,4] and ISIC [5,32] datasets. ChestMNIST
contains 112,120 X-Ray images from 30,805 patients with 78,468/11,219/22,433
as a train/validation/test split with an input size of 224 × 224. LIDC-IDRI
contains 1,018 clinical thoracic CT scans, cropped into 15,096 patches of size
128× 128, each with four manual segmentation masks; the data is divided into
four bags for 4-fold train/test splits (0.75/0.25). ISIC dataset of skin lesions con-
tains 2,594/100/1,000 train/validation/test images, all resized to 224× 224× 3.
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3.1 Evaluation Metrics & Training Details

The performance metrics are determined by the primary evaluation criteria spe-
cific to each dataset. For ChestMNIST classification, accuracy and the area un-
der the receiver operating characteristic curve (AUC). The reported multi-label
AUC score is the average of the binary AUC scores. Dice and intersection-over-
union (IoU) scores evaluate segmentation performance for LIDC-IDRI and ISIC
datasets, respectively. The Brier score is used as a proper scoring rule for evalu-
ating the accuracy of the output probabilities Brier Score = 1

c

∑c
i=1(δ

∗
c − p(y =

c | x∗))2 where δ∗c = 1 if c = y∗, and δ∗c = 0 otherwise. Entropy of Expectation
is used to compute the total uncertainty EoE = −p (y = c | x) log (p (y = c | x)).
Lastly, the Expected Calibration Error [12] is used to evaluate model calibration.
Floating point operations (FLOPs) are used to measure training computational
cost.

Deterministic and partial Bayesian models were trained for 50 epochs, with
a fixed learning rate of 0.01, and a weight decay of 1 × 10−5 for L2 regular-
ization with a stochastic gradient descent optimizer. Batch normalization was
used in all models, with a batch size of 50 for classification and 10 for seg-
mentation. The models were trained using a weighted cross-entropy loss to
address class imbalances effectively. All ensemble models for comparison were
executed with five ensemble members. For all datasets, we demonstrate the im-
pact of increasing the Bayesian expression of the network on the performance
and uncertainty estimation, given a fixed computational budget by varying
rbayes = (1%, 5%, 10%, 20%, 40%, 80%). The partial and fully Bayesian models
were trained with ELBO loss and a static weight for the KL term of β = 0.01
for classification and annealed for segmentation from 0.2 to 0.01 as a function of
epochs βi = βtarget− (βtarget−βinit)× (epochi/epochtotal). Models were trained
with NVIDIA RTX A6000 GPUs. Code available at repository.

3.2 ChestMNIST Classification

We first evaluate a ResNet18 [15] on the multi-label classification of ChestMNIST
dataset [35,33]. Figure 4 summarizes the comparative performance of sparse
Bayes with different rbayes values, with ensemble and fully Bayesian approaches.
With increasing rbayes and a fixed computational budget, there’s a decline in test
performance metrics, both on classification error and uncertainty metrics (Figure
4). Comparing the performance of a 1% model to a 5-member ensemble, it’s
evident that the sparse model performs competitively, particularly in uncertainty
metrics with ∼ 80% fewer parameters compared to ensembles. The fully Bayesian
model performs poorly, with a 20% decline in accuracy and a 10× entropy and
30× FLOPs of the 1% partial model. For further details and metrics, please refer
to the supporting information (SI) for numerical data.

3.3 LIDC-IDRI & ISIC Segmentation

Next, we evaluate a UNet [28] on the segmentation of LIDC-IDRI and ISIC
datasets. For LIDC-IDRI, we randomly picked a mask from the four ground

https://github.com/zabboud/SparseBayesianNetwork
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(a) ISIC (b) LIDC-IDRI

Fig. 3: Segmentation samples for a 5-member ensemble, 1% partial Bayesian, and
fully Bayesian models with input image on the far left. Predictions mask overlays
show true positive (green), false positive (blue), and false negative (red). The
uncertainty map is the entropy of the output probability, showing regions of high
(red) and low (blue) uncertainty. (b) LIDC-IDRI includes inter-rater variability
(2nd column). Our partial 1% is at par with ensembles at a lower cost. (Zoom
in for a better view of the details.)

truth masks at each training step. Our experiments demonstrate the effectiveness
of our training recipe with sparse Bayesian parameter representation, achieving
competitive performance against benchmark Bayesian and ensemble methods
(Figure 4, Table 1 in supplementary information (SI)). Setting only 1% of the
network’s parameters to Bayesian yields comparable performance to ensembles
while requiring fewer FLOPs by 30% and significantly fewer parameters 80%
less than ensembles (FLOPs details in SI). Comparing the 1% partial Bayesian
model to the fully Bayesian model (Figure 4 and Figure 3), our training approach
demonstrates significantly better performance with a fraction of the required
FLOPs. For instance, in the segmentation of LIDC lung nodules, the Partial 1%
model achieves a Dice score of 0.80±0.01 and an entropy of 0.010±0.001, while
the fully Bayesian model achieves a Dice score of 0.67 ± 0.09 and an entropy
of 0.3± 0.1. Moreover, our approach incurs less than 20% of the computational
cost (FLOPs) of training the fully Bayesian model and approximately 50% fewer
parameters.

Qualitatively, Figure 3 demonstrates the consistency of our model across
both segmentation tasks. In particular, Figure 3b illustrates how our approach
aligns with the ground truth majority vote and the uncertainty of the ground
truth segmentation for LIDC-IDRI. Despite low Bayesian rates (1%), the partial
Bayesian model effectively expresses uncertainty, particularly evident in regions
with high uncertainty in LIDC-IDRI and ISIC datasets, consistent with areas
of higher ambiguity (second example), such as near borders of ROIs or unclear
boundaries of skin lesions (Figure 3a). Conversely, training a fully Bayesian net-
work results in inferior performance, higher uncertainty, and higher false negative
rate (demonstrated in the red overlay regions), with significantly increased com-
putational costs due to slow model convergence (Figure 4). The distribution of
the Bayesian parameters per our selection criterion is consistent with previous
findings [30,36], where the Topk selected parameters are distributed near the last
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Fig. 4: Performance comparison of partial Bayesian models with rbayes = (1%,
5%, 10%, 20%, 40%, 80%), 5-member ensembles, and fully Bayesian models
for classification and segmentation tasks. Bars represent the mean ± standard
deviation. Error is computed as (1− accuracy/Dice/IoU). Numerical data in SI.

block, input, and output layers offering a computationally low-cost approach for
Bayesian subnetwork selection as opposed to second-order Hessian-based crite-
rion [6].

4 Conclusion

This paper presents a training procedure for efficiently training sparse Bayesian
networks with variational inference, achieving competitive performance and pre-
dictive uncertainty estimation compared to fully Bayesian and ensemble meth-
ods. Our approach demonstrates significantly fewer parameters and lower com-
putational requirements without compromising task performance. Specifically, a
network with only 1% Bayesian parameters matches or surpasses ensemble per-
formance and consistently outperforms fully Bayesian networks with orders of
magnitude fewer FLOPs. This enables more cost-effective predictive uncertainty
quantification without compromising performance, thus facilitating uncertainty-
guided decision-making in medical image analysis. Future research will establish
the minimum Bayesian parameters necessary for a given architecture to express
uncertainty effectively.
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