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Abstract. Foundation models such as the recently introduced Segment
Anything Model (SAM) have achieved remarkable results in image seg-
mentation tasks. However, these models typically require user interac-
tion through handcrafted prompts such as bounding boxes, which lim-
its their deployment to downstream tasks. Adapting these models to
a specific task with fully labeled data also demands expensive prior
user interaction to obtain ground-truth annotations. This work pro-
poses to replace conditioning on input prompts with a lightweight mod-
ule that directly learns a prompt embedding from the image embed-
ding, both of which are subsequently used by the foundation model
to output a segmentation mask. Our foundation models with learnable
prompts can automatically segment any specific region by 1) modify-
ing the input through a prompt embedding predicted by a simple mod-
ule, and 2) using weak labels (tight bounding boxes) and few-shot su-
pervision (10 samples). Our approach is validated on MedSAM, a ver-
sion of SAM fine-tuned for medical images, with results on three med-
ical datasets in MR and ultrasound imaging. Our code is available on
https://github.com/Minimel/MedSAMWeakFewShotPromptAutomation.
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1 Introduction

Annotation is a well-known labour-intensive and time-consuming task in medical
imaging. Supervised segmentation models trained to identify specific regions of
interest do not generalize well to new domains or classes and require more data
and retraining when considering a new task. This increases the cost of develop-
ing segmentation models to solve multiple tasks. The need for universal models
that can be applied to various tasks after training has hence been growing in
medical image analysis. The introduction of foundation models for image seg-
mentation such as the recent Segment Anything Model (SAM) [10], as well as its
versions adapted for medical imaging [21], notably MedSAM [12], have appeared
as a game-changer in the field of computer vision and medical image analysis.
These models have shown remarkable performance on a variety of segmentation
tasks. However, they remain promptable models that require user interaction to
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obtain the segmentation mask of a target object. Furthermore, their zero-shot
performance depends on the quality of the user prompt. This reliance on user
interaction hinders their integration into automatic pipelines and limits their
usability at a large scale.

Recent attempts have been made to automate the prompt generation of SAM
[20,17,22]. However, these methods typically require samples with ground-truth
segmentation masks, which are costly to obtain in the medical domain.

This paper proposes a lightweight add-on prompt module which learns to
generate prompt embeddings directly from SAM’s image embedding. Our end-
to-end approach enables SAM models to specialize on the segmentation of a
specific region and only requires few weakly-annotated samples. This reduces the
interaction cost of developing specialized segmentation models. Our validation
shows that, given only few training samples weakly annotated with tight boxes,
promptable foundation model can effectively generate segmentation masks of
target regions without requiring manual prompt inputs.
Foundation models for medical image segmentation. Vision foundation
models have achieved tremendous success in computer vision tasks thanks to
large-scale pre-training. In particular, the Segment Anything Model (SAM) [10],
based on vision transformers [5] and trained on 1B masks and 11M images,
was recently introduced as a prompt-driven foundation model for segmentation.
Trained on natural images, SAM obtains uneven performances on medical data
[7,13,18], inducing its adaptation to the medical domain [4,12,17]. In particular,
MedSAM [12], a foundation model for universal medical image segmentation
was trained on 1.5 million image-mask pairs over 10 imaging modalities. These
models provide impressive zero-shot performance, but remain promptable models
that require user interaction at inference.
Prompt automation for SAM. Motivated by its performance in Natural Lan-
guage Processing [2], prompt-tuning has successfully been applied to large vision
models [8]. Hence, methods that have focused on specializing SAM, a prompt-
able model, have naturally explored prompt generation. Given few fully labeled
samples, the self-prompting unit of [20] automatically generates a real point and
bounding box from SAM’s image embedding. AutoSAM replaces SAM’s prompt
encoder with a Harmonic Dense Net to adapt segmentation to medical images
[17]. A recent training-free approach, PerSAM [22], encodes positive-negative lo-
cation priors as prompt tokens to produces automatic segmentations of a specific
object from a single reference image and mask. As opposed to our approach, all
of these methods require samples with full segmentation masks.
Segmentation with bounding box annotations. Bounding boxes have
emerged as an alternative to onerous annotation masks. Most methods use
bounding boxes as an initial pseudo-label of the target region. A classic iter-
ative graph-cut-based algorithm, GrabCut [16], separates the foreground from
its background given a bounding box. DeepCut [14] extends GrabCut to neu-
ral networks using existing heuristics. More recently, the bounding box tightness
prior was adapted to deep learning-based models by imposing a set of constraints
on the predictions [9], and was combined with multiple instance learning and
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smooth maximum approximation [19].

