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Attention-based Dynamic Subspace Learners
for Medical Image Analysis

Sukesh Adiga V , Jose Dolz , and Herve Lombaert

Abstract— Learning similarity is a key aspect in medical
image analysis, particularly in recommendation systems
or in uncovering the interpretation of anatomical data in
images. Most existing methods learn such similarities in
the embedding space over image sets using a single metric
learner. Images, however, have a variety of object attributes
such as color, shape, or artifacts. Encoding such attributes
using a single metric learner is inadequate and may fail
to generalize. Instead, multiple learners could focus on
separate aspects of these attributes in subspaces of an
overarching embedding. This, however, implies the number
of learners to be found empirically for each new dataset.
This work, Dynamic Subspace Learners, proposes to dy-
namically exploit multiple learners by removing the need
of knowing apriori the number of learners and aggregating
new subspace learners during training. Furthermore, the vi-
sual interpretability of such subspace learning is enforced
by integrating an attention module into our method. This
integrated attention mechanism provides a visual insight
of discriminative image features that contribute to the
clustering of image sets and a visual explanation of the
embedding features. The benefits of our attention-based
dynamic subspace learners are evaluated in the application
of image clustering, image retrieval, and weakly super-
vised segmentation. Our method achieves competitive re-
sults with the performances of multiple learners baselines
and significantly outperforms the classification network in
terms of clustering and retrieval scores on three different
public benchmark datasets. Moreover, our method also pro-
vides an attention map generated directly during inference
to illustrate the visual interpretability of the embedding
features. These attention maps offer a proxy-labels, which
improves the segmentation accuracy up to 15% in Dice
scores when compared to state-of-the-art interpretation
techniques.

Index Terms— Deep Metric Learning, Clustering, Image
Retrieval, and Weakly Supervised Segmentation

I. INTRODUCTION

Learning the similarity between arbitrary images is a fun-
damental problem in many key areas of computer vision such
as image retrieval [1], [2], [3], recommender system [4], [5],
duplicate detection [6], clustering [7], or zero-shot learning [8].
In this context, metric learning is commonly used for measur-
ing similarities by learning a distance function over objects [9],
[10]. Recently, deep metric learning (DML) has been raised
as a powerful approach to learn these similarities [11]. More
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specifically, the goal of DML is to learn an embedding space
where images from the same classes are encouraged to be
close to one another. In contrast, images belonging to different
classes are pushed away in the embedding space. In recent
DML approaches, the loss function can be typically expressed
in Euclidean distances or cosine similarities between pairs or
tuples of images in the embedding space. Well-known losses
employed in DML include: contrastive loss [12], triplet loss
[13], lifted structure loss [14], N-pairs loss [1], margin loss
[15], angular loss [16], or ProxyNCA loss [2]. In addition to
novel learning objectives, recent efforts are also devoted to
designing efficient sample-mining [15], or sample weighting
[17] strategies.

Most of these methods learn the embedding mapping func-
tion with a single metric learner. However, medical images
have complex distributions consisting of different object at-
tributes such as color, shape, size, or artifacts. Thus, learning
the complex similarity associated with these different object
attributes may be inadequate with only one single-learner. A
few attempts have been made towards leveraging multiple
metric learners to address this complexity [18], [19], [20].
For example, Kim et al. [19] ensemble multiple learners,
whereas a divide-and-conquer strategy is used in [20] by
splitting the manifold into several embedding subspaces. One
main limitation of these approaches is a need to empirically
find the optimal number of learners, which requires a new
validation for every new setting, including every use of a new
dataset. Furthermore, the sizes of the embedding subspaces
associated with each learner might differ since learning the
various sets of object attributes requires varying degrees of
modeling complexity.

Despite the popularity of DML, surprisingly few works
attempt to visually explain which regions contribute to the
similarity between images in embedding networks [21]. These
visualizations are of pivotal importance since they provide
an efficient mechanism to understand the predictions of the
model. Recent efforts have been devoted to the interpretability
of deep neural networks, resulting in a variety of different
approaches [22], [23], [24], [25], [26]. Among these methods,
GradCAM [24] has been widely employed to explain deep
classification models. This method uses gradients to highlight
the discriminative regions of an image. Nevertheless, since the
gradients are not available during testing, directly applying
this strategy in embedding networks is not feasible [27]. Inte-
grating interpretability in embedding networks requires either
attaching an additional classification branch [28] or employing
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multiple images simultaneously [29], [30]. Needless to say,
interpretability is of particular interest in medical imaging,
as visual explanations of predictions directly impact the di-
agnosis, therapy planning, and follow-up of many diseases.
Thus, existing DML approaches may be inadequate to visually
uncover what constitutes similarities among a complex set of
medical images.

Motivated by these gaps and the scarcity of the DML
literature in medical imaging, we propose a novel attention-
based dynamic subspace learners approach. The underlying
metric learning method is inspired by the idea of a divide-and-
conquer strategy. More specifically, we propose to follow the
approach of [20] in order to capture different object attributes,
each of them processed with an independent subspace learner.
These subspace learners having variable sizes are learned
dynamically as and when the network accuracy is plateauing
during training. Thereby avoids the need to find apriori the
number of subspace learners while retaining the state-of-the-
art performance. Furthermore, the visual interpretation of the
embedding is addressed by integrating an attention module af-
ter feature extraction layers, encouraging the learners to focus
on the discriminative areas of target objects. Consequently,
the learning process provides a visual insight of which image
region considerably contributes to the clustering of image sets
in the form of pixel-wise interpretable predictions.

Our Contribution: We contribute a novel approach to the
state-of-the-art method in deep metric learning and illustrate
its application in medical image analysis. More precisely, we
propose a training strategy that (i) explores the dynamic learn-
ing of an embedding, (ii) overcomes the empirical search of an
optimal number of subspaces in approaches based on multiple
metric learners, and (iii) produces compact subspaces of
variable size to attend different object attributes. Furthermore,
the integration of an attention module in our dynamic learner
approach focuses the attention of each independent learner
on the discriminative regions of an object of interest. This
attention mechanism provides the added benefit of visually
interpreting relevant embedded features. The evaluation of
our proposed method is conducted by extensive experiments
on three publicly available benchmarks: ISIC19 [31], [32],
MURA [33], and HyperKvasir [34]. The performance is
evaluated on clustering and image retrieval tasks, showing
that the proposed method achieves competitive results with
the state-of-the-art without requiring the grid searches over
optimal numbers of learners. We also demonstrate that the
attention maps produced by our method can be used as proxy-
labels to train deep segmentation models. In particular, we
evaluate our approach on ISIC18 [35], [31] in a weakly
supervised segmentation task and show improvements to the
visual attention and class activation maps obtained from recent
state-of-the-art methods, including the method specifically
designed for skin lesion detection [36].

