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Hervé Lombaert1

Ismail Ben Ayed1,2

2 CRCHUM, Montreal

Editors: Under Review for MIDL 2022

Abstract

Domain adaptation (DA) tackles the performance drop observed when applying a model
on target data from a different domain than the training one. However, most common
DA techniques require concurrent access to the input images of both the source and target
domains, which is often impossible for privacy concerns. We introduce a source-free do-
main adaptation for image segmentation, leveraging a prior-aware entropy minimization.
We validate on spine, prostate and cardiac segmentation problems. Our method yields
comparable results to several state-of-the-art adaptation techniques, despite having access
to much less information. Our framework can be used in many segmentation problems,
and our code is publicly available at https://github.com/mathilde-b/SFDA
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1. Introduction

A major impediment for the deployment of deep Convolutional Neural Networks (CNNs)
in medical imaging is that they are seriously challenged by domain shifts between scans
from different vendors, machines, modalities and acquisition protocols. To improve the
performance of models across domains, recent works have focused on leveraging deep ad-
versarial training to extract domain invariant features from input images. These methods
either follow a generative approach, by transforming images from one domain to the other,
or minimize the discrepancy in the feature and/or output spaces learnt by the model (Tsai
et al., 2018). One major limitation of these approaches is that, by design, they require
concurrent access to both the source and target data during the adaptation phase. Reliev-
ing from this constraint, and closest to our work, test-time domain adaptation (TTA) was
introduced to improve generalization to new and different data, possibly a single data point,
at test time (Karani et al., 2021; Wang et al., 2021).

We propose a Source-Free Domain Adaptation formulation (SFDA). A longer version
of this teaser document is available at (Bateson et al., 2021b). Our formulation is based
on a minimization of a label-free Shannon entropy loss ℓent defined over the target-domain
data, which we further guide with a domain-invariant prior on the segmentation regions
sizes for each foreground class k, with 0 < k ≤ K. Given a set of images in the target
domain, It : Ωt ⊂ R2 → R, t = 1, . . . , T , our method minimizes the following loss dur-
ing the adaptation phase: minθ

∑
t

1
|Ωt|

∑
i∈Ωt

ℓent(pt(i, θ)) + KL(τ̂(t, θ, ·), τe(t, ·)), where
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Table 1: Performance of the domain adaptation methods in terms of DSC(%) and ASD(vox)

Method Source Spine IVDs Prostate Cardiac
Free DSC ASD DSCASD DSCASD

NoAdap (lower bound) ✓ 68.5 2.15 67.2 10.59 38.8 14.6
Oracle (upper bound) ✓ 87.5 0.38 88.4 1.81 89.2 3.0

AdaptSegNet (Tsai et al., 2018) × 82.4 0.50 83.1 2.43 74.2 5.2
AdaSource (Zhang et al., 2019) × 75.9 0.99 76.3 3.93 70.7 7.6
CDA (Bateson et al., 2021a) × 75.7 0.86 77.9 3.28 71.4 5.9

TTA (Karani et al., 2021) ✓ 69.7 1.65 73.2 3.80 40.7 12.9
Tent (Wang et al., 2021) ✓ 68.8 1.84 68.7 5.87 48.2 11.2
Prior AdaEnt (Bateson et al., 2020) ✓ 72.9 1.54 77.8 4.10 65.6 8.2
AdaMI (Ours) ✓ 74.2 1.17 79.5 3.92 75.7 5.6

pt(i, θ) =
(
p1t (i, θ), . . . , p

K
t (i, θ)

)
∈ [0, 1]K are softmax predictions of the target, τe(t, k) is

a class-ratio estimate derived from anatomical prior knowledge (see Appendix of (Bateson
et al., 2021b) for more details), and τ̂(t, k, θ) = 1

|Ωt|
∑

i∈Ωt
pkt (i, θ) is the class-ratio of the

network output prediction.

2. Experiments and Results

Datasets – 3 datasets were used. IVDM3Seg: This spine dataset consists of 16 3D multi-
modal MRIs. We set the water modality (Wat) as the source and the in-phase (IP) modality
as the target domain. 12 scans are used for training, one for validation, and the 3 scans
for testing. NCI-ISBI13: This prostate dataset consists of 30 volumes 3T MRI Siemens
scanner (source) and 30 volumes generated with a 1.5T Philips Achieva (target). We use
19 scans for training, one for validation, and 10 scans for testing. MMWHS: This cardiac
dataset consists of 20 MRI (source) and 20 CT (target). We used 14 subjects used for train-
ing, 2 for validation, and 4 for testing. For all datasets, images are normalized to zero mean
and unit variance. We performed a data augmentation based on affine transformations.

Benchmark methods – We compare our proposed model AdaMI to the DA methods
(Bateson et al., 2020, 2021a; Zhang et al., 2019; Tsai et al., 2018), and to two source-free
domain adaptation methods: TTA (Karani et al., 2021), and Tent (Wang et al., 2021).

Training and evaluation details – The adaptation phase is initialized with the net-
work parameters θ̃ obtained from the fully supervised source training phase. We employed
UNet, trained with the Adam optimizer, for 150 epochs, an initial learning rate of 1×10−6,
a weight decay of 10−3, and a batch size of 24. We use the 3D Dice similarity coefficient
(DSC) and the 3D average symmetric surface distance (ASD) as evaluation metrics.

Results – Table 1 presents our quantitative results. On spine (resp. prostate) images,
our model AdaMI reaches a DSC score of 74.2% (resp. 79.5%), representing 90% (resp.
95%) of the best-performing adaptation method, AdapSegNet. Surprisingly, on cardiac
images, where the domain shift is higher, AdaMI ranks best out of other DA adaptation
techniques. On all three applications, AdaMI outperforms the two other source-free domain
adaptation methods. The visual results in Fig 1 confirm the ability of AdaMI to produce
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Figure 1: Visual results on spine (top) prostate (middle), and cardiac (bottom) images.

accurate predictions, with regular edges (see top row), and to recover foreground structures
which had been missed without adaptation (see bottom row).

3. Conclusion

We tackle source-free domain adaptation (SFDA) for semantic segmentation. Our formula-
tion achieves a better performance on cardiac, spine and prostate than SFDA methods, and
comparable performance than state-of-the-art methods which need access to source data.
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