Our contribution. This work aims to efficiently automate MedSAM, a variant
of SAM for the medical domain, to segment any target region through the use
of few, weakly-labeled samples. Our approach introduces an innovative improve-
ment by substituting the original prompt encoder, which requires user input,
with an enhanced lightweight adaptable prompt-learning module that:

1. Automatically generates a prompt embedding from the input image

2. Trains with only weak labels (tight bounding boxes) and few-shot learning

3. Is easily added on top of MedSAM (no fine-tuning)

The next sections present our proposed prompt module for MedSAM and
demonstrate its usefulness on various medical image segmentation tasks.

2 Methodology

2.1 Preliminaries: MedSAM architecture

Our approach builds upon on MedSAM [12], a variant of SAM [10] fine-tuned
on medical data. The model has three main components: a large image encoder
Eimg, a prompt encoder Epr and a lightweight mask decoder Dmask.

While the image encoder computes an embedding of the input image x, the
prompt encoder outputs two sparse and dense embeddings from the provided set
of prompts [pr], respectively points or bounding boxes (BB), and a mask. The
network produces a probability map fθ by taking x and a prompt embedding
Zpr = Epr([pr]):

fθ = σ
(
Dmask(Eimg(x), Zpr)

)
,

where σ is the sigmoid function.
We present an end-to-end approach to remove the typical dependence on

user-defined prompts [pr], without modifying the pretrained MedSAM network.

2.2 Lightweight prompt module

Our approach consists of a prompt module trained to compute directly Zpr from
the image embedding provided by MedSAM (see Fig.1b). The module outputs
two embeddings of the same shape as those generated by MedSAM (Fig.1a).
Originally, the dense prompt embedding has a spatial correspondence with the
image and can be considered as a low-quality segmentation map, while the sparse
embeddings are spatial encodings of coordinates. Therefore, our prompt mod-
ule generates a dense embedding through a convolutional layer and a sparse
embedding through a fully connected (FC) layer.
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(a) Promptable MedSAM [12]

(b) Automatic MedSAM (ours)

Fig. 1: Comparison between (a) MedSAM and (b) our automation of MedSAM
via a learnt prompt module. Our prompt module replaces MedSAM’s prompt
encoder and learns to generate a relevant prompt embedding from the image
embedding. Training employs losses that utilize only tight box labels.

2.3 Learning with tight box annotations

Denote as X : Ω ⊂ R3×H×W → R a 3-channel input image of height H and
width W , where Ω is the spatial domain corresponding to each channel of the
image. Moreover, let Y ∈ {0, 1}Ω be the ground-truth binary segmentation mask
of X. Suppose we only have access to a tight bounding box Ỹ of the target. ΩI

and ΩO define the regions respectively inside and outside the bounding box such
that ΩI +ΩO = Ω. This leads to a constrained optimization problem [9] from
the bounding box annotations Ỹ .
Emptiness of ΩO. Since the region in ΩI defined by the bounding box must
contain the target object, ΩO must contain only foreground. Hence, we can apply
a Cross-entropy loss for all pixels p ∈ ΩO:

Lempty = −
∑

p∈ΩO

log(1− fθ(p)). (1)

Tight box constraint in ΩI . The tightness of the bounding box indicates
that at least one foreground pixel must cross every horizontal and vertical line
of weak label Ỹ . As in [9], we soften this condition by considering segments of
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width w instead of individual lines and ensure differentiability by considering
output probabilities instead of the prediction mask. The condition formalizes as:∑

p∈sl

fθ(p) ≥ w, ∀sl ∈ SL, (2)

where SL is the set of all vertical and horizontal segments of width w that make
the bounding box Ỹ . We convert the inequality constraints of (2) to a loss using
a penalty function ψt, and obtain:

Ltightbox =
∑

sl∈SL

ψt

(
w −

∑
p∈sl

fθ(p)

)
. (3)

The penalty function can be modeled as a simple scaled ReLU function, i.e.
ψt(x) = t ·max(0, x). In this work, we instead resort to a pseudo log-barrier
function, which provides a more stable optimization under multiple competing
constraints. As t→∞, function ψt(x) behaves as a hard barrier where ψt(x) = ∞
if x > 0, else ψt(x) = 0. In our method, we found that using a fixed value of
t = 5 worked best.
Foreground size constraint. The bounding box Ỹ also sets a limit on the
target size of the prediction mask. Again, we consider output probabilities rather
than individual predictions to ensure differentiability. By applying priors on the
fraction ϵ ∈ [0, 1] of pixels from ΩI that belong to the background, we get:

ϵ1|ΩI | ≤
∑
p∈Ω

fθ(p) ≤ ϵ2|ΩI |. (4)

As before, we employ ψt(x) to convert these inequality constraints into the fol-
lowing loss:

Lsize = ψt

(
ϵ1|ΩI | −

∑
p∈Ω

fθ(p))

)
+ ψt

( ∑
p∈Ω

fθ(p)− ϵ2|ΩI |
)
. (5)

