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Abstract. Cardiac fiber architecture plays an important role in electro-
physiological and mechanical functions of the heart. Yet, its inter-subject
variability and more particularly, its relationship to the shape of the my-
ocardium, is not fully understood. In this paper, we extend the statistical
analysis of cardiac fiber architecture beyond its description with a fixed av-
erage geometry. We study the co-variation of fiber architecture with either
shape or strain-based information by exploring their principal modes of joint
variations. We apply our general framework to a dataset of 8 ex vivo canine
hearts, and find that strain-based information appears to correlate best with
the fiber architecture. Furthermore, compared to current approaches that
warp an average atlas to the patient geometry, our preliminary results show
that joint statistics improves fiber synthesis from shape by 8.0%, with cases
up to 25.9%. Our experiments also reveal evidence on a possible relation
between architectural variability and myocardial thickness.

1 Introduction

Cardiac disease is the leading cause of death throughout the world. The study of
heart structures and functions is essential for better diagnostics and treatments. In
particular, the cardiac fiber architecture, a complex structure of myofibers organized
as laminar sheets [12], plays an important role in electrophysiology, mechanical func-
tions and remodeling processes [7] of the heart. Yet, its structural variability across
a population [4] is not fully understood. Current knowledge has in fact been mostly
based on histology studies [11]. Recent advances in diffusion tensor imaging (DTI)
enable better 3D models of the cardiac fiber and laminar architecture [13]. However,
existing 3D statistical atlases (on ex vivo human [16] and canine [19] DTI) focus
on modeling the average diffusion tensor field in an average cardiac geometry and
typically ignore the impact of shape variations on the cardiac fiber and laminar ar-
chitecture. Current fiber models often rely on simplistic mathematical descriptions
[21], where fiber directions are assumed to vary linearly across the myocardium
wall, or on registering a DTI atlas onto a patient space [23]. Recent work on cou-
pling shape and fiber variability [10,14] has only focused on the fiber orientation
in the left ventricle. Notwithstanding the current models, a general framework for
characterizing the joint variability of the complete cardiac fiber architecture with
explicit or high-order shape information remains yet to be made. In particular, what
shape information correlates best with the cardiac fiber and laminar architecture,
and can their joint shape and fiber variations improve the synthesis of complete
fiber structures? This finds direct application, for instance, in detecting architec-
tural discrepancies, which is relevant for studies on hypertrophic hearts, in in vivo
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DTI, where acquisition is limited, and in electromechanical simulations with refined
patient-specific models of the heart.

This paper proposes a novel statistical framework for analyzing the joint varia-
tions between general shape and fiber characteristics. Our approach is inspired by
the principal geodesic analysis [9] of DTI [25,17] and extends the statistical anal-
ysis of DTI beyond the simple use of atlas geometries. More precisely, we exploit
principal modes of joint variations of a Riemannian structure [8,18,25] that embeds
both shape and fiber information. We explore shape variability [3] using the most
recent advances in morphometry, which include Deformation-Based Morphometry
(DBM), based on the relative positions of structures, and Tensor-Based Morphom-
etry (TBM), based on local structure differences [15,6]. The next section details our
general framework and how it may improve synthesis of diffusion tensor fields. The
results investigate on the possible relations between the shape of the myocardium
and the cardiac fiber architecture within a population of canine hearts. We addi-
tionally show evidence on a hypothetical diversity of fiber architecture in thicker
myocardial areas.

2 Method

To study the correlation between cardiac shape and fiber architecture, we propose to
take advantage of the latest advances in morphometry (DBM/TBM) and diffusion
tensor analysis, both embedded into a Log-Euclidean framework [2].

Preliminary Atlas Construction – The variability study necessitates a common
reference space. Consequently, an anatomical atlas is first built from N hearts with
the method described in [16]. A prior rigid registration aligns all hearts in common
space. The underlying symmetric Log-Demons [24] produces then the diffeomorphic
transformations {φ1...N} that register each rigidly aligned heart onto the average
heart. These nonrigid deformations are defined in terms of stationary velocity fields,
φ = Exp(v). The diffusion tensor fields {D1...N} are then warped using these defor-
mations onto the atlas space. The Finite Strain strategy [1] is used since it preserves
geometric features [19]. Additionally, the variations of temperature during acquisi-
tion are compensated for normalizing the diffusion tensor matrices with their distri-
butions modes as in [19]. Hereafter, D will represent a compensated and reoriented
diffusion tensor field. This atlas construction keeps shape and fiber information as
independent, avoiding any bias from one to the other in the joint statistical analysis.

