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Abstract

This paper presents a novel approach for learning and exploiting surface data
directly across surface domains. Direct learning of surface data via graph con-
volutions provides a new family of fast algorithms for processing brain surfaces.
The current limitation of existing state-of-the-art approaches is their inability to
compare surface data across different surface domains. Surface bases are indeed
incompatible across geometries. This paper leverages recent advances in spectral
graph matching to transfer surface data across aligned spectral domains. This
enables direct learning of surface data across compatible surface bases. It ex-
ploits spectral filters over intrinsic representations of surfaces. We illustrate our
approach with an application to brain parcellation and validate the algorithm over
101 manually labeled brain surfaces. The results show a significant improvement
in labeling accuracy over recent Euclidean approaches and gaining a drastic speed
improvement over conventional methods.

1 Introduction

Neuroimage analysis consists of studying functional and anatomical information over the brain
geometry. The thin outer layer of the brain cerebrum is of particular interest due to its key role in
cognition, vision and perception. Statistical frameworks on surfaces are, therefore, highly sought for
studying various aspects of the brain. Conventional approaches rely on geometrical simplifications,
such as spherical inflation and slow mesh deformations [1], often a costly process. For instance, the
widely used FreeSurfer [2] takes around 3 hours to parcellate brain surfaces by slowly deforming brain
models towards labeled atlases. State-of-the-art learning approaches [3, 4] have the potential to offer
a drastic speed advantage over traditional surface-based methods, but operate on image or volumetric
spaces. Geometric deep learning [5, 6, 7] recently proposes to use convolutional filters on irregular
graphs. The main concern of [8, 9, 10, 11, 12] is their inability to compare surface data across
different surface domains. One approach is to map local graph information onto geodesic patches
and use conventional spatial convolution via template matching [13, 14, 6]. However, fundamentally,
spatial representations of surface data remain defined in Euclidean spaces, for instance, using polar
representations of pixels or mesh vertices.

This paper leverages recent advances in spectral graph matching to transfer surface data across
aligned spectral domains [15]. This spectral alignment strategy was exploited to learn surface data
[16], but was limited to pointwise information, ignoring local patterns within surface neighborhoods.
Our novel approach enables a direct learning of surface data across compatible surface bases by
exploiting spectral filters over intrinsic representations of surface neighborhoods. We illustrate the
learning capabilities of this approach with an application to brain parcellation. The validation over 101
manually labeled brain surfaces [17] shows a significant improvement of spectral graph convolutions
over Euclidean approaches, from a Dice score of 51% to 87%. This performance is superior with
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Figure 1: Overview of the algorithm – On the left are inputs: Sulcal depth Sd, and corresponding
spectral coordinates (û1, û2, û3). In the middle are: Learned convolution layers, Ml, where sample
filter responses are shown with coarse to fine geometric features. On the right are: Predicted
parcel probabilities (Pred) with ground truth (GT) for two parcels. Brain surfaces are inflated for
visualization.

the well established FreeSurfer algorithm [2], which scores 83% [17], while gaining a drastic speed
improvement, in the order of seconds. Our contributions are multifold. The transfer of spectral bases
across domains enables the design of spectral filters in graph convolutional approaches. Our adaptive
spectral filters can consequently learn cortical surface data across multiple geometries, as well as
exploit local patterns of data within surface neighborhoods. The next section details the fundamentals
of our spectral approach, followed by experiments evaluating the impact of our spectral strategy over
standard Euclidean approaches for graph convolutions.

2 Method

An overview of the proposed method is shown in Fig. 1. Firstly, cortical surfaces are modeled as
a brain graph G = {V, E} , such that |V| = N , and edge set E . Each node i has a feature vector
xi ∈ R4 representing its 3D coordinates and sulcal depth. We map G to a low-dimension spectral
manifold using the normalized graph Laplacian operator L. The eigendecomposition L is given
by L = UΛU>, with the normalized spectral coordinates of nodes as Û = Λ

1
2 U. The spectral

embedding of different brain surfaces are then aligned in the manifold to a reference Ûref using the
Iterative Closest Point (ICP) algorithm. The optimal transformation between matched nodes is then
obtained by iterating until convergence. Finally, a geometric convolutional neural network (CNN)
is used to map input features, corresponding to the spectral coordinates and sulcal depth of brain
graph nodes, to a labeled graph. A generalized convolution operation on a graph G = {V, E}, with
Ni = {j | (i, j) ∈ E}, as the neighbors of node i ∈ V , is defined as:

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
jq · ϕ(ûi, ûj ; Θ

(l)
k ) + b(l)p , (1)

where ϕ(ûi, ûj ;Θk) is a symmetric kernel in the embedding space with parameter Θk. In this work,
we follow [6] and use a Gaussian kernel: ϕ(ûi, ûj ;µk, σk) = exp

(
− σk ‖(ûj − ûi)− µk‖2

)
.