II. RELATED WORK

A. Deep Metric Learning

Metric learning is a widely explored research field in the
learning community [37], [9]. The seminal work of Siamese

Networks [37] represents the first attempt to use neural net-
works for feature embedding. Its concept is to employ two
identical neural networks that learn a contrastive embedding
from a pair of images. With the advent of deep learning,
deep metric learning (DML) has gained popularity, becoming
a mainstay in many modern computer vision problems, such as
image retrieval [38], person re-identification [39], or few-shot
learning [40]. In DML, the images are mapped into a manifold
space via deep neural networks. Euclidean or cosine distances
can then be directly used as a metric distance between two
images in this mapped space. Typical losses employed in DML
include contrastive [12] or triplet loss [41]. The contrastive
loss [12] encourages images from the same class to stay
closer –in the learned manifold– while pushing away samples
from different classes, which should be separated by a given
fixed distance. Nevertheless, forcing the same distance for all
pairs of images can discourage any potential distortion in the
embedded space. In contrast, this assumption is relaxed in
triplet loss [12], which only imposes that negative pairs of
images should be further away than positive pairs.

In the same direction as our work, [19] and [20] have
leveraged the use of multiple learners to diversify the learning
space towards different object attributes. While [19] propose
an ensemble of multiple learners driven by attention, a divide
and conquer strategy is employed in [20], which promotes the
discovery of multiple subspaces. For example, Sanakoyeu et
al. [20] explicitly splits the embedded space into a predefined
number of learners with fixed size subspaces. Then, each
learner independently learns a part of an embedding space,
i.e., a subspace, from a portion of clustered data, and the
final embedding is later refined from multiple learners. Even
though this strategy leads to improvements over its single-
learner counterpart, a grid search is needed to find an optimal
number of learners with each new dataset. Furthermore, the
size of the embedding space is uniform across the learners,
whereas some attributes, such as color, might require smaller
embeddings to encode the information than other attributes,
such as shape.

B. Metric Learning in Medical Image Analysis

Despite the interest in other domains, metric learning,
and more particularly DML, remains almost unexplored in
medical imaging. In the pre-deep learning era, related work
includes [42], which employed a distance metric learning in a
traditional boosting framework in a medical image retrieval
scenario. More recently, [43] investigates the use of DML
to model the similarity relationship between lesions in the
context of radiology images, where a triplet loss is employed
to learn the lesion embeddings. Gupta et al. [44] also resorts
to the triplet loss to learn the underlying manifold space for
the task of Mitotic classification, whose embedded features
are subsequently used as input for a Support Vector Machine
classifier. Recently, a combination of cross-entropy loss with
a contrastive loss or triplet loss is used to classify whole slide
images in digital pathology [45], [46]. In [47], a triplet loss
is used to learn a representation of source domain images,
which is later used for target domain classification under
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the few-shot learning paradigm. In [48], DML is used to
pre-train a model in the application of digital pathology
classification, where authors use a ProxyNCA loss for learning
transferable features. To enhance the embedding, [49], [50]
has integrated a multi-similarity loss to DML in the context of
chest radiography and liver histopathology image, respectively.
Nevertheless, most of these methods are developed with the
goal of classification tasks and do not effectively leverage the
geometrical information of the underlying embedding space.

C. Weakly Supervised Segmentation
Weakly supervised segmentation (WSS) has emerged as an

alternative to alleviate the need for large amounts of pixel-level
labelled data. These labels can come in the form of image-
level labels [51], scribbles [52], points [53], bounding boxes
[54] or direct losses [55]. Among them, image-level labels
are easier and inexpensive to obtain [53]. Particularly, class
activation maps (CAM) [56] have gained popularity in iden-
tifying saliency regions based on image labels. It is achieved
by associating feature maps of the last layers and weighting
their activation using a global average pooling (GAP) layer.
However, generated saliency maps are typically spread around
the target object, only focusing on the most discriminant areas.
This limits its usability as pixel-level supervision for semantic
segmentation. To enhance the generated saliency regions, some
alternatives based on back-propagation (GradCAM [24]) or
super-pixels (SP-CAM [57]) have been proposed. Neverthe-
less, these methods demand additional gradients computations
[24] or supervisions [57].

The literature on WSS in medical imaging remains scarce.
While few methods resort to direct losses, hence requiring
additional priors, such as the target size [58], [55], other
approaches rely on stronger forms of supervision, for instance,
using bounding boxes [54] or scribbles [59]. Tackling WSS
from a perspective of image-level labels typically involves
visual features, which has not been thoroughly investigated
[60], [61], [62], [63]. For example, Nguyen et al. [62] has
proposed a CAM-based approach for the segmentation of uveal
melanoma. In their method, the CAMs generated by the clas-
sification network are further refined by an active shape model
and conditional random fields [64]. More recently, CAMs
derived from image-level labels have been combined with
attention scores to refine lesion segmentation in brain images
[65]. By doing so, they have demonstrated a performance
improvement compared to the vanilla version of CAMs. Nev-
ertheless, these methods typically integrate CAM/GradCAM
with complex models to enhance the performance of a final
segmentation.

III. METHODOLOGY

A. Overview
An overview of the proposed approach is depicted in Fig. 1.

The main idea is to split the embedding space into multiple
subspaces (K) such that the original embedding space can
be learned by refining its subspaces. Contrary to [20], the
embedding space is split dynamically, which removes the
need to search for the optimal number of learners K in

each scenario. The whole process is divided into two iterative
steps. First, input images are mapped into the lower dimension
embedding space using the entire embedding layer E (d-
dimension), where they are clustered into different groups.
Second, the clustered data is consequently assigned to an
individual subspace learner, where their corresponding images
are used to train each subspace. These two steps are repeated
at regular intervals, as well as each time a new learner is
added. The key idea is that each subspace learner learns a part
of the embedding space from a subgroup of images instead
of learning a whole embedded representation vector. Finally,
all subspaces are combined to generate a full embedding
space. Furthermore, an attention module is integrated within
the learning process to guide the learning of distance metrics.
The following sections describe the deep metric learning
formulation, present the proposed dynamic subspace metric
learning and attention module.