2.1 Shape and Fiber Information

Shape Information can be expressed via DBM [3] which analyzes the displace-
ment of material. Unfortunately, the space of transformations {φ1...N} typically
forms a complex Riemannian structure. The velocity fields {v1...N} are therefore
preferred since they lie on a tangent vector space where standard Euclidean metrics
can be used for analysis. Shapes can alternatively be analyzed using TBM, which
uses information on local changes in shapes. In particular, the strain tensor mea-
sures how a local deformation differs from a rigid transformation, and is therefore
adequate for analyzing differences in myocardium walls across a population. Among
different definitions, the right Cauchy-Green deformation tensor C(φ) = 2E + Id,
where E is the strain tensor E = 1/2(∇φT +∇φ+∇φT∇φ), is a 3× 3 symmetric
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Fig. 1. Average heart warped along two principal modes of joint shape and fiber
variations (shown are 3 axial views). Statistics are performed using both veloc-
ity components and diffusion tensor information. Shape components, U (shape), are
shown on the left. Fiber components, U (fiber), in a septal region are shown on the
right.

positive semi-definite (SPSD) matrix, and can thus be analyzed in a tangent vector
space with its Log-representation Log(C), which is also related to the Hencky strain
tensor, 1

2Log(C). Similarly, C(v), a measure of Riemannian elasticity [5], is also a
SPSD matrix and its Logarithm forms a tangent vector space.

Fiber Information consists of the diffusion tensor field {D1...N}. Each SPSD ma-
trix D can be similarly expressed in the Log-domain with Log(D). Hereafter, we use
the compact representation [2] vec(D) = (Dxx,

√
2Dxy, Dyy,

√
2Dxz,

√
2Dyz, Dzz),

which contains the non-repeating elements of D and preserves norms, ‖vec(D)‖ =
‖D‖.

Statistics on shape and fibers are facilitated with previous Log-representations.
For instance, averages are computed using the Fréchet mean: [18]: Mean{φ1...N} =

Exp
(

1
N

∑N
i=1 vi

)
, Mean{C1...N} = Exp

(
1
N

∑N
i=1 Log(Ci)

)
, and Mean{D1...N} =

Exp
(

1
N

∑N
i=1 Log(Di)

)
.

2.2 Statistics on Joint Shape and Fiber Variations

Rather than considering changes in shape and in fiber characteristics as individ-
ual features, we propose to study their joint variations, which describes how each
influence one another.

Joint Data – Let us first define the vector x(shape) as the raster-scan of shape
information across a region Ω of the heart with n = |Ω| voxels, with, for instance,
the velocity components within Ω, x(shape) = (vx,y,z1 , ..., vx,y,zn )T , or the compact
deformation Log-tensors, x(shape) = (vec(Log(C1)), ..., vec(Log(Cn)))T . Similarly, let
us define the vector x(fiber) = (vec(Log(D1)), ..., vec(Log(Dn)))T .

The joint data matrix is the concatenation X =
(

x(shape)

x(fiber)

)
−
(
µ(shape)

µ(fiber)

)
, with N

columns, each with the shape and fiber information of one heart, centered around

their average values µ(·) = 1
N

∑N
j=1 x

(·)
j .
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Principal Modes of Joint Variations – We now find the orthonormal basis U =
{u1...N−1} that maximizes the variability within the data X: u1 =

argmax‖u‖=1

∑N
i=1〈u, xi〉2 and uk=1...N−1 = argmax‖u‖=1

∑N
i=1

∑k−1
j=1 〈uj , xi〉2 +

〈u, xi〉2.
Since X lies on a Euclidean vector space, the inner product is set with 〈u, x〉 =

uTx [18], and the principal components U are computed with the eigen decompo-
sition of the covariance matrix XXT = UΛUT . Fortunately, the N − 1 non-trivial
eigenvectors U of XXT can be efficiently computed [22] by decomposing the smaller
N × N Gram matrix XTX = V ΛV T , with U = XV . Each eigenvector uj , a col-
umn of U , is a principal mode of joint variation (illustrated in Fig. 1), and can

be separated into shape and fiber components since uj = (u
(shape)
j , u

(fiber)
j ), e.g.,

u
(fiber)
j is the last 6|Ω| elements of vector uj . Note that any type of shape and fiber

information lying on vector spaces may be used, for instance, Fig. 1 illustrates such
joint variation modes when shape is modeled with velocity field components.