Given (1), (3) and (5), and weights λ1 and λ2, the final loss becomes:

Ltotal = Lempty + λ1 Ltightbox + λ2 Lsize . (6)

3 Results

3.1 Datasets
Our experiments validate our method on three public datasets: the Head Cir-
cumference dataset4 (HC18) [6], the Cardiac Acquisitions for Multi-structure
Ultrasound Segmentation5 (CAMUS) [11] and the Automated Cardiac Diagno-
sis Challenge6 (ACDC) [1]. For both cardiac datasets, the end diastole images are
4 https://hc18.grand-challenge.org/
5 https://www.creatis.insa-lyon.fr/Challenge/camus/
6 https://humanheart-project.creatis.insa-lyon.fr/database/
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used. For HC18, we filter out samples with ground-truth masks that could not be
automatically generated by OpenCV from the circumference annotations, and
split the ultrasound dataset into 507 training, 77 validation and 148 test images.
For CAMUS, we focus on the left ventricle (LV) and left atrium (LA) segmenta-
tion and use 50 images for validation, 100 images for testing and the remaining
350 images for training. For ACDC, we focus on the right ventricle (RV) and LV
segmentation and use 10 patients for validation (78 images), 50 for testing (470
images)and the remaining 90 patients (765 images) for training. Each sample
has a minimum foreground size for all experiments.

Following [12], our preprocessing includes clipping the intensity values of each
2D image (HC18, CAMUS) or each 3D volume (ACDC) between the 0.5th and
99.5th percentiles and rescaling them to the range [0, 255]. We also partition each
3D volume of ACDC into 2D image which we resample to a fixed 1mm× 1mm
resolution. We center crop and pad each sample to size 640× 640 (HC), 512× 512
(CAMUS) or 256× 256 (ACDC). To meet MedSAM’s requirements, we resize all
images to a fixed 3× 1024× 1024 size before inputting them in the model.

3.2 Implementation details

Model. Our backbone model is MedSAM based on ViT-B, the smallest version
of SAM. The backbone remains frozen during training. We keep our prompt
module lightweight by using few layers. A 1× 1 convolution first reduces the
number of channels. Then, the dense embedding is obtained through a 3× 3
convolution, while the sparse embedding is obtained through a 1× 1 convolution
followed by max pooling and a fully connected layer. All convolutional layers
are followed by ReLU activation. Our prompt module has thus 2.4M trainable
parameters.
Loss parameters. We train our prompt module using Ltotal , with λ1 = 0.0001,
λ2 = 0.01. For our tight box constraint, we follow [9] and use segments of w = 5.
We hypothesize that the foreground region is at least half the size its tight bound-
ing box and set [ϵ1, ϵ2] = [0.5, 0.9]. Comparative training with full segmentation
masks uses a Binary Cross-entropy Dice loss, each term having the same weight.
Training. We use a batch size of 4 and a learning rate (LR) of 0.001 with a
multi-step scheduler decreasing LR by 0.1 after half the epochs and a weight
decay of 0.0001. To minimize computational complexity, we do not use data
augmentation. This allows us to discard MedSAM’s image and prompt encoders
after saving the image embeddings during an initial iteration, reducing the num-
ber of total parameters from 96.1M to only 6.5M (2.4M trainable). In the 10-shot
setting, we repeat the experiments 9 times, with 3 initialization seeds and 3 train-
ing subsets selected uniformly at random. The results are averaged over these
experiments. All experiments are implemented in Python 3.8.10 with Pytorch
on NVIDIA RTX-A6000 GPUs.
Baselines. For each class, we compare our method with two specialized single-
task models: a standard UNet [15] and a TransUNet [3]. We also validate our
method against PerSAM [22] which automates SAM with 1-shot supervision,
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Table 1: Model performance on test sets in terms of mean (std) 2D Dice similarity
score (↑). Best results in few-shot settings are highlighted in bold.

Type Method #
Samples

Mask
labels

BB
labels HC

CAMUS ACDC

LV LA RV LV

Promptable MedSAM [12]
(w/ tight box) – – – 95.19 94.50 89.23 93.78 95.45

Automatic
(fully trained)

UNet [15] All ✓ 86.53 ±0.55 89.93 ±0.01 74.77 ±0.78 89.55 ±0.23 94.83 ±0.13

10 ✓ 61.79 ±3.10 75.09 ±3.69 46.29 ±3.64 40.85 ±1.66 59.96 ±0.91

TransUNet [3] All ✓ 96.32 ±0.19 92.92 ±0.29 85.04 ±0.15 90.79 ±0.07 94.08 ±0.07

10 ✓ 92.15 ±0.40 87.32 ±0.45 66.51 ±2.28 68.69 ±0.58 78.98 ±1.36

Automatic
(adapted)