B. Deep Metric learning Formulation
Let the training dataset be defined as X = {(xi, yi)}Ni=1,

where the i-th image is denoted as xi ∈ Rm, and yi ∈
{1, 2, ..., C} is its corresponding class label. C defines the
total number of classes. The goal of deep metric learning is
to learn an embedding function fθ(·) : Rm → Rd, which dis-
criminatively maps semantically similar images (same class)
in the input space Rm onto metrically close points in the
learned manifold Rd. Similarly, semantically dissimilar images
(different class) in Rm should be mapped metrically far in Rd.
The parameters θ of the mapping function are typically learned
by a convolutional neural network. Formally, the distance
metric d(xi, xj) : Rd × Rd → R between two images in the
embedding space Rd can be defined as:

d(xi, xj) = ||fθ(xi)− fθ(xj)||, (1)

where || · || denotes the Euclidean norm. This distance can be
minimized in different ways, depending on the loss function
employed. In this work, we resort to the Margin loss [15]:

lmargin(xi, xj) = [α+ µij(d(xi, xj)− β)]+, (2)

where β is the boundary between the similar and dissimilar
pairs, α is a separation margin, and µij ∈ {−1, 1} indicates
whether the images in the pair are similar (µij = 1) or different
(µij = −1). Note that any other metric learning loss function
can be employed with our approach.

C. Dynamic Subspace Learners
The complexity of the original problem can be solved by

dividing the problem into smaller sub-problems, which are
easier to solve. We follow the approach in [20], where the
embedding space Rd and the data is split into multiple groups.
Specifically, splitting of the embedding space is conducted by
slicing the Rd space, i.e., the last dense layer of the network,
into K sub-vectors of the same size, d/K. Furthermore, data
is clustered into K groups based on their pairwise distance
in the embedding space Rd, for instance, using K-means.
Then, a set of K independent learners is used to learn over
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Fig. 1: Overview of our proposed attention-based dynamic subspace learners - The embedding space is dynamically
divided into the subspaces of varying sizes during training. Suppose there are K subspaces at a particular training time; the
data are first grouped into K groups in the full embedding space (step 1, from epoch 1 to 250) and assign each subgroup of
data to an individual subspace learner. Each learner then only attends the data from its subgroup in the learning stage (step
2). In inference time, our method uses the entire embedding space E to map an image. Best viewed in color.

each subspace by using a fraction of the input data, thereby
reducing the complexity of the original problem. Nevertheless,
a major bottleneck is finding an optimal number of subspaces
K to learn an effective embedding, which must be found
empirically for every new dataset. Moreover, the subspace
is divided equally, which is ineffective as not all the object
attributes require the same size to encode the information.

Contrary to [20], our proposed learning strategy finds an
optimal embedding by dynamically splitting the embedding
space and associating with a metric learner during training. To
construct each subspace, we group highly contributing neurons
of the embedding layer E, which is repeated until network
convergence. Initially, the entire embedding space is learned
with all the data, with an initial single learner K = 1. As the
learning progresses, the accuracy of the model starts to reach
an initial plateau. At this stage, we compute the score of each
neuron (ei) in the embedding layer, similarly to the pruning
strategy as in [66]. In particular, the low-scoring neurons
are pruned such that the performance drop of the model is
minimal, i.e, |∆fθ(ei)| = |fθ(X, ei = 0)− fθ(X, ei)|. By
using Taylor expansion, as in [66], the scoring of each neuron
ei can be reduced to:

s(ei) = |∆fθ(ei)| =
∣∣∣∣fθ(X, ei)−

∂fθ
∂ei

ei − fθ(X, ei)

∣∣∣∣ = ∣∣∣∣∂fθ∂ei
ei

∣∣∣∣
(3)

Thus, the scoring of neurons is simplified to multiplying the
activation and the gradient output in the embedding layer. This
score s(ei) is computed for each training example separately,
and is consequently averaged across all training data and
normalized to [0, 1]. The neurons having high normalized
scores are subsequently grouped to form a new subspace. Par-
ticularly, the neurons having more than 50% of the confidence

score, i.e., s(ei) > 0.5, are grouped as a new subspace. The
current metric learner (Lk) is later assigned to this group of
neurons. The remaining neurons of the embedding layer, er,
are eventually reset, similar to the pruning technique [66] and
assign a new metric learner as in Eq. 4. After adding this new
learner, the training data is clustered by mapping into the entire
embedding space using K-means with the updated K (K = 2
for the second iteration). Note that the entire embedding space
here is a combination of all the subspaces. Each learner is
eventually assigned a subgroup of data from the clustering,
resulting in each learner being trained with a fraction of the
input data. The addition of a new learner is repeated with the
remaining neurons er when the network performance reaches
a new plateau, until convergence. In the end, it results in K
mapping functions, f = [f1, f2, ..., fK ], where each mapping
function fk will project the images Rm into the corresponding
subspace of Rdk , each with a variable size.

