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Purpose: Introducing a new technique to improve deep learning (DL) models designed
for automatic grading of diabetic retinopathy (DR) from retinal fundus images by
enhancing predictions’ consistency.

Methods: A convolutional neural network (CNN) was optimized in three different
manners to predict DR grade from eye fundus images. The optimization criteria were
(1) the standard cross-entropy (CE) loss; (2) CE supplemented with label smoothing
(LS), a regularization approach widely employed in computer vision tasks; and (3) our
proposed non-uniform label smoothing (N-ULS), a modification of LS that models the
underlying structure of expert annotations.

Results: Performance was measured in terms of quadratic-weighted « score (quad-k)
and average area under the receiver operating curve (AUROC), as well as with suitable
metrics for analyzing diagnostic consistency, like weighted precision, recall, and F1
score, or Matthews correlation coefficient. While LS generally harmed the performance
of the CNN, N-ULS statistically significantly improved performance with respect to CE in
terms quad-k score (73.17 vs. 77.69, P < 0.025), without any performance decrease in
average AUROC. N-ULS achieved this while simultaneously increasing performance for
all other analyzed metrics.

Conclusions: For extending standard modeling approaches from DR detection to the
more complex task of DR grading, it is essential to consider the underlying structure of
expertannotations. The approach introduced in this article can be easily implemented in
conjunction with deep neural networks to increase their consistency without sacrificing
per-class performance.

Translational Relevance: A straightforward modification of current standard training
practices of CNNs can substantially improve consistency in DR grading, better modeling
expert annotations and human variability.
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Introduction

Diabetes is considered a global eye health issue,
with a steadily increasing worldwide prevalence that is
estimated to reach 629 million individuals by 2045.!
Diabetic retinopathy (DR) is a diabetes complication
affecting eyes, caused by damage to blood vessels
within the retina. DR manifests early signs in the form
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releasing blood and fluid into the retina. Latest DR
stages are characterized by the appearance of advanced
signs like the proliferation of new, abnormally fragile
blood vessels, potentially leading to retinal detachment
and eventually permanent sight loss.

Retinal images acquired with fundus cameras can
reliably capture and depict the above signs, thereby
representing an effective diagnostic tool.> For this
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reason, screening programs designed for early DR
diagnosis and treatment have been established in devel-
oped countries.® In these programs, retinal special-
ists examine and grade eye fundus images in order to
deliver diagnostic outcomes. However, issues related to
the scale and cost of screening programs, together with
the increasing need of trained specialists, hinder their
introduction in developing countries.>>*

Within this context, in recent years, DR detec-
tion from eye fundus images has become a fertile
ground of application for the new generation of deep
neural networks (DNNs). Powered by higher comput-
ing capabilities and the availability of large amounts
of data, DNNs have enabled unprecedented predictive
accuracy in a wide range of diagnostics tasks.’® In
the field of ophthalmic image diagnosis, this includes
not only applications to DR detection/screening?-'°
but also to age-related macular degeneration assess-
ment,'"!? glaucoma detection,'*-'# or diabetic macular
thickening,'> to name a few.

In this article, we focus on the problem of DR
grading from eye fundus images. This extends the task
of DR detection to a multiclass problem, in which
the goal is to precisely predict the severity stage of
DR. Grading is a harder task than detection, mainly
due to the difficulty in modeling high interobserver
variability,'®!” and comparatively fewer works have
studied this problem.!”-!3 In particular, in this article,
we are concerned with designing a simple mechanism
to increase diagnostic consistency in the predictions of
a standard DNN tasked to perform DR grading. We
understand consistency as the capacity of a model to
produce predictions closer to the true grade in cases
when the original prediction is wrong. Let us stress
that our goal is to achieve such enhanced consistency
without incurring a lower overall predictive accuracy.

Data Set

For this study, color images of the eye fundus were
acquired between 2016 and 2018 with a nonmydriatic
Centervue DRS camera. Patients’ countries of origin
were multiple, including Mexico (84.1%), United States
(9.7%), Saudi Arabia (2.4%), India (1.8%), Canada
(1.3%), and other countries (0.7%). Images were graded
according to the American Association of Ophthal-
mology protocol, assigning to each photograph one out
of five possible disease stages or indicating when the
image was ungradable. The resulting private data set
was divided into independent train, validation, and test
sets in proportions of 75%, 10%, and 15%, respectively.
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A summary of the information relevant to data statis-
tics is given in Table 1.