AutoSAM [17] All ✓ 97.42 ±0.04 93.59 ±0.03 85.60 ±0.89 89.57 ±0.54 95.18 ±0.11

10 ✓ 90.64 ±1.84 86.98 ±0.67 67.09 ±4.82 68.33 ±3.21 84.17 ±2.05

PerSAM [22] 1 ✓ 58.98 ±0.19 36.13 ±0.00 14.19 ±0.02 27.64 ±9.48 45.43 ±5.47

All ✓ 92.88 ±1.27 88.86 ±1.42 79.82 ±0.74 76.97 ±1.02 86.91 ±2.08Ours 10 ✓ 85.23 ±0.55 88.38 ±0.83 73.56 ±0.57 58.96 ±2.28 80.37 ±1.59

(a) MedSAM
(Prompted)

(b) UNet
(10 masks)

(c) TransUNet
(10 masks)

(d) AutoSAM
(10 masks)

(e) PerSAM
(1 mask)

(f) Ours
(10 BB)

Fig. 2: Predicted segmentations on test samples of HC18 (row 1) and the right
ventricle in ACDC (row 2). From left to right, (a) MedSAM prompted with
a tight box, (b-d) UNet, TransUNet and AutoSAM, trained with ground-truth
masks, (e) PerSAM using one reference image with its ground-truth mask, and (f)
our method trained on tight bounding boxes. All automatic methods are given for
the 10-shot setting, except PerSAM, a 1-shot approach. Ground-truth annotation
is drawn in red, with predicted segmentation mask overlayed in yellow.

and AutoSAM [17] which uses a Harmonic Dense Net (41.6M parameters) to
learn the prompt embedding. We train the UNet, TransUNet and AutoSAM on
full segmentation masks with a standard Cross-entropy Dice loss. To improve the
performance of the baseline models, longer training is used (200 epochs) with a
larger batch size of 24 for TransUNet (following [3]). Similarly, the best results
for PerSAM are obtained with the ViT-H backbone. Results for MedSAM are
also included when prompted with the tightest bounding boxes (no noise).
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3.3 Validation on multiple medical segmentation tasks

The Dice similarity score (DSC) is used as our evaluation criteria. We evaluate
our approach on three datasets: CAMUS, an internal validation set of MedSAM,
and HC18 and ACDC, two datasets never seen by MedSAM during training.
This allows us to verify the ability of the prompt module to effectively learn
which region to segment in both in-domain and out-of-domain data. Training is
performed on both the entire training set and the difficult 10-shot regime.

Our results are given in Table 1 and Fig.2. First, with only tight bounding
box (BB) annotations, our approach trained on all samples is able to outper-
form a UNet trained on ground-truth segmentation masks for 2 different tasks
(HC and LA). The most significant results are observed in the 10-shot setting.
With only 1.3% (ACDC), 2% (HC18) and 2.9% (CAMUS) of the total train-
ing samples, our approach sees only a slight decrease in performance (except
for RV segmentation) compared to the full-data setting. This contrasts with the
considerable performance drop observed with UNet and TransUNet in multi-
ple segmentation tasks, even when both methods are trained with ground-truth
mask labels. Therefore, our prompt module-based approach is not only more
computationally efficient to train than specialized models, but it also requires
only weak labels and appears more robust in the few-shot setting. AutoSAM dis-
plays slightly better test dice scores than our approach, but AutoSAM requires
full ground-truth masks and uses a much heavier model to learn the prompt,
yielding a 3-fold increase in the training time. Additionally, PerSAM, which uses
only one reference image, fails to generate convincing segmentations. Its poor
performance on medical datasets may be due to the fact that PerSAM generates
point prompts used by SAM, which are more likely to introduce ambiguity [12].

The benefits of our proposed methods are visually supported by Fig.2. Our
module trained on 10 training samples and tight bounding boxes yields seg-
mentations much more convincing than those produced by a UNet trained on
ground-truth masks. Given little training data, the UNet hallucinates large re-
gions in the background. Our approach is also able to generate segmentation
masks more faithful to the ground-truth than AutoSAM and PerSAM, two ex-
isting prompt-based adaptation methods for SAM.

4 Conclusion
This work proposes to automate a prompt-based universal model, such as Med-
SAM, by generating task-specific prompt embeddings directly from the image
embedding of the foundation model. Our add-on module that can be integrated
directly into MedSAM removes its dependence on user inputs. More importantly,
by applying tightness and size constraints, our module can be trained effectively
with only bounding box annotations while keeping MedSAM frozen. Further-
more, our 10-shot experiments has demonstrated that the number of samples
required to train the model could be considerably reduced without a substantial
degradation of the model performance. By adding a lightweight prompt mod-
ule that can be trained with only few weak labels, MedSAM can efficiently be
automated for specific tasks with minimal annotation hurdles.
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