All learners are trained jointly by resorting to the margin
loss [15], which for each learner can be defined as:

L
fk
θk

k (xi, xj) =
∑

(xi,xj)∼B

[α+ µij(dfk
θk

(xi, xj)− β)]+, (4)

where (xi, xj) ∼ B is the current mini-batch (uniformly
sampled from each data group) having both positive and
negative classes, and dfk

θk

is the distance metric (similar to
Eq.1) for the k-th learner. Once individual learners are trained,
these are merged to compose the entire embedding space,
which is refined with the entire training set. Furthermore,
assuming that the learned embedding space is improving over
time, we re-cluster the images at every Tc epochs by mapping
all the images using the entire embedding space E. An outline
of the proposed method is presented in Algorithm 1.
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Algorithm 1: Dynamic Subspace Learner Pseudocode

Inputs: X , Xtest : Training and test data
θ : backbone network parameters
E : Embedding space
Tc, Tp : clustering and network plateau threshold

Initialize: K ← 1, number of learner
B ← 0, Best epoch
ep ← 1, current epoch
er ← E, remaining embedding space
RC ← True, re-clustering flag

while Not converged do
if RC then ▷ Re-cluster the data

E ← ConcatEmbedding({e1, e2,...eK−1, er})
emb ← ComputeEmbedding(X, θ, E)
{C1, C2,...,CK} ← ClusterData(emb, K)
{e1, e2,...eK−1, er} ← SplitEmbedding(E, K)
RC ← False

repeat ▷ Train all learners
Ck ∼ {C1, C2,...,CK}
b ← GetBatch(Ck)
Lk ← FPass(b, θ, fk)
θ, fk ← BPass(Lk, θ, fk)

until epoch completed
ep ← ep + 1
E ← ConcatEmbedding({e1, e2,...eK−1, er})
RC ← (ep mod Tc == 0)
if Evaluate(Xtest, θ, E, ep) > B then ▷ Is best

B ← ep
else if ep ≥ (B + Tp) then ▷ Is network plateaued

K ← K + 1 ▷ Update new learner
{eK−1, er} ← splitLearner({er}) ▷ using Eq.3
{e1,..eK−1, er} ← SplitEmbedding(E, K, eK−1)
reset(er)
RC ← True

E ← ConcatEmbedding({e1, e2,...eK−1, er})
θ, E ← FineTune(X, θ, E)
Output: θ, E

D. Attentive Dynamic Subspace Learners

Deep attention is raising as an efficient mechanism to
focus the learning on the objects of interest in a wide range
of applications, such as person re-identification [67], object
classification [68], or medical image segmentation [69], [70].
Inspired by these advances, we introduce an attention module
to learn attentive features, with the goal of enhancing the
learning of the embedding space. For a given input image xi,
feature extractor S(·) produces a feature maps si = S(xi) ∈
Rc×m×n, where m,n denote the spatial dimension of the
feature map and c the number of channels. The attention
map produced by the attention module A(·) can be then
defined as ai = A(si) ∈ Rm×n. The generated attention
map is multiplied with each feature map ai ⊙ si, where ⊙
is the element-wise product, resulting in the set of attentive
features. Last, the attentive features are combined to produce a
c−dimensional vector by using global average pooling (GAP),
which are mapped into the manifold space using a dense layer
(Fig. 1).

E. Attention maps for Weakly Supervised Segmentation

The attention maps obtained by our proposed method can
serve as proxy pixel-level labels to train a segmentation
network in a fully-supervised manner. Specifically, the input
image xi and corresponding attention map ai are used as
a training pair. To differentiate foreground pixels from the
background pixels in ai, we threshold the attention maps with
Ts (i.e., pixels in ai greater than Ts are set to 1, 0 otherwise)
before training the segmentation network. The network is
trained with binary cross-entropy as a loss function, which
is computed over pixel-wise softmax probabilities, defined as:

LBCE(x, a) = − 1

N

N∑
i=1

2∑
c=1

aci · log(Fθs(x
c
i )) (5)

where Fθs is a segmentation network parameterized by θs.
Note that the learning objective that trains a segmentation
network is same in both the fully and weakly supervised
scenario. However, the main difference lies in the labels
employed in the cross-entropy term. In particular, while the
former resorts to given segmentation masks, e.g., y, the latter
leverages the obtained attention masks as pseudo-labels, i.e.,
a.

IV. EXPERIMENTS

A. Experimental Setting

The performance of the proposed attention-based dynamic
subspace learners (ADSL) is compared to other deep metric
learning methods applied in medical imaging [45], [46], [47],
[44], [43], which resort to contrastive or triplet loss. To assess
the effectiveness of the dynamic learner training strategy, we
compare it with the divide and conquer approach (DCML)
[20]. Since we use class labels information, we compare with
the classification network trained using a cross-entropy loss.
For a fair evaluation, the backbone architecture and hyper-
parameters are fixed across the different methods. In addition,
experiments across all the models and datasets are run three
times, and their average performances are reported. Note
that the baselines based on triplet and contrastive loss rely
on single-learner, whereas models based on the divide-and-
conquer strategy and our method employ multiple learners.

To assess the performance of our approach in terms of
segmentation, we benchmark the resulting attention maps
against the popular GradCAM [24] from the classification
networks. We include a recent Attention Residual Learning
(ARL) approach in [36] since it has been similarly proposed in
the context of skin lesion analysis. We also include a recently
proposed weakly supervised segmentation method, Embedded
Discriminative Attention Mechanism (EDAM) [71], applied
for the natural image. Lastly, we include as an upper bound
the results obtained by UNet [72] that was trained on the
provided pixel-level masks. Note that the model architecture
and hyperparameters are fixed across the different methods.
Nevertheless, the ARL model employs a carefully modified
ResNet50 backbone with soft-attention blocks in each layer.
It is noteworthy to mention that it also uses an offline multi-
scale patch extraction strategy, resulting in extra images during
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(a) ISIC19 dataset (b) MURA dataset (c) HyperKvasir dataset

Fig. 2: Impact of number of learners K in DCML [20] - Each line indicates the NMI (top) and Recall@1 (bottom) scores
across the three datasets. The default loss function employed is margin loss, whereas models with a triplet loss are explicitly
mentioned. Best seen in color.

training. Whereas, the EDAM model employs a collaborative
multi-head attention module after the feature extraction layer
to directly generate the discriminative activation masks.