Deep Learning and Label Smoothing
Regularization

Deep learning in the context of image diagnosis
refers to the optimization of a DNN. DNNs are mathe-
matical models built of sequences of simple opera-
tions that transform an input image into a predic-
tive output. In image analysis applications, the most
successful models of this kind are convolutional neural
networks (CNNs), where such operations are learn-
able convolutions that repeatedly filter and downsam-
ple images. The parameters defining these convolu-
tions are optimized through the iterative observation
of annotated data, in our case, of retinal fundus images
and associated DR grades, as illustrated in Figure 1. A
key component of these systems is the loss function,
which drives the optimization process by penalizing
wrong predictions and allowing the model to correct
its parameters during the learning stage. A typical loss
function for image classification tasks is the cross-
entropy error (denoted CE in the rest of this article).
Let us note that the CE loss does not model any kind
of difference between distinct categories. For instance,
in the context of DR grading, the penalization imposed
by CE to a prediction of DR grade 4 and one of DR
grade 3, when the actual disease stage is DR grade 0,
will be exactly the same.

In recent years, newer CNN architectures have
been introduced in the computer vision field, steadily
increasing performance in image classification bench-
marks.!?-?° Typically, these CNNs contain more learn-
able parameters, which increases their capacity to
process images in different ways, resulting in richer
image processing and representation ability. However,
models containing more parameters are prone to
overfitting, a phenomenon by which the model is
exceedingly adapted to the training data and fails to
generalize to images that were not used for train-
ing. To optimize these complex models with increased
robustness and to avoid hurting generalization capabil-
ity, there is the need for either more training data
or stronger regularization techniques. A regularization
mechanism is a mathematical addition to the training
process that intends to bias the learned model toward
simpler solutions, which are expected to generalize
better to unseen data.’! For instance, a popular regular-
ization approach is to penalize the learned parameters
from reaching too large values, which would artificially
create overcomplicated decision boundaries.

In this work, we are interested in a simple but much
successful approach to regularization, a technique
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Table 1. Data Set Summary

No. of Images (Unique Individuals) 46,865 (27,361)

Age (Mean £ SD) 59.6 + 14

Female/Male 17,658/9233

Characteristic Total, No. (%) Training, No. Validation, No. Test, No.
No DR 31,447 (67.1) 23,585 3,145 4,717
Mild DR 1264 (2.7) 948 126 190
Moderate DR 6822 (14.6) 5117 682 1,023
Severe DR 230 (0.5) 172 23 35
Proliferative DR 683 (1.5) 512 68 103
Ungradability 6419 (13.7) — — —

£ ‘x»
DRO DRI DR2 DR3 DR{
Non-Uniform Label Smoothing

DR1

One-Hot Encoding

DR2 DR3 DR4 DRO DRI DR2 DR3 DR4

Uniform Label Smoothing

Annotation .| ==
(e.g. DR 2)
Figure 1. Schematic representation of our proposed label representation.

called label smoothing.!” This is a method typically
applied for multiclass classification tasks, where the
standard loss function is the CE error and annotations
are represented in a format called one-hot encoding, as
shown in Figure 1 (center bottom). The simple idea
behind label smoothing is to replace these hard labels
by a smoothed version of them, in which part of their
truth value is redistributed in a uniform manner among
the rest of the labels. Therefore, the new label-smoothed
annotations in DR grading would be a weighted
average of the hard annotations and a uniform distri-
bution over grades, following the formula y, = y(1
—a) + alN, for each class k in {0, 1, 2, 3, N = 4},
as displayed in Figure 1 (right bottom). Parameter «
specifies the amount of regularization imposed to the
network. Label smoothing can contribute to avoiding
overconfident models and has been reported to benefit
overall accuracy while also increasing learning speed.'”
Recent research has also shown that label smoothing
can improve model calibration and out-of-distribution
detection.?

