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Abstract. Image registration is a building block for many applications in
computer vision and medical imaging. However the current methods are lim-
ited when large and highly non-local deformations are present. In this pa-
per, we introduce a new direct feature matching technique for non-parametric
image registration where efficient nearest-neighbor searches find global corre-
spondences between intensity, spatial and geometric information. We exploit
graph spectral representations that are invariant to isometry under complex
deformations. Our direct feature matching technique is used within the estab-
lished Demons framework for diffeomorphic image registration. Our method,
called Spectral Demons, can capture very large, complex and highly non-local
deformations between images. We evaluate the improvements of our method
on 2D and 3D images and demonstrate substantial improvement over the con-
ventional Demons algorithm for large deformations.

1 Introduction

The comparison of images or the need to find correspondences between them is key to
many computer vision applications and crucial to establishing accurate diagnostics in
medical imaging. Current methods register images with Euler-Lagrangian approaches
that typically model elastic and viscous (non-rigid) deformations (recent state-of-the-
art is surveyed in [1]). Parametric models ([2,3]) take advantage of restraining the op-
timization to a few parameters, while non-parametric models use the entire space of
displacement fields. Recently, optimization is performed in the diffeomorphism group
[4,5,6,7,8,9] (differentiability and reversibility of the transformation) that prevents
an invalid folding of space and guarantees a smooth one-to-one mapping between
points. The update schemes underlying these methods rely, however, on forces de-
rived from the image gradients and are therefore fundamentally limited by their local
scope (e.g., gradients are null in textureless areas and optimization is undermined by
local minima). The typical response is to use a multilevel scheme to capture larger
deformations in a higher resolution but fundamentally does not solve the local scope
of their gradient-based update schemes.

In order to capture complex large deformations, we introduce a new approach
for image registration based on a direct feature matching technique with a global
scope that uses simple nearest-neighbor searches in a multi-dimensional space com-
prising information on image texture (e.g., pixel intensities), space (e.g., Euclidean
coordinates of pixels) and on global image geometry. For the latter, graph spectral



representations [10], which are invariant to isometry (preserving geodesic distances),

can capture large and complex deformations. Spectral methods [10,11,12,13,14] are
popular for general graph partitioning and are applied in computer vision for mesh
matching [15,16,17,18] and shape retrieval [19]. Pioneered in the late 80s, [12,13,14],

spectral correspondence methods match points in shapes by comparing eigenvectors
of a proximity matrix derived from the mesh structure. Recent work (surveyed in
[20,21]) uses different types of proximity matrices, graph structures and spectrum
deformations [15,10,18]. However, spectral representations of images (strongly linked
with Normalized Cuts [22,23]) have never been used for image registration.

Our new direct feature matching technique provides a geometric component with
a global scope that can be used for image registration, i.e., the nearest-neighbor search
finds correspondences with the best compromise in image similarity, spatial regular-
ity and geometric similarity. Unfortunately, diffeomorphism is not guaranteed since
a simple nearest-neighbor search could leave unassigned correspondences. Therefore,
our approach for image registration is to perform our direct feature matching tech-
nique within a diffeomorphic framework such as the efficient symmetric Log-Demons
algorithm [24,25]. The new method, called Spectral Demons, enables a symmetric
and diffeomorphic registration of images undergoing large and complexr deformations.
We describe in the next section our new direct feature matching and briefly review
the Log-Demons algorithm. The results evaluate the capability and robustness of the
Spectral Demons to register images with highly non-local deformations.

2 Method

Our registration approach aims at exploiting the global scope and the speed of nearest-
neighbor search methods in order to capture very large deformations between two
images. We begin our methodology with our simple and direct feature matching
technique followed by how spectral representations are built for images. We finish
by explaining how our new direct feature matching technique can be used within a
diffeomorphic framework for image registration with very large deformations.