Datasets: The performance of the proposed method, in
terms of clustering and image retrieval, is evaluated on three
diverse medical imaging datasets: skin lesion from the ISIC
2019 Challenge [31], [32], musculoskeletal radiographs from
the MURA dataset [33], and gastrointestinal tract images
from the HyperKvasir dataset [34]. To assess the segmentation
performance, we resort to the skin lesion dataset from the ISIC
2018 Challenge [35], [31].

a) ISIC19: This dataset consists of 25,331 images across 8
different categories. In our experiments, following the standard
procedure in DML, we split our dataset into independent
training and testing sets. Specifically, 20,000 images were used
for training and the remaining 5,331 for testing.

b) MURA: It consists of 40,561 images from 9,045 nor-
mal and 5,818 abnormal musculoskeletal radiography studies
across seven standard upper extremity types. We configure this
as 14 categories (7 normal and 7 abnormal) to represent the
data in a manifold. We use the provided split of 36,808 images
for training and 3,197 images for testing.

c) HyperKvasir: This dataset consists of 110,079 images,
of which 10,662 images are labeled across 23 different classes
of findings. We randomly split the data into 8,567 images for
training and the remaining 2,095 images for testing.

d) ISIC18: This dataset is composed of 2,594 images
and their corresponding pixel-level masks. The segmentation
dataset is randomly split into three sets: training (1,042),
validation (520), and testing (1,038). We leverage the attention
maps and GradCAMs generated on the ISIC19 dataset (25,331
images) as proxy-labels to train the segmentation networks.
In contrast, the training set is used to train the upper-bound
model, i.e., fully-supervised.

Evaluation Metrics: We follow the evaluation protocol typi-
cally employed in deep metric learning [20], [14]. In particular,
we employ the normalized mutual information (NMI) to assess
the clustering performance using K-means and the Recall score
(with k = 1 and 4) to evaluate the image retrieval quality. To
assess the segmentation performance, we employ the common

Dice score coefficient.
Implementation details: As in [20], we use ResNet50 [73] as

the backbone architecture. The feature extractor layers consist
of the first three residual blocks of ResNet50, used as input to
the attention module. The attention module consists of three
convolution layers with 3×3 kernel and filters size of {128, 32,
1}, with a ReLU activation between each convolutional layer.
Last, a sigmoid activation is integrated into the final layer to
produce the activation map. An input image size of 224×224
is used for all our experiments. All models are trained using
the Adam optimizer [74] with batch size of B = 32. In each
mini-batch, 8 images per class are sampled to ensure a class-
balanced scenario and experiments are trained for 300 epochs.
The last 50 epochs are fine-tuned with full embedding. The re-
clustering parameter is set to Tc = 2 as in [20] and the network
plateau threshold is empirically set to Tp = 10. The margin
loss parameters are set to α = 0.2, β = 1.2, as in [15]. Last,
since most DML approaches [15], [20] employ an embedding
space of size d = 128, we use the same latent dimension
in all our experiments. The PyTorch implementation of our
work is publicly available here: https://github.com/
adigasu/Dynamic_subspace_learners.

Regarding the segmentation task, we use UNet [72] archi-
tecture with an initial kernel size of 32 with two convolution
layers and a depth of 3. It is trained with Adam optimizer with
batch sizes of 16. For each method, the threshold parameter
Ts is set to maximize the Dice score on the initial maps of
the validation set (Fig. 6).

B. Clustering and image retrieval results
Impact of number of learners K: One of the motivations of

this work is to remove the need to empirically searching for
the optimal number of learners. To validate this hypothesis,
we first study the performance of DCML [20] by varying the
number of subspace learners (K). Figure 2 depicts the results
of this experiment across the three datasets and under two
different loss functions: margin and triplet loss. In these plots,
it can be observed that the optimal K value significantly differs
across datasets and metrics. Thus, this limitation of the DCML
approach results in extra time-consuming steps to fine-tune

https://github.com/adigasu/Dynamic_subspace_learners
https://github.com/adigasu/Dynamic_subspace_learners
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the model in each dataset. In contrast, the proposed method
(dotted line) eliminates the need of manually defining K by
dynamically exploring the manifold, yet achieves on par results
with the best performing DCML setting.

We also report the average K values obtained from our
method over three runs, as well as the DCML (best) K in
Table I. The table shows that the K value has no relation to the
number of ground-truth classes. The dynamically obtained K
in our method is driven by image content, not by the number of
ground-truth classes, which explains their uncorrelated values.

Dataset #classes ADSL - Avg. K DCML - Best K

ISIC19 8 7 6
MURA 14 4.67 1
HyperKvasir 23 4.33 2

TABLE I: Comparison of the obtained K values from our
method and the DCML best K values with respect to the
number of ground-truth classes.

Comparison to prior literature: We now compare our method
with recent prior work as baselines, whose results are reported
in Tables II-IV. As the performance of DCML varies with K,
we report only the best and worst models. Note that the DCML
with a single-learner, i.e., K = 1, is equivalent to a margin loss
method [15]. We also report the performance of the embedding
space learned by the classification network. From the Tables II-
IV, we observe that the proposed method consistently achieves
the best results in terms of NMI across the three datasets while
performing on par with the best setting of the DCML approach
on image retrieval metrics. As shown previously, it is important
to note that the performance of DCML heavily depends on
the value of K. For instance, the difference between the worst
and best DCML configuration in NMI score can be up to 5%
on the ISIC19 dataset. Compared to single-learner approaches,
our method brings 5 and 2% improvements in NMI and Recall
score on the ISIC19 dataset and up to a 1% improvement in
both scores on the MURA and HyperKvasir datasets. This
highlights the potential of exploring embeddings via multiple
subspaces.

Furthermore, the comparison with the conventional classi-
fication network shows that our method consistently outper-
forms its accuracy up to 10% in terms of NMI scores on
ISIC19 and up to 4% NMI score on MURA and HyperKvasir
datasets and up to 4% and 1.5% in terms of Recall scores
on the ISIC19 and MURA datasets. The averaged NMI and
R@1 results of the proposed method slightly outperform the
best DCML configuration, which is consistent across all the
datasets. The standard deviation of our method is smaller in
all cases for all metrics compared to the DCML. Overall, our
method shows better robustness with respect to the state-of-
the-art methods in the learning manifold space. The perfor-
mance of our method is in line with the recent literature [75],
[76].

Ablation study on the use of attention: Adding an attention
module brings additional value to our model in terms of inter-
pretability. Nevertheless, to assess whether this improvement
is also reflected in the model performance, we compare our
model to its non-attention counterpart, denoted as Dynamic

Fig. 3: Impact of the embedding size - Each bar indicates the
NMI (top) and Recall@1 (bottom) scores on ISIC19 dataset.
Compare to the best model of DCML method, our method
produces better NMI and Recall scores for most cases.