Downloaded from tvst.arvojournals.org on 10/17/2020

Non-uniform Label Smoothing and Error
Consistency

Despite the benefits in accuracy provided by label
smoothing in a wide array of computer vision tasks,
this technique is not suitable for every problem in a
generalistic way. In particular, the smoothing scheme
should ideally depend upon any potential underlying
structure present on data annotations. While previous
works have mainly applied label smoothing on annota-
tions that do not contain such structure, for the case
of DR grading, a conceptual distance between disease
stages exists. Consequently, we propose to modify the
standard label smoothing regularization technique by
simply replacing the one-hot encoded annotation yy
by a Gaussian distribution centered at y; with a decay
factor (standard deviation) o selected in such a way
that 95% of the probability mass still falls within
its neighboring grades. Mathematically, this would be
described as

Ve = Gr o (Vi)
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A graphical representation of the proposed regular-
ization scheme is displayed in Figure 1 (top right). We
refer to this modified technique as non-uniform label
smoothing (N-ULS) in the remaining.

It should be noted that the “degree of truth” remain-
ing in each label after smoothing using the uniform
label smoothing (ULS) and N-ULS approaches is kept
constant across all grades. There is, however, some
“missing probability” in the corner grades (grades O
and 4) for the N-ULS case; this could be easily handled
by renormalizing the probability mass so that it adds
up to 1 in these two grades. However, this would
also cause a somehow asymmetric behavior of the N-
ULS technique when compared to ULS, as it would
place more “degree of truth” in these particular grades.
There is necessarily a decision to make in this case, and
in this article, we opt for the unnormalized implemen-
tation, supported also by our preliminary experimen-
tal analysis (we did not observe any noticeable perfor-
mance difference between the unnormalized and the
renormalized strategies).

By implementing N-ULS, we expect to bias the
learning of a DR grading CNN toward a model that,
when mistaken, produces more consistent errors. This
is because N-ULS reflects in a more suitable manner
interobserver disagreements: two human graders differ-
ing in their opinion will most likely do so by neigh-
boring grades than by faraway ones. N-ULS intro-
duces in this way new information into the optimiza-
tion process, since when the CNN observes a new data
point with associated annotation, it must also learn a
notion of the underlying DR grading structure.

Experimental Design and Evaluation
Approach

We first consider a standard CNN, a 50-layer resid-
ual network,”® which can be regarded as the default
computer vision model for most visual perception
tasks. We optimize this network by standard backprop-
agation using the CE loss, since it has been used in
most previous works on DR grading.'®!® We also
analyze performance when an architecture with more
learnable weights (and thus more powerful but also
more prone to overfitting) is employed; for this, we
experiment with a 101-layer residual network. In all
cases, the weights are initialized from a pretraining
on the ImageNet data set, and they are iteratively
updated by stochastic gradient descent; the error is
monitored in the separate validation set, with train-
ing being stopped when no further improvement is
observed on it. Both networks are trained on the exact
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same data and under the same baseline configuration
three times: first without any label smoothing (CE),
second with standard label smoothing (LS), and last
with a N-ULS scheme. Learning rate and batch size
were set to 0.001 and 8, respectively, for all experiments.
All models were trained on a standard NVIDIA 1080Ti
GPU card and converged in approximately the same
amount of epochs (~15). A PyTorch implementation
of both LS strategies can be found at https://github.
com/agaldran/non_uniform_label_smoothing.

To properly assess the performance of the three
considered models, the main metric of interest that
can capture error consistency as described above is
report quadratic-weighted « score (quad-x), which
is typically used to assess interobserver variability.!?
Quadratic-weighted « score is particularly relevant
to this work, as it faithfully models the underlying
distance in grades present in DR stage classification.
We also report the average area under the receiver
operating curve (AUROC) in its multiclass extension,
after considering each possible class pair.>* Finally, we
also compute multiclass F1, precision, and recall scores
(an average weighted by the support of each class)
and analyze correlation between model predictions and
expert grades by means of Matthews correlation coeffi-
cient (MCC), which has been found useful for assessing
imbalanced problems in biomedical applications.?*

For statistically testing the performance of N-ULS
as compared to the other two approaches, human
annotations and model predictions in the test set were
bootstrapped? (n = 1000) in a stratified manner with
respect to the relative presence of each grade. Perfor-
mance differences A for each of the above metrics
were calculated in each bootstrap and P values were
computed for testing significance. The statistical signif-
icance level was set to @ = 0.05, but performance differ-
ences were considered statistically significant if P <
0.025 due to the Bonferroni correction.?