2.1 Direct Feature Matching

Image registration warps a moving image M toward a fixed image F' through a trans-
formation ¢ that maps points from F to M (i.e., features F(-), such as point coordi-
nates x(-) = (x,y) or image intensity I(-), match those in the transformed features
M(¢(+)), or simply F — Mo ¢). A direct approach for feature matching would find
the point correspondence with a nearest-neighbor search in the feature space (e.g.,
with a Voronoi tessellation or a k-d tree) such that ¢(i) = argmin; ¢, || F (i) — M(5)||?
(e.g., if point j € M has the closest intensity from the one of point ¢ € F, then
¢(i) = j). Obviously, matching 1D features such as image intensity would result in
a highly unsmooth mapping lacking any spatial regularity (points with the closest
intensities might be far apart in the images). Spatial regularity can be introduced by
incorporating Euclidean coordinates in the feature space where points now have the
extended coordinates F = (a;Ir, asxp) and M = (a; Iy, asxpr) (with weights o; and
as). A nearest-neighbor search in such extended space effectively provides similarity



in pixel intensity and closeness in space between corresponding pixels and minimizes
the similarity criterion:

2
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However, such method lacks information on the image geometry (how to naturally
match objects in different poses?) and does not produce a diffeomorphic mapping (a
one-to-one mapping is not guaranteed). Each issue is addressed below.

2.2 Spectral Correspondence

The spectral representation of shapes [10,11,12,13,14,15,16,18] has the strong property
of being invariant to isometry, i.e., corresponding points between shapes in different
poses would share the same spectral coordinates (or signature) even if they are far
away in space (e.g., a point on a nose tip has a geometric description that is unique
even if moved in space). By adding these spectral coordinates in our feature space,
we enforce an intrinsic geometric consistency in our matching technique.

Spectral Graph Theory From the pixels of Iy, (the portion of an image I bounded
by a contour §2), the connected undirected graph ¥ = (¥,&) is constructed with
the vertices ¥ representing pixels and the edges & defined by the neighborhood
structure of these vertices. Such graph can be represented with its adjacency matrix
W in terms of affinity weights [11] where high weights are given to edges within
a region of uniform intensity and low weights are given to edges crossing region
boundaries, e.g., W; ; = exp (—(I(i) — 1(§))?/20?) /|x(i) — x(j)||* if (4, j) € & and 0
otherwise (parameter o depends on the image noise and is set, without being limited,
to o = mean{|I(i) — I(j)|}i j)es)- The (diagonal) degree matrix D provides the total
weighting of all edges connected to each vertex (D;; = > y W; ;) and the Laplacian
matrix is defined by L = D — W. Here, we consider the general Laplacian operator
on a graph £ = G71(D — W) [11], i.e., a [#| x |¥| sparse matrix where G is the
(diagonal) node weighting matrix, e.g., G = D.

Spectral Coordinates The graph spectrum [10] computed from the decomposition
of the Laplacian £ = XTAX comprises the eigenvalues (in increasing order) A =
diag(Ao, A1, .- -, )‘IV\) and their associated eigenvectors X = (%(0), 2™ 5&”(“;‘))
(X is a |#| x || sparse matrix where each column 2 () is an eigenvector). The first
eigenvector 2 () is the stationary distribution (related to the expected return time of
a random walker). The following eigenvectors associated with the non-zero eigenvalues
are the fundamental modes of vibrations of the shape (with free ends) depicted by I,
(in a Riemannian sense). We thus prefer the term eigenmode since they are effectively
functions over I, (visualized as images, see Fig. 1). The eigenmodes of lower modal
frequencies are harmonics depicting coarse geometric properties of I, while those
associated with higher eigenvalues depict finer geometric details in I,. Moreover, the
oscillations at a modal frequency A\ occur around nodal sets (where the eigenmode
values equal 0) that reside on prominent demarcations of the shape geometry. For
instance, graph-based segmentation methods (e.g., [22,23]) rely on the nodal set of
2 called the Fiedler vector [10], to find a binary partition of an image. The number
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Fig. 1. The eigenmodes of the graph Laplacian are used as geometric descriptors.
They remain stable under complex deformations (i.e., invariant to isometry). The
lower eigenmodes describe coarse geometric properties, while higher eigenmodes de-
scribe finer details in the images (the image contours are overlaid on the eigenmodes).

of half waves in these oscillations (or the number of extrema in the eigenmodal values)
is also given by the algebraic multiplicity of their eigenvalue, n).