Subspace Learners (DSL). Results from this study are reported
in Table V, which shows that adding attention typically leads
to a boost on the model performance. In particular, the
attentive model brings 0.5 and 0.3% improvement as average
over the three datasets for the NMI and R@4 metrics, respec-
tively, while achieves on par results for R@1. Additionally,
the attention module minimally increases the model memory
by 5 MB (includes parameters, forward and backward pass
size) when compared to non-attention counterpart, which is
arguably negligible with respect to the overall model size (607
MB) in case of deployment.

Impact of the embedding size: We also evaluate the effect
of representing the embedding space with different sizes.
In particular, we assess the clustering and image retrieval
performance on the ISIC19 dataset by fixing the embedding
dimension size to 64, 128, 256, and 512. Figure 3 shows
that increasing the embedding size results in a performance
improvement, which is reflected in both NMI and recall
metrics. Nevertheless, beyond a 256-dimension embedding,
the performance of both models typically decreases.

Qualitative Analysis: To show the inter and intra-class rep-
resentation power in the embedding space across different
models, we visualize a t-SNE mapping [77] on the ISIC19 test
set (Fig. 4). The classification network fails to discover clear
boundaries across classes in the embedding space (Fig. 4b).
This could be because of the cross-entropy loss when coupled
with softmax, does not explicitly guarantee the minimization
of intra-class variance or maximization of inter-class variance,
which results in suboptimal discriminative features [78]. The
single metric learner, i.e., DCML K = 1 (Fig. 4c), improves
the class boundaries when compared to the classification
network, yet they fail to possess compact clusters. On the other
hand, inter-class discrimination is visually enhanced when
resorting to multiple learners, i.e., DCML K = 6 (Fig. 4d)
and our approach (Fig. 4e). Further, we can also observe that
the proposed model yields more compact clusters than the
DCML approach, which might be due to the freedom of our
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Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)

Classification network 45.41 ± 1.95 77.85 ± 0.86 90.54 ± 0.51 61.63 ± 1.40
Contrastive loss 31.47 ± 0.39 78.13 ± 0.59 91.13 ± 0.08 54.80 ± 0.49
Triplet loss 50.97 ± 0.61 79.84 ± 0.49 91.70 ± 0.26 65.41 ± 0.55
DCML (worst NMI, K = 1) 50.53 ± 1.01 82.84 ± 0.39 91.51 ± 0.43 66.69 ± 0.70
DCML (best NMI, K = 6) 55.08 ± 0.83 82.29 ± 0.56 91.73 ± 0.36 68.69 ± 0.70
ADSL (free from K, ours) 55.14 ± 0.87 82.39 ± 0.11 92.11 ± 0.27 68.77 ± 0.49

TABLE II: Quantitative evaluation on ISIC19 test set - The NMI, Recall, and average scores from the different methods.
Our method is emphasized with light gray, whereas best and second-best results are highlighted with bold and underline.

Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)

Classification network 71.09 ± 1.25 74.21 ± 0.27 92.59 ± 0.40 72.65 ± 0.76
Contrastive loss 74.28 ± 0.53 71.65 ± 0.53 92.07 ± 0.36 72.97 ± 0.53
Triplet loss 74.41 ± 0.27 74.51 ± 0.78 92.95 ± 0.33 74.46 ± 0.53
DCML (worst NMI, K = 10) 72.88 ± 0.40 73.55 ± 0.16 91.17 ± 0.19 73.22 ± 0.28
DCML (best NMI, K = 1) 74.67 ± 0.35 75.36 ± 0.79 92.89 ± 0.18 75.02 ± 0.57
ADSL (free from K, ours) 74.88 ± 0.09 75.52 ± 0.18 92.25 ± 0.42 75.20 ± 0.15

TABLE III: Quantitative evaluation on MURA test set - The NMI, Recall, and average scores from the different methods.
Our method is emphasized with light gray, whereas best and second-best results are highlighted with bold and underline.

Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)

Classification network 80.13 ± 2.34 85.66 ± 0.39 94.42 ± 0.39 82.90 ± 1.87
Contrastive loss 83.89 ± 0.15 78.52 ± 0.86 93.44 ± 0.48 81.21 ± 0.51
Triplet loss 82.24 ± 0.19 83.44 ± 0.34 93.92 ± 0.22 82.84 ± 0.27
DCML (worst NMI, K = 1) 83.31 ± 0.19 84.79 ± 0.59 94.05 ± 0.26 84.05 ± 0.39
DCML (best NMI, K = 2) 84.40 ± 0.52 85.46 ± 0.31 94.19 ± 0.28 84.93 ± 0.42
ADSL (free from K, ours) 84.18 ± 0.12 85.82 ± 0.27 94.24 ± 0.41 85.00 ± 0.20

TABLE IV: Quantitative evaluation on HyperKvasir test set - The NMI, Recall, and average scores from the different
methods. Our method is emphasized with light gray, whereas best and second-best results are highlighted with bold and
underline.

(a) Before learning (b) Classification network (c) DCML K = 1 (d) DCML K = 6 (e) Our method

Fig. 4: Visualization of ISIC19 test set in embedding space using t-SNE - Each class is indicated by its individual color.
When compared to a standard classification network, DCML K = 1 (a single-learner) improves the separation between classes.
The multi-learner methods, DCML K = 6 and our method, further improve the separation between classes, while our method
has the advantage of being free from the number of learners K. Best seen in color.

Dataset Method NMI (↑) R@1 (↑) R@4 (↑)

ISIC19 DSL 54.11 82.74 91.95
ADSL 55.14 82.39 92.11

MURA DSL 74.21 75.85 92.26
ADSL 74.88 75.52 92.25

HyperKvasir DSL 84.44 85.36 93.54
ADSL 84.18 85.82 94.24

Average DSL 70.92 81.32 92.58
ADSL 71.40 81.24 92.87

TABLE V: Impact of attention module - Per-dataset and av-
erage results of the proposed model with (ADSL) and without
(DSL) the attention module. Best results are highlighted with
bold for each dataset as well as for the average.

model to explore the manifold.
Qualitative evaluation in terms of image retrieval is assessed

in Fig. 5, where a given random query with its five nearest
neighbors, found using both DCML and our method, are
shown. Additionally, we overlay the contour of our attention
maps (having probability above 0.5) from the proposed method
over their respective retrieved image. First, our method indeed
retrieves images having similar lesions and colors from the
ISIC19 dataset. In radiography wrist images, both DCML
and our method have similar retrieval errors. Finally, retrieval
images from the HyperKvasir dataset have similar image
semantics in terms of texture and probe length using our
method when compared to DCML. The coherence of image
retrievals indicates that the intra- and inter-class similarities
have been captured by our method and thereby demonstrates
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Fig. 5: Performance of image retrieval on test sets - Each
query image and its five nearest neighbors in ascending order
of distance are shown (left to right) from the DCML (best
K) and our method with an overlay of our attention maps
(probability above 0.5).

the robustness of our learned embedding. Moreover, our at-
tention maps mainly concentrate on the lesion in the skin
images, the wrist in the radiography images, and the probe
contact region in the endoscopic images, demonstrating that
our model decision are consistent over all retrievals.