Quadratic « scores, together with the other metrics
of interest, and the corresponding statistically signifi-
cance analysis are reported in Table 2 for the ResNet50
model and in Table 3 for the ResNetl0l model.
In addition, we show macro-ROC curves for both
cases in Figure 2. Regarding the experiments with the
ResNet50 architecture, we observed the following:

1) When comparing N-ULS with respect to both
CE and LS, the quadratic « score was substan-
tially improved in +4.52% and +6.43% points,
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Table 2. Performance Comparison for the ResNet50 CNN in Terms of Mean Differences in Quadratic-Weighted «
and Other Metrics of Interest, Obtained from 1000 Bootstrap Iterations

Quad-« Average AUROC Weighted F1
N-ULS 77.69 N-ULS 91.58 N-ULS 87.86

CE 7317 A=+4+4.52(P <0.025) CE 9136 A=+4022(P>0.025) CE 8535 A=+42.21(P < 0.025)
LS 7126 A=+46.43 (P <0.025) LS 9051 A=41.07(P<0.025) LS 85.10 A=42.76 (P < 0.025)

Weighted Precision Weighted Recall MCC

N-ULS 87.33 N-ULS 89.10 N-ULS 68.03
CE 86.48 A =40.84(P>0.025) CE 8444 A=+44.64(P<0.025) CE 59.71 A=48.32(P < 0.025)
LS 8521 A=+42.12(P<0.025) LS 87.03 A=+42.07(P<0.025) LS 6071 A=47.32(P < 0.025)

Statistically significant improvements are marked bold.

Table 3. Performance Comparison for tde ResNet101 CNN in Terms of Mean Differences in Quadratic-Weighted
« and Other Metrics of Interest, Obtained from 1000 Bootstrap Iterations

Quad-« Average AUROC Weighted F1
N-ULS 77.19 N-ULS 91.02 N-ULS 87.91

CE 7198 A=45.21(P<0.025) CE 9148 A=-046(P>0.025) CE 84.76 A=43.15(P <0.025)
LS 7452 A =42.67 (P <0.025) LS 9126 A=-0.24(P>0.025) LS 86.78 A=41.13(P <0.025)

Weighted Precision Weighted Recall MCC

N-ULS 87.27 N-ULS 88.99 N-ULS 68.08
CE 86.69 A =+4058(P>0.025) CE 83.64 A=+45.35(P<0.025) CE 6090 A=+7.18 (P < 0.025)
LS 86.39 A=40.88(P <0.025) LS 8797 A=+4+1.02(P<0.025) LS 6437 A=+3.71(P <0.025)

Statistically significant improvements are marked bold.

respectively. In either case, the improvements 2) In terms of average AUROC, N-ULS achieved

were statistically significant. similar performance in this case as the other alter-
2) When comparing N-ULS with respect to LS natives CE and LS.
in terms of average AUROC, the AUROC was 3) Regarding the remaining performance metrics,
statistically significantly better in the comparison N-ULS achieved similar performance as in the
against LS (41.07%), and no statistically signifi- ResNet50 case, again statistically significantly
cant improvement was observed when comparing outperforming CE and LS in terms of recall, F1,
to CE. and MCC. An overall better performance of LS
3) As for the remaining figures of merit, N-ULS can be noticed in this case, as well as a general
statistically significantly outperformed both CE degradation in the performance of CE.

and LS in terms of overall weighted recall, F1,

and MCC and surpassed LS in overall preci-

sion. N-ULS was never outperformed by any The above observations are discussed and conclu-
of the compared approa_ches, and the remaining sions are drawn in the following section.

comparisons were not statistically significant.