In our approach (summarized in Alg. (1)), we consider the first k& eigenmodes of
lower modal frequencies 2 (1--¥) (i.e., the strongest intrinsic geometric descriptors).
Their components represent the k-dimensional spectral coordinates 2 in a spectral
domain® where each point i has the coordinates 2 (i) = (21 (i), 2@ (i), ..., 2*) (7))
(a truncated line of matrix X). The spectral representation 2 has the strong prop-
erty of being invariant to isometry, i.e., if F' and M are images of the same object
in different poses, equivalent points would share similar coordinates 2 r and 2 ;.
We use this property to improve our direct feature matching by extending Eq. (2)
with these spectral coordinates (weighted with ;). A nearest-neighbor search be-
tween F = (a;lp, asxp,aq2p) and M = (a;In, asXnm, g2 v) provides similarity
in intensity, space and in intrinsic geometric characteristics, effectively minimizing;:

. a? o
Sim(F, M, ¢) = (Ir — Inog)” + 073 xp — Xaros® + a—g |2 F = 2mooll?,  (2)
7 7

where 2 104 are the spectral coordinates of the corresponding points in the trans-
formed image M o ¢.

The choice of the number of spectral components & = ny, is motivated by the
Colin de Verdiére’s number [26] which is in this case the multiplicity of the Fiedler
vector ny, and is also related [20] to the maximal dimension of a space in which
the graph G can be mapped (i.e., the eigenspace of the Fiedler eigenvalue reveals
the principal symmetries in Iy, and, ny, < 2 in 2D, ny, < 3 in 3D). More complex
symmetries in the cyclic or dihedral group could be considered with a higher &, but
is not required in our method.

4 In our notation x is the Euclidean coordinates (e.g., z,y, z in 3D) and superscripted 2
is the u'" component of the spectral coordinates @



Algorithm 1 Spectral Correspondence

Input: Images F', M.
Output: Correspondence ¢ mapping F to M
e Compute general Laplacians Lg, L.
L =D YD — W), where
Wi = exp (—(1(6) — 1())?/202) /|Ix(i) — x(5)|2
Dii =32, Wiy,
e Compute first k eigenmodes of Laplacians
e Reorder 2 ); with respect to 2 r (Eq. (3))
e Build embeddings:
F=({p,xp,2r); M= UIMm,Xpm, Z M)
e Find ¢ mapping nearest points F — M

Rearrangement of the Spectra Unfortunately, the spectral coordinates 2 r and
2 p of points in F' and M may not be directly comparable as a result of two phenom-
ena. Firstly, there is a sign and scaling ambiguity between corresponding eigenmodes
(if & () is an eigenmode of £, so is —a2" (')) which requires a sign check and a scaling
correction between 2 p and 2 5. Secondly, the order of the eigenmodes is undefined
within an eigenspace (if two eigenmodes 2 (V) share the same eigenvalue, their
order (u,v) may differ between two images). The order is additionally perturbed with
imperfections in isometry (near-symmetry creates close but not equal eigenvalues and
may change order between images). We rearrange the spectral coordinates using two
new simple heuristics.

The first issue is addressed by scaling the values of each eigenmodes in order
to fit the range [—1;+1]. The nodal set (where 2() = 0) is thought to remain
on a prominent geometric feature (an axis of symmetry in a Riemannian sense)
and should not be changed. We scale thus the positive values (where 27() > 0)
with 2+ « 20+ /max{2()+} and the negative values (where 2() < 0) with
20~ « 20~ /min{2()-}. The second issue is addressed by finding the optimal
) mo(:)

permutation 7 such that 2’ and f correspond with each other. The Hungarian
algorithm (also used in [16,18]) minimizes the following 2D dissimilarity matrix:
@) )2 LA 2@ \?
Clu) = [ 3 (20 - #00) + || (1700 - 157700)) @
i€ln 4,J