C. Weakly Supervised Segmentation results

Table VI reports the results of the segmentation experi-
ments. In this table, Init maps are used to denote the raw
visual salient regions from either GradCAM or attention maps.
Refined refers to the performance of the segmentation network
trained on the Init maps. First, we can observe that segmenta-
tion results obtained by raw attention maps and GradCAMs are
considerably low, with Dice values around 40%. This is likely
due to the well-known fact that both are highly discriminative,
resulting in over-segmented regions. The Attention Residual
Learning (ARL) significantly outperforms these baselines,
whose improvement could be due to the use of attentive
residual blocks and additional multiscale data augmentation.
The attention maps from the recent Embedded Discriminative
Attention Mechanism (EDAM) method perform at a similar
level when compared to ARL. Last, the attention maps from
the proposed approach bring a significant boost compared to
all the other methods. In particular, our model outperforms
the baselines by nearly 30% and the recent ARL model by
13%. These results are typically consistent if we employ the
initial maps as proxy-labels to train a segmentation network.
In this case, raw attention maps or GradCAMs barely improve
or even decrease the initial segmentation performance. In
contrast, ARL, EDAM, and the proposed method reach higher
Dice values, with about 1%, 3.5%, and 3% of increase,

Method Init maps Refined

Attention ∗ 38.45 33.43
Attention † 38.52 38.38
GradCAM ∗ 41.55 40.76
GradCAM † 39.80 41.27
ARL [36] ⋄ 56.78 57.60
EDAM [71] ⋄ 51.99 55.50
ADSL (ours) ⋄ 69.23 72.42

Full-supervision (upperbound) - 86.15

TABLE VI: Performance of weakly supervised segmentation
- “Initial maps” and “Refined” are Dice scores (in %) on
the ISIC18 test set for different methods. Our method yields
the best results (in bold). ∗, † and ⋄ are from ResNet50,
ResNet101 and modified ResNet50, respectively, indicating
the used architecture in each visual map.

respectively. This represents a difference of 15% in Dice with
respect to ARL. On the other hand, by only using image-
level information, the proposed model bridges the gap with a
fully-supervised network, with only 14% of difference. This
suggests that the proposed model generates reliable segmen-
tations.

Ablation study of threshold Ts on the raw visual maps: We
evaluate the effect of threshold values Ts on the Dice score
for raw visual maps from attention maps and GradCAMs, as
shown in Fig 6. First, the attention maps and GradCAMs from
the classification network have an almost flat Dice score of
around 40% until Ts = 0.4, succeeded by a gradual decrease.
The ARL and EDAM have a gradually increasing Dice score
until Ts = 0.4 and Ts = 0.6 with a maximum score of 57.33%
and 50.89%, respectively, followed by a gradual decrease. Our
method outperforms the baselines for all threshold values in
Dice scores with a maximum dice score of 69.0%, showing
the robustness of the attention maps derived from our method.
This study assists in setting a threshold value Ts for each
method before training the segmentation network.

Qualitative Performance Evaluation: Visual results of the
different methods are shown in Fig. 7. In this figure, Init
maps (row 1 and 3) are raw visual salient regions from either
GradCAM or attention maps shown as heatmaps, whereas
Refined (row 2 and 4) refers to the performance of the
segmentation network trained using Init maps as a proxy-
labels. The attention maps (row 1 and 3) produced by the
classification network spread all over the image, capturing
some discriminative regions on the target lesion. GradCAMs
spread around the target, highlighting discriminative regions
of the lesion but failing to capture the whole context. The
saliency map produced by the ARL method is focused on
the target lesion. The attention maps obtained by the recent
EDAM method spread around the target lesion, including the
artifact regions, and fail to capture the target object context.
In contrast, the attention maps derived from our approach
better capture the attentive region, which mostly cover the
lesion regions. The results show that our proposed approach
generates superior attention maps compared to attention maps
or GradCAMs from classification networks.

The results obtained by training a segmentation network
on the initial salient regions (row 1 and 3) are depicted in
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Fig. 6: Threshold Ts selection - Each line indicates the Dice
scores of initial maps on the ISIC18 validation set for different
methods. Our method outperforms the baselines for all Ts

values. ∗ and † are obtained by classification networks using
ResNet50 and ResNet101, respectively.

row 3 and 4. These images demonstrate the feasibility of our
method to weakly generate pixel-level labels that are usable
for training segmentation networks.

V. DISCUSSION AND CONCLUSION

This paper presents a novel attention-based dynamic sub-
space metric learning approach for medical image analysis.
The proposed algorithm leverages recent advances in deep
metric learning using multiple metric learners. Our contribu-
tion improves the state-of-the-art method [20] with dynamic
exploitation of subspace learners to learn the embedding
space. Specifically, our novel training strategy overcomes the
empirical search of the optimal number of subspace learners
parameter while achieving competitive results in clustering
and image retrieval tasks. Performance is extensively evaluated
on three publicly available benchmark datasets: skin lesions,
musculoskeletal radiography, and endoscopic images. Results
demonstrate that our dynamic learner approach achieves the
best results in clustering performance across all three datasets.
Compared to the single-learner method, our method brings
a maximum of 5 and 2% improvements in clustering and
image retrieval scores on the ISIC19 dataset. Furthermore, our
method significantly outperforms the classification network in
all the datasets with a maximum of 10% and 4% improvements
in clustering and retrieval scores on the ISIC19 dataset.
Overall, the proposed method slightly outperforms in averaged
results and has a smaller standard deviation when compared to
the state-of-the-art methods in multiple metric learning. Our
experiments have shown consistency across all the datasets,
demonstrating the robustness of our method. Qualitative results
show that the proposed method produces compact clustering
and coherent image retrievals.

