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Abstract. Neurodegenerative pathologies, such as Alzheimer’s disease,
are linked with morphological alterations of subcortical structures which
can be assessed from medical imaging and biological data. Recent ad-
vances in machine learning have helped to improve classification and
prognosis rates. We present here a classification framework for Alzheimer’s
disease which extracts triangulated surface meshes from segmented bi-
nary maps in MRI, and establishes reliable point-to-point correspon-
dences among a population of hippocampus 3D surfaces using their spec-
tral representation. Morphological changes between groups are detected
using a manifold learning algorithm based on Grassmannian kernels in
order to assess similarity between shape topology in control normals and
patients. A second manifold using discriminant embeddings is then gen-
erated to maximize the class separability between three clinical groups
recognized in dementia. We test the method to classify 47 subjects with
Alzheimers Disease (AD), 47 with mild cognitive impairment (MCI) and
47 healthy controls enrolled in a clinical study. Classification rates com-
pare favorably to standard classification methods based on SVM and
traditional manifold learning methods evaluated on the same database.

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia, with an inci-
dence that doubles every five years after the age of 65 [2]. As life expectancy
increases, the number of AD patients increases accordingly, which causes a heavy
socioeconomic burden. It is