The first term is the difference in eigenmodal values between the images and, the
second term measures the dissimilarities between the joint histograms h(i,j) (a 2D
matrix where the element (i, 7) is the joint probability of having at the same time a
pixel with intensity ¢ and eigenmodal value 2°() = j ). The sign ambiguity can be re-
moved by using, instead, the dissimilarity matrix Q(u,v) = min{C(u,v), C(u, —v)}.
To keep the notation simple, in the next sections, we assume that the spectral coor-
dinates have been appropriately signed, scaled and reordered.

The ordered spectral coordinates provides our geometric component in our new
direct feature matching. We now briefly review how diffeomorphism can be achieved
for image registration.

2.3 Diffeomorphic Registration

The minimization of Eq. (2) does not guarantee a one-to-one mapping between points
(only closest points are assigned and undefined correspondences are possible). Such



Algorithm 2 Exponential ¢ = exp(v) Algorithm 3 The Log-Demons Framework

Input: Velocity field v. Input: Images F', M and initial velocity field v
Output: Diffeomorphic map ¢ = exp(v). Output: Transformation ¢ = exp(v) from F to M
e Choose N such that 27 Vv is close to 0 repeat
e.g., such that max H27N’UH < 0.5 pixels e Find updates up—_, » mapping F' to M o exp(v)
o Scale velocity field ¢ « 2~ N, e Find updates uy ¢ mfupping M to F o exp(—v)
for N times do e Average updates: u E(UF*M —UMF)-

e Smooth updates: u + Kiyia * w

e Update velocity field: v < log (exp(v) o exp(u))
(approximated with v < v + u)

e Smooth velocity field: v < Kgqjgr * v.

until convergence

e Square ¢ < ¢ o ¢.
end for

property however exists in classical methods for diffeomorphic registration such as the
Log-Demons algorithm [24]. Arising from the theory of Lie groups, a diffeomorphic
transformation ¢ (on a Lie group structure) is related to the exponential map of a
velocity field v (a Lie algebra), i.e., ¢ = exp(v). In the case of stationary velocity fields,
a practical and fast approximation is possible with the scaling-and-squaring method
[24] (Alg. (2)). As an aside, the inverse of the transformation is simply ¢~! = exp(—v).

The Log-Demons framework alternates, similarly to the Maxwell’s demon, between
the optimization of a similarity term, e.g., Sim(F, M o exp(v)) = (Ip — IMoexp(U))Q,
and a regularization term, e.g., Reg(v) = ||Vv||?, through the introduction of a hidden
variable (the correspondences ¢) which allows a small error between alternations, e.g.,
dist(e, ) = ||c — v||. Moreover, invariance to the order of the input images is possible
with the symmetric extension of the algorithm [25,9]. The energy of the symmetric
Log-Demons can be written:

E(F, M, exp(c),exp(v)) =1a? (Sim (F, M o exp(c)) + Sim (F o exp(—c), M))
+ a2dist(c,v)? + aFReg(v), (4)
where the Euler-Lagrangian updates are computed directly on the stationary velocity

field v and consist of the average of the forward and backward updates up_spr, Upr—
mapping F' to M o exp(c) and, M to F o exp(—c) such as (see [24] for more details):

_ Ir — Inog
IVInog||® + aZ |1 — Insog|?

UF_sM — VIMO¢. (5)

In the first step, the transformation ¢ is fixed and the updates are computed (option-
ally smoothed with a kernel Kpyiq, e.g., Gaussian with oayiq). In the second step, the
velocity field is updated v <— v + u (optionally smoothed with the a kernel Kgiffusion,
e.g., Gaussian with ogigrusion, see [27]). The general symmetric diffeomorphic Demons
framework is summarized in Alg. (3).