2.3 Joint Shape and Fiber Space
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Fig. 2. Joint shape and fiber space
where points represent hearts

Spectral Coordinates – The projection
of x onto the principal modes of variations
U provides a compact representation of a
heart with the spectral coordinate p = (x−
µ)TU in N − 1 dimensions, i.e., it is the
heart coordinate in the joint shape and fiber
space (illustrated in Fig. 2). Reciprocally, a
spectral coordinate p can synthesize data,
x̂ = µx + UpT , for instance, the diffusion
tensor field Dp:

Dp = Exp

(
µ(fiber) +

K∑
i=1

piu
(fiber)
i

)
, (1)

with K = N − 1. If u(shape) is expressed in terms of a velocity field, the heart shape

can also be synthesized with φp = Exp
(
µ(shape) +

∑K
i=1 piu

(shape)
i

)
.

Partial Spectral Projection – Partial information may be similarly used to infer
the spectral coordinate p̂ of a heart. For instance, if only shape information is avail-
able for a heart, the projection of x(shape) onto the normalized eigenvectors U (shape)

approximates p̂ = (x(shape) − µx)TU (shape). The whole shape and fiber informa-
tion, x̂ =

(
x̂(shape); x̂(fiber)

)
, is in turn recovered using the spectral reconstruction

(Eq. (1)).

3 Results

We apply the proposed joint statistical framework to the JHU dataset of 8 ex vivo
canine hearts [12] (DTI with b = 0 images of size 256 × 256 × 130, resolution
0.31 × 0.31 × 0.80) in order 1) to determine which shape information (DBM or
TBM) has the best correlation with fiber architecture, 2) to show the advantage of
using second-order joint statistics over a first-order average atlas to synthesize fibers
in a given geometry, and 3) to propose some insights on shape-fiber correlations.
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Fig. 3. Error when reconstructing from shape with an increasing number of vari-
ation modes. a) Fiber angular differences with ground truth (εe1 in degrees). b)
Angular error of the laminar sheet normal (εe3). c) Norm differences of DTI Log-
tensor (εD). Strain-based measures (green/blue curves) appears to better capture
the joint variability between shape and fiber architecture (lower is better).

3.1 Correlation between Cardiac Shape and Fiber Architecture

We now verify how much information is correlated between cardiac shape and fiber
architecture. To do so, we utilize the principal modes of variations of the joint data
matrix in order to reconstruct the diffusion tensor field Eq. (1) from different types of
shape characteristics: a) from explicit velocity components, x(shape) = (v1, ..., vn)T ,
b) Riemannian elasticity, x(shape) = (vec(Log(C(v1))), ..., vec(Log(C(vn))))T , and
c) Cauchy-Green strain, x(shape) = (vec(Log(C(φ1))), ..., vec(Log(C(φn))))T . The
explicit use of velocity fields (DBM) has the advantage to produce synthetic trans-
formations, i.e., geometries can be synthesized. Fig. 1 illustrates such synthesized
hearts with spectral coordinates varying between plus or minus two standard de-
viations, pi = ±2

√
λi. However, strain-based models (TBM) capture shape infor-

mation on a higher order level that describes local nonrigid morphological changes.
We study these two approaches by comparing their reconstruction capabilities.

The diffusion tensor fields of all hearts are reconstructed from spectral coordi-
nates (using Eq. (1)) that are approximated with our three types of shape informa-
tion. An increasing number of modes of joint variations is used during reconstruc-
tion, from K = 0, which corresponds to what the current state-of-the-art is capable
of, i.e., reusing only the average tensor field, to K = N − 1, which takes advantage
of the full joint variations between shape and fiber architecture.

The reconstruction error εD̂ is defined as a geodesic distance between the true

and the reconstructed tensor field, D from the dataset and D̂ from Eq. (1): εD̂ =
1
|Ω|
∑
i∈Ω ‖Log(Di)−Log(D̂i)‖2 where Ω covers the myocardium. Additionally, the

angular difference of fiber orientations between the true fiber field (defined with the

first eigenvector e1 of D) and the reconstructed fiber field (ê1 of D̂) is measured with
εê1 = 1

|Ω|
∑n
i∈Ω cos−1 |e1(i) · ê1(i)|. The angular difference of the third eigenvector of

D, εê3 , quantifies in a similar manner the reconstruction error of the laminar sheet
structure [12]. Fig. 3 shows a decreasing reconstruction error when more modes of
joint variations are used.