The addition of the attention module to our subspace
learners provides the visual interpretability of the learned
embedding space in terms of attention maps and improves the

clustering metrics. Our method offers new tools in multiple
metric learners approaches, notably dynamically learning the
number of learners and providing attention maps to hint
at salient information caught by the learners. Studying the
clinical usability of these tools remains to be explored. Nev-
ertheless, A recent study [75] shows that the use of a retrieval
network, in a single learner, yields an improvement of 9.2% in
the decision accuracy of dermatologists. Our method indeed
suggests that multiple learners capture a data embedding that
yields a higher accuracy in clustering and retrieval tasks
over single-learner methods, while additionally offering visual
saliency from our attention mechanism.

The attention maps produced by our proposed method
can serve as proxy pixel-level labels to train a segmentation
network. The segmentation results outperform a state-of-the-
art method, Attention Residual Learning (ARL) [36], as well
as the recent Embedded Discriminative Attention Mechanism
(EDAM) [71] by a margin of 15% and 17% in Dice scores,
respectively, on the skin lesion dataset. The qualitative results
demonstrate that the produced attention maps and their seg-
mentation masks focus on the target lesion, demonstrating the
effectiveness and robustness of our method. These attention
maps produced in our subspace learning approach could
therefore be potentially beneficial to a broader range of weakly
supervised tasks, where the feature space remains challenging
to represent using a single metric model within a specific task.
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[11] M. Kaya and H. Ş. Bilge, “Deep metric learning: A survey,” Symmetry,
vol. 11, no. 9, p. 1066, 2019.

[12] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Computer Vision and Pattern Recog-
nition, vol. 2. IEEE, 2006, pp. 1735–1742.

[13] J. Wang et al., “Learning fine-grained image similarity with deep
ranking,” in Computer Vision and Pattern Recognition. IEEE, 2014,
pp. 1386–1393.

[14] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in Computer Vision
and Pattern Recognition. IEEE, 2016, pp. 4004–4012.

[15] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling
matters in deep embedding learning,” in International Conference on
Computer Vision. IEEE, 2017, pp. 2840–2848.

[16] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning
with angular loss,” in International Conference on Computer Vision.
IEEE, 2017, pp. 2593–2601.

[17] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning,”
in Computer Vision and Pattern Recognition. IEEE, 2019, pp. 5022–
5030.

[18] H. Lombaert, D. Zikic, A. Criminisi, and A. Nicholas, “Laplacian
forests: semantic image segmentation by guided bagging,” in Medical
Image Computing and Computer Assisted Intervention. Springer, 2014,
pp. 496–504.

[19] W. Kim, B. Goyal, K. Chawla, J. Lee, and K. Kwon, “Attention-
based ensemble for deep metric learning,” in European Conference on
Computer Vision, 2018, pp. 736–751.

[20] A. Sanakoyeu, V. Tschernezki, U. Buchler, and B. Ommer, “Divide and
conquer the embedding space for metric learning,” in Computer Vision
and Pattern Recognition. IEEE, 2019, pp. 471–480.

[21] B. Hu, B. Vasu, and A. Hoogs, “X-MIR: Explainable medical image
retrieval,” in Winter Conference on Applications of Computer Vision,
2022, pp. 440–450.

[22] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European Conference on Computer Vision.
Springer, 2014, pp. 818–833.

[23] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in International Conference on Machine Learning,
vol. 70. JMLR.org, 2017, pp. 1885–1894.

[24] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in International Conference on Computer
Vision. IEEE, 2017, pp. 618–626.

[25] R. Chen, H. Chen, J. Ren, G. Huang, and Q. Zhang, “Explaining neural
networks semantically and quantitatively,” in International Conference
on Computer Vision. IEEE, 2019, pp. 9187–9196.

[26] S. Belharbi, J. Rony, J. Dolz, I. B. Ayed, L. McCaffrey, and E. Granger,
“Deep interpretable classification and weakly-supervised segmentation
of histology images via max-min uncertainty,” IEEE Transactions on
Medical Imaging, vol. 41, no. 3, pp. 702–714, 2021.

[27] L. Chen, J. Chen, H. Hajimirsadeghi, and G. Mori, “Adapting Grad-
CAM for embedding networks,” in Winter Conference on Applications
of Computer Vision, 2020.

[28] M. Zheng, S. Karanam, Z. Wu, and R. J. Radke, “Re-identification with
consistent attentive siamese networks,” in Computer Vision and Pattern
Recognition. IEEE, 2019, pp. 5735–5744.

[29] A. Stylianou, R. Souvenir, and R. Pless, “Visualizing deep similarity
networks,” in Winter Conference on Applications of Computer Vision.
IEEE, 2019, pp. 2029–2037.

[30] S. Zhu, T. Yang, and C. Chen, “Visual explanation for deep metric
learning,” IEEE Transactions on Image Processing, vol. 30, pp. 7593–
7607, 2021.

[31] N. Codella et al., “Skin lesion analysis toward melanoma detection
2018: A challenge hosted by the international skin imaging collaboration
(ISIC),” arXiv preprint arXiv:1902.03368, 2019.

[32] M. Combalia et al., “BCN20000: Dermoscopic lesions in the wild,”
arXiv preprint arXiv:1908.02288, 2019.

[33] P. Rajpurkar et al., “MURA: Large dataset for abnormality detection
in musculoskeletal radiographs,” Medical Imaging with Deep Learning,
2018.

[34] H. Borgli et al., “HyperKvasir, a comprehensive multi-class image and
video dataset for gastrointestinal endoscopy,” Scientific Data, vol. 7,
no. 1, pp. 1–14, 2020.

[35] P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset,
a large collection of multi-source dermatoscopic images of common
pigmented skin lesions,” Scientific data, vol. 5, p. 180161, 2018.

[36] J. Zhang, Y. Xie, Y. Xia, and C. Shen, “Attention residual learning
for skin lesion classification,” IEEE Transactions on Medical Imaging,
vol. 38, no. 9, pp. 2092–2103, 2019.

[37] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
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