2.4 Spectral Demons

At this stage, we have described two methods. The first (the direct feature matching
technique, Eq. (2)) can capture large deformations between images but does not
guarantee diffeomorphism and symmetry. The second (the Demons algorithm, Eq. (4))
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Fig. 2. Pairs of images used in the synthetic experiments (Lena, heart, baseball
player). Each left image is a fixed image, each right side is a moving image gen-
erated with a random deformation of at most 25 pixels (difficulties in red). These
transformations provide our ground truth.

offers these properties but suffers from the local scope of the update forces dervied
from the image gradient (Eq. (5)). Both methods can benefit from the incorporation,
with very little modifications, of our spectral correspondence approach in the Log-
Demons framework.

The so-called Spectral Demons algorithm takes advantage of the efficient diffeo-
morphic framework offered by Alg. (3) and finds the correspondences between images
F and M using our global spectral approach in place of using local gradient based
updates. To be more precise, the first two steps of Alg. (3) (originally computing
updates with Eq. (5)) now perform spectral correspondence between images F and
M oexp(v) using Alg. (1) (and respectively between M and F o exp(—v)). This mod-
ification enables large jumps in each iteration where points are moving toward their
isometric equivalent even if they are far away in space. This virtually enables the
capture of very large deformations (with invariance to isometry) between images as
well as a faster convergence of the algorithm. The underlying energy being minimized
has the form of Eq. (4) where its similarity term is expressed with Eq. (2).

Multilevel Scheme A multilevel scheme is also possible with the Spectral Demons
where large deformations are assumed to be related with coarse geometric informa-
tion. Spectral updates can thus be safely used in a lower resolution level, while finer
details and local deformations remain computed in the higher levels of resolutions
using the classical update forces based on the image gradient. This multilevel scheme
keeps the computation of the eigenmodes tractable. On the same note, the compu-
tation of the eigenmodes can be used with the efficient Lanczos method (used by
Matlab) which has a running time of O(n\/n) + O(n?) [22], where n is the number of
pixels in I, while spectral matching can be performed with a k-d tree which is built
in O(nlog®n) and queried in O(logn).

3 Results

We evaluate here the performance of the Log-Demons (our benchmark) and Spectral
Demons (our method) by registering images with large and highly non-local defor-
mations. In our controlled experiments, the full power of the Spectral Demons can be
appreciated with drastic deformations of the images. Accurate measurements, with
known ground truth, are used to evaluate the improvements in registration accuracy
with respect to the Log-Demons. We additionally provide a real application where
two human brains are registered.
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Fig. 3. Comparison of the iterations in the Log-Demons and the Spectral Demons
(our method) within the same resolution level. The update forces (indicated with the
arrows and scaled for visualization) have a local scope with the Log-Demons and a
global scope with the Spectral Demons. This global scope allows a faster convergence
while the Log-Demons remains in a local minimum.
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3.1 Controlled Experiments

In the first controlled experiment, we evaluate the fundamental difference between
the update schemes of the Log-Demons and Spectral Demons. To do so, we analyze
the convergence rate of both algorithms and, since we are not interested here in their
final performance, we compare them within the same level of resolution. The algo-
rithms use the same parameter set (gauid,difuse = 1,0 = 1,k = 2,4 = 0.05, a5 =
0.15,c; = 0.8). We register the images on Fig. 2 (Lena has size 1282, the heart is
752 and the baseball player is 110 x 75). Each moving image is generated with ran-
dom diffeomorphic deformations ¢ With displacements of at most 25 pixels, i.e.,
we take the exponential map of a random velocity field generated with 15 random
displacements (control points randomly located) diffused across the image (Gaussian
smoothing ¢ = 10 pixels). Notably, Lena’s hat, her neck and, the player’s arm are
the highest registration challenges, while the cardiac image (a 2D slice of an MRI)
shows a papillary muscle (red circle on Fig. 2) severely deformed and almost fully
collapsed (the muscle forms, however, a dent in the image and provides a signature
that Spectral Demons can understand). The iterations of the Log-Demons and Spec-
tral Demons are compared in Fig. 3. It shows that within the same level of resolution,
the update forces computed with spectral correspondence are coherent spatially and
geometrically, i.e., points move toward their geometric equivalent, however the up-
date forces derived from the image gradient lack any global information on the shape
geometry and put the Log-Demons into an erroneous local minimum.