Using this formulation, we define a fully-convolutional network composed of 3 graph convolution
layers with feature map sizes ofM1 = 32,M2 = 64 andM3 = 32, each one havingKl = 4 Gaussian
kernels. The size of the last layer corresponds to the number of parcels to be segmented (32 in our
case). Leaky ReLU is applied after each layer to obtain filter responses and a softmax operation after
the last graph convolution layer to obtain the parcel probabilities of each node. Finally, cross-entropy
is employed as output loss function for back-propagating the error and updating network parameter
Θ = {w(l)

pqk, b
(l)
p , Θ

(l)
k } using standard gradient descent optimization.
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Figure 2: Cortical Parcellation – (First/Left) Learning with Euclidean coordinates, resulting in low
Dice score (50.7%) and inconsistent boundaries (Hausdorff distance of 5.8mm). (Second) Learning
with Spectral coordinates, improving Dice score (85.3%) and boundary regularity (1.7mm). (Third)
Spectral domain regularized with MRF, leading to a dice score (86.6%) consistent boundaries (1.6mm)
with respect to the reference (Fourth). The brain surface is inflated for visualization.

3 Results

We now evaluate the performance of our contributions by highlighting the advantage of moving graph
learning frameworks from a conventional Euclidean domain to a Spectral domain. Our validation is
performed on Mindboggle [17], the largest publicly available dataset of manually labeled brain MRI.
It consists of 101 subjects collected from different sites, with cortical meshes varying from 102K
to 185K vertices. Each brain surface contains 32 manually labeled parcels. Results are measured in
terms of average Dice overlap and Hausdorff distances [16], and shown in Fig. 2.

We evaluate the improvement of moving the learning operations from the Euclidean domain to a
Spectral domain. In our baseline, similarly to the latest approaches of graph convolutions networks
[6], we learn from input features in the Euclidean domain. Each cortical point is represented using
sulcal depth and its spatial location. This algorithm performs with an average Dice overlap of
50.8% (± 20.5, min/max = 0.0 / 85.5%) across all parcels in our dataset. The Hausdorff distance
averaged across all parcels is 5.8mm. Fig. 2 clearly illustrates the current limitation of existing graph
convolutions approaches. In a geometry-aware Spectral domain, using the same architecture and data
split as before, the average Dice overlap across all parcels improves to 85.3% (± 5.3, min/max =
69.5 / 95.1%). The Hausdorff distance averaged across all parcels is now reduced to 1.7mm. This is a
68% improvement over learning in the conventional Euclidean domain. The qualitative results of
Fig. 2 show that our cortical parcellation is almost similar to the manual parcellation. The boundary,
however, is irregular and requires further regularization. As an illustration of further refinement,
we use Markov random field (MRF) regularization [18] for both Euclidean and Spectral outputs.
MRF regularization further improves the overall classification accuracy from 50.8% to 58.1% in
the Euclidean domain, and from 85.3% to 86.6% in the Spectral domain. Similar improvement is
observed in terms of Hausdorff distance, with a reduction from 5.8mm to 4.9mm in the Euclidean
domain, and from 1.7mm to 1.6mm in the Spectral domain.

Results for all parcels are also at par with FreeSurfer’s (from 83.2% vs 86.6%), while gaining a
significant improvement in computation time, from 3 hours to 18 seconds for processing one subject
with our spectral graph convolution network.

4 Conclusion

This paper presented a novel framework for learning surface data via spectral graph convolutions.
The algorithm leverages recent advances in spectral matching to enable the comparison of surface
data across different surface domains. Our experiments illustrated the benefits of our approach with
an application to cortical surface parcellation. This is a particularly challenging problem where
current graph convolution approaches remain limited by the inability to compare surface data across
brain geometries. This typically results in spatial irregularities of parcel boundaries as illustrated in
Fig. 2. By capturing the geometry of the spectral manifold, the proposed method can improve the
parcellation accuracy to a Dice score of 85.3%, from 50.7% with graph convolutions in the Euclidean
space. The performance of our method 85.3% is better than the state-of-the-art approach FreeSurfer
83.2% for cortical parcellation, also, it reduces the computation time by an order of magnitude (18
seconds vs hours for FreeSurfer). While the potential of our method was demonstrated on cortical
parcellation, it can be applied to other analyses of surface data, potentially leading to new families of
geometry-based biomarkers for neurological disorders.
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