This experiment shows that fiber architecture is correlated with the shape of
the heart. Furthermore, strain-based information (TBM) appears to better capture
the joint variability between shape and fiber architecture in comparison to using
explicit deformation components (DBM).
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Fig. 4. Reconstruction error showing the angular difference (in degrees) between
reconstructed fibers and ground truth. Worst case on left, best on right. The defor-
mation strain suggests that larger errors may occur in areas with high compression
in blue (i.e., in thicker myocardial regions).

3.2 Reconstruction of Cardiac Fiber Architecture from Shape

Our joint statistical framework is now evaluated with a leave-one-out strategy, where
N atlases are built and analyzed by successively removing one heart at a time from
the training set. The diffusion tensor fields of omitted hearts are reconstructed, as
described earlier, and we measure the improvement in reconstruction accuracy when
compared to registering a DTI atlas. Warping an average tensor field is considered
here as the current state-of-the-art for synthesizing fibers [23]. We compare εD̂ with
the reconstruction error of a warped atlas, εµD

. Table 1 shows the improvement for
each heart, which is measured with (εD̂ − εµD

)/εµD
. We also measure the decrease

in the standard deviation of reconstruction error, σεD̂ . The reconstruction improves
by 5.0% for εD̂, and 3.0% for σεD̂ , when using velocity components as shape in-
formation; 8.0% and 4.1% for εD̂ and σεD̂ when using the Riemannian elasticity
Log-tensor, and 7.7% and 3.6% for εD̂ and σεD̂ when using the deformation strain
Log-tensor. Fig. 4 shows the worst and best reconstruction when using the defor-
mation strain Log-tensor, with respectively −0.5% and 25.9% improvements on εD̂;
−0.4% and 15.8% on fiber angular errors εê1 ; and −1.1% and 13.9% on angular
errors of the laminar sheet normal εê3 . Note that areas with larger discrepancies
appears to be in areas subject to compression, i.e., in thicker myocardial areas.

3.3 Localization of Higher Reconstruction Error

The joint probability between the reconstruction error and the deformation strain
determinant is studied in order to verify the last observation, notably in thicker
myocardial areas. Fig. 5 shows such 2D histograms for all hearts. Areas with high

Heart #1 #2 #3 #4 #5 #6 #7 #8
Total

Improv. εD̂

Total
Improv. σε

D̂

Velocity -0.8% -0.8% 5.6% 16.4% 1.6% -2.4% 15.0% 5.4 % 5.0% 3.0%

Strain(v) -0.2% -1.1% 9.0% 25.8% 0.8% -0.8% 19.5% 11.1% 8.0% 4.1%

Strain(φ) -0.3% 0.4% 6.8% 25.9% 0.6% -0.5% 19.3% 9.3% 7.7% 3.6%

Table 1. Leave-one-out – Improvements in tensor reconstruction.
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Fig. 5. Joint distribution of reconstruction error, εê1 on the y-axis (fiber angular
error), and deformation, |C| on the x-axis (strain determinant) for each and all
hearts. Coloring is the joint probability in a log-scale. Larger reconstruction errors
(εê1 > 45◦) are more frequent in compressed areas (mode at |C| = 0.88, illustrated
with the green arrow), i.e., shape and fiber directions may be less correlated in
thicker myocardial regions.

angular errors, εê1 > 45◦, have in fact an average distribution mode inferior to 1,
at |C| = 0.88, which suggests, perhaps, that higher reconstruction errors tend to
happen in areas subject to compression. This may indicate that cardiac shape and
fiber information are less correlated in thicker myocardial regions.

4 Conclusion

We presented a general statistical framework where both shape and fiber informa-
tion are exploited concurrently. Our method extends previous work on joint statistics
[10,14], which is only based on fiber orientation in the left ventricle, to a complete
description of fiber and laminar architecture in the whole heart. Moreover, it also
extends the description of shape variability using a higher-order description of shape
differences with strain tensors (TBM), which appears to be better correlated with
the cardiac fiber architecture. Our experiments showed that such joint variability
facilitates the synthesis of complete cardiac fiber and laminar architectures. Com-
pared to current approaches that only use an average atlas, our method infers a
diffusion tensor field from shape with an improvement of 8.0% on average, with
cases up to 25.9%. The reconstruction accuracy would most probably increase with
the availability of new hearts since they would further refine the joint shape and
fiber variability. An additional experiment also revealed that shape and fiber infor-
mation may be less correlated in thicker myocardial regions. This finding may be
relevant in the study of hypertrophic hearts. Future work will use high-order fiber
models [20] and focus on other fiber structures, such as in muscles and brains.
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