The use of a multilevel scheme allows the Log-Demons to capture larger deforma-
tions (Fig. 4) but does not change the inherent local scope of its update forces. For
instance, Log-Demons even with 4 levels of resolution ultimately fails in recovering
the extreme deformations on the anterior side of the heart, while Spectral Demons
without a multilevel scheme can successfully register the whole myocardium with a
71% improvement in performance (mean square differences (or MSE) of intensities
with ground truth from 19.9 x 1073 to 5.7 x 1073). The performance is further im-
proved when 4 levels are used (down to 2.4 x 1073 MSE, or a 88% improvement in the
heart registration). Similar results are observable with the other images. Lena’s hat,
her neck and, the player’s arm are successfully registered using the Spectral Demons



Demons (4 levels)

Spectral Demons (4 levels) Spectral Demons (1 level)

MSE=0.0021 (10.017'5)r MSE=0.0024 (£0.0173)  MSE=0.0015 (x0.0105)

Fig. 4. Final registrations for (top row) Multilevel Log-Demons with 4 levels, (middle
row) Spectral Demons with 1 level, (bottom row) Multilevel Spectral Demons with 4
levels. The fixed image is in blue and misalignments of the registered image are in
red. The mean square differences of intensities are reported along their standard de-
viations. Log-Demons is limited in areas of high deformations, while Spectral Demons
can capture these large deformations.

with respectively 73% improvement over Log-Demons in Lena’s image and 63% in
the baseball image.

Additionally, the quality of the computed registration maps ¢ is evaluated in terms
of difference of displacements (in pixels) with the ground truth ¢ — ¢trutn||- The Log-
Demons results in registration maps (Fig. 5) with larger errors in high deformation
areas (e.g., Lena’s hat or neck), whereas the Spectral Demons results in a smoother
registration map with significantly less errors (62% less) in these same areas.

The cost of the global scope offered by Spectral Demons is increased computa-
tion time. For instance, on Lena’s image, 50 iterations requires 55.82 seconds with
Log-Demons and 178.32 seconds with Spectral Demons; on the heart image, 21.01
seconds with Log-Demons and 41.03 seconds with Spectral Demons; and on the base-
ball player’s image, 42.06 seconds with Log-Demons and 102.17 seconds with Spectral
Demons. We used unoptimized Matlab code on a Core 2 Duo, 2.53GHz.

Robustness to Deformation The Spectral Demons’ robustness to deformation is
evaluated on Lena’s image by exaggerating the previous synthetic transformation
from ¢y = exp(0v) (zero displacements) to ¢o2 = exp(2v) (creating a maximal dis-
placement of 40 pixels, see samples on Fig. 6). The performance is evaluated with
the transformation differences (in pixels) from the ground truth. Both Log-Demons
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Error 1.80 (+3.71) pixels Err. 2.97 (+3.17) pixels Error 1.67 (+2.51) pixels
(max 22.32 pixels) (max 15.76 pixels) (max /2.47 pixels)

Error 434 (£1.72) p xels Err. 1.46 (£1.67) pixels Error 1.18 (£1.47) pixels i
(max /2.41 pixels) (max 9.97 pixels) (max 8.66 pixels)
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(max 10.41 pixels) (max 9.67 pixels) (max 8.00 pixels)

Fig. 5. Differences (in pixels) between computed transformations and ground truth
for (top row) Multilevel Log-Demons, (middle row) Spectral Demons and, (bottom
row) Multilevel Spectral Demons. The fixed images are overlaid on the error maps.
The Multilevel Spectral Demons decreases the error by 60% from the Multilevel Log-
Demons.

and Spectral Demons perform with sub-pixel accuracy on deformations below 20 pix-
els, however they differ with larger deformations where our method shows a greater
robustness, e.g., with a deformation of 40 pixels (more than 30% of the image size)
the average transformation error is 5.9 pixels with Log-Demons and 1.6 pixels with
Spectral Demons (a 73% decrease).