Concerning the experiments with the ResNetl101 Discussion

model, we note the following observations:
The above analysis leads to several conclusions.
1) N-ULS kept a similar performance in terms First, results reported in Table 2 for the ResNet50 case
of quadratic k, outperforming again CE and demonstrate that the introduction of standard LS in
LS (+5.21%, +2.67%). With a more complex the training of this network seems to generally harm
architecture, performance of CE was degraded, performance when compared to only using conven-
whereas performance of LS increased. tional CE. This was also verified in a separate statistical

translational vision science & technology
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Figure 2.

test (not included for brevity), in which we found that
using the CE loss in this case resulted in an increase
of 1.91 percentage points in the « score (P = 0.046)
with respect to using LS. This was not the case for
the N-ULS strategy introduced in this article: for all
considered metrics, either the performance was signi-
ficatively increased, or the performance decrease was
not statistically significant. Second, and more impor-
tant, the quadratic ¥ score was substantially higher
for the N-ULS approach, which confirms our hypoth-
esis that the error consistency can be improved by
means of a simple domain-specific label smoothing
strategy. In both cases, the quadratic-weighted « score
was statistically significantly better when optimizing
the network with the N-ULS technique as compared to
the other two approaches, verifying the validity of our
findings.

Our performance analysis on other metrics for the
ResNet50 case clearly demonstrates the benefits of
implementing N-ULS over training a CNN with the
ordinary CE loss. We also observe for these metrics
that LS actually harms performance when compared
to CE, but N-ULS recovers much of this performance
loss, even rising slightly above CE results. Remark-
ably, while similar performance levels are obtained by
CE and N-ULS in terms of average AUROC, preci-
sion, and recall, a model trained with N-ULS signifi-
cantly outperforms the standard CE version in terms of
correlation measurements like F1 score or MCC, aside
from the greater quadratic-weighted « scores observed
above.
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Bootstrapped ROC curve resulting from training a Resnet50 (left) and a Resnet101 (right) CNN with CE/LS/N-ULS.

When repeating the above analysis with the
ResNet101 CNN, other interesting consequences
arise. First, overall performance when using N-ULS is
maintained for every considered metric. Second, the
performance of the CE loss without any regulariza-
tion is considerably degraded in terms of quadratic
k, dropping from 0.732 to 0.719. In contrast, the
quadratic « attained by LS increased from 0.712 to
0.7452. A separate statistical testing of LS versus CE in
this case resulted in observing an increase of quadratic
k score equal to 2.54 percentage points (P = 0.019). A
similar trend can be observed in all the other perfor-
mance metrics. In general, training a more powerful
architecture comes with a greater risk of overfitting,
and in this case, LS seems to be successful in reducing
this phenomenon, which decreases the performance
of the same network trained with standard CE. In
any case, N-ULS remains equal or superior to either
approaches in terms of every considered performance
metric, hinting at its usefulness as a regularization
technique independently of the CNN complexity.

The reported experimental results demonstrate that
the method introduced in this article for CNN regular-
ization is useful in the context of DR grading. One
of the major challenges in extending conventional
deep learning—based approaches from DR detection or
screening (binary problems) to DR grading (a multi-
class scenario) lies in ensuring that the underlying
structure of expert annotations is well captured by the
network. The approach introduced in this article is a
straightforward step toward this goal. As a secondary
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benefit, N-ULS helps in combating data imbalance
(one or several classes having disproportionately less
training samples than the other ones), which is a
typical obstacle in DR grading (see Table 1). It does
so by attaching extra information to each example: the
smoothed label corresponding to an image annotated
with a particular DR grade conveys the information
not only of its own grade but also of which are its
neighboring grades.

It is worth mentioning that N-ULS might also be
useful as an approach to handle the disproportionate
difficulty of correctly classifying fundus images corre-
sponding to the DR1 class. The typical low perfor-
mance in this category among all existing techniques
is explained by the fact that symptoms of mild DR
involve the presence of few microaneurysms, which are
subtle, easily confused with other visual artifacts, and
hard to find even for human experts.'® Since algorithms
are trained on data sets annotated by human experts,
annotations inherit such ambiguity, which is partic-
ularly high in this grade of the disease. This is also
another motivation for the proposed technique. Since
formulating perfect predictions is not even possible for
experts, it might be more useful to at least make sure
that a model formulates instead reasonable predictions,
in line with the error consistency improvement proper-
ties of N-ULS.

N-ULS can be incorporated into existing method-
ologies that employ standard CE loss functions in
order to more appropriately reflect such structure. It
is important to remark that the N-ULS regulariza-
tion scheme is independent of the CNN architec-
ture and could be equally useful in the context of
other grading problems like diabetic macular edema
prediction. Future work will involve the extension and
validation of this technique to other disease grading
problems.
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