Robustness to Noise The analysis on the robustness to noise reveals the current
limitations of both algorithms. An increasing Gaussian noise is added to Lena’s image,
from o = 0 to 0.25 (samples on Fig. 6). Spectral Demons performs better with noise
o < 0.075, however the comparison with control images (the unregistered noisy im-
ages) reveals that Log-Demons stops transforming the images when noise is increased
(due to trapping in a local minimum). For instance, Fig. 6 shows that when using
Log-Demons with noise o = 0.13, the registered image is similar to its initial state,
while Spectral Demons, even though with a larger average error (6.8 pixels versus 3.7
pixels), continues to recover large deformations (see the hat area on Fig. 6). With
noise o > 0.2, the corrupted images become problematic for Spectral Demons (graph
edge weights are almost null and may need a different heuristic weighting), whereas
Log-Demons is almost immediately trapped in a local minimum.

10
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Fig. 6. Robustness to deformation and noise. a) Deformations of Fig. 2 are amplified
to a max of 40 pixels (image size is 1282, deformed samples on top). The transforma-
tion differences with ground truth (y-axis in pixels) are smaller with Spectral Demons
(blue) than with Log-Demons (red). b) Gaussian noise is used (samples around the
hat area). Spectral Demons looses advantage after o > 0.075, however even with a
lower error, Log-Demons stops moving when increasing noise (error is similar with
untransformed images (controls, in green)), whereas Spectral Demons continues to
recover large deformations.

3.2 Registration of Medical Images

The performance of the Spectral Demons is evaluated in a medical application with
the registration of brain MR images from the Internet Brain Segmentation Repository
(IBSR, http://www.cma.mgh.harvard.edu/ibsr, our images are 64% volumes). The
brain presents a wide variety of shapes and internal structures across individuals.
While the cerebral cortex is particularly convoluted and is the focus of many specific
surface matching techniques ([28,29,17,18]), the registration of internal components
in the brain, such as the white or gray matter, requires a volumetric approach. We
chose two individuals that have lateral ventricles with different sizes (Fig. 7, the
moving image shows a longer ventricle). We evaluate the registration accuracy with
the overlap of the provided manual segmentations of the white and gray matter
(measured with the Dice metric defined as the ratio 2(ANB)/(]A|+|B|) with 1 being
an optimal overlap) as well as with the mean squared differences of pixel intensities
between the fixed and registered images. The original (unregistered) setting has a
Dice metric of 0.65 in the white matter and 0.69 in the gray matter. Both algorithms
(using 4 levels) increase the overlap of the white and gray matter to respectively
above 0.71 and 0.75, with a slight advantage to the Spectral Demons, however the
comparison of the mean squared differences of intensities reveals a 4% improvement
in accuracy and precision when using Spectral Demons (from 29.0 x 10~3 error in the
original setting, decreasing to 20.8 x 10~3 with Log-Demons and to 19.9 x 103 with
Spectral Demons). This experiment showed that Spectral Demons offers an improved
performance in a real application when registering medical images.

The computation and the current implementation shows again that there is room
for improvements with our method. With downsampled images of size 323, 50 iter-
ations requires 108.49 seconds with Log-Demons and 201.43 seconds with Spectral
Demons. Notably, memory becomes problematic with our unoptimized Matlab code
as volumes beyond 323 require the decomposition of Laplacian matrices larger than

11
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Fixed Moving Registered Moving Registered Moving
(Original) (Demons) (Spectral Demons)
Difference (MSE) with Fixed 29.0 (£51.3) x1073 20.8 (£37.7) x1073 ™ 19.9 (£36.2) x10-
Dice metric white matter 0.6515 0.7126 0.7166
Dice metric gray matter 0.6931 0.7572 0.7784

Fig. 7. Registration in 3D between two brains from healthy subjects using Log-
Demons and Spectral Demons (both with 4 levels). While observations show appar-
ently similar results (ventricles are circled), the mean square differences of intensities
(MSE) between the fixed and registered images reveal an increase of 4% in accuracy
and precision when using Spectral Demons. The Dice metrics of the white and gray
matter (measuring segmentation overlaps) also increase with Spectral Demons.

323 x 323 (although extremely sparse, our current code is not optimized for such large
matrices).

3.3 Note on Image Segmentation

The Laplacian eigenmodes have been demonstrated to have
important properties in the field of spectral graph theory
[10,22,30,11] by providing a probabilistic foundation [23,31]
for graph-based segmentation methods. In particular, the nor-

malized cut problem [22] finds a segmentation x by mini-

mizing ;”; Lz (revealed by the Fiedler vector of the normal-

ized Laplacian D=2 LD~z [23]). Spectral Demons considers
the more general Laplacian operator £ and effectively ex-
ploits for registration the same global image description used
by normalized cuts for segmentation, i.e., eigenmodes of the
(general) Laplacian operator are used for image registration.
Since the Fiedler vector is an inherent part of our algorithm,
binary segmentations of images come at no extra cost by
taking either the positive or negative values of the Fiedler
vector, 2+ or 2~ For example, the implicit segmen-
tation of Lena’s image, shown on the right (with overlaid
image contours), was obtained with the nodal sets of the first
and second eigenmodes (positive values of the Fiedler vector
gave warmer colors, negative values gave cooler colors, see
also 1°* and 2°¢ eigenmodes on Fig. 1)). Nodal sets of higher
frequency eigenmodes may additionally reveal important ge-
ometric features for meaningful segmentation, however, an
exhaustive experimental study on the segmentation aspect of
our registration method goes beyond the scope of this paper.

Implicit Segmentation
from nodal sets
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4 Conclusion

The methods in the state-of-the-art of image registration are currently limited by
the local scope of their underlying update schemes (based on image gradients). The
typical response tries to capture larger deformations with a multilevel scheme where
large jumps are possible with images of lower resolutions. Although sufficient for
most applications, a multilevel scheme does not change the inherent local scope of
update forces derived from the image gradient and finds its limitation with very large
deformations. We proposed a fundamentally new update scheme based on a direct
feature matching technique that uses image, spatial and geometric information. The
global scope of our new update scheme is captured through spectral representations
of images that are invariant to isometry. Our approach consists of finding point corre-
spondences with a nearest-neighbor search in a multi-dimensional space that embeds
pixel intensity, Euclidean coordinates and spectral coordinates. Such direct feature
matching technique can be used within classical frameworks for image registration.
Among them, the Log-Demons algorithm [9] provides symmetry and diffeomorphism
of the registration. Our new registration method, called Spectral Demons, success-
fully captures large, complex and highly non-local deformations. We evaluated its
performance with displacements of more than 30% of the image size and observed
an improvement of 73% over the Log-Demons. Here, we assumed that registered im-
ages have a similar topology (same global shape) with no occlusions, holes, or missing
parts. This is generally true in most applications as we are often interested in compar-
ing the same object or similar ones (e.g., the same organ in medical imaging). Future
work will aim at improving our main limitation, the computational cost of the spec-
tral decomposition, for instance by pre-computing the eigenmodes before registration
and warping them during registration in order to avoid costly spectral decomposi-
tions in each iteration. We will also investigate the use of the Nystrom approximation
[32] (by sampling the Laplacian matrix). Additionally, the strong links with image
segmentation [23,31] will be studied more carefully. Image registration may also fur-
ther benefit from employing global optimization framework. Nevertheless, we believe
that our fundamentally new approach, relying on the global image structure to drive
correspondences via spectral representations, is a significant contribution in the state-
of-the-art of image registration, i.e., our registration respects the global Riemannian
structure of the image (isomorphism, brought by spectral coordinates) on top of the
differentiable structure (diffeomorphism, from state-of-the-art methods). The Spec-
tral Demons algorithm can improve applications that employ objects or study organs
undergoing very large, complex and highly non-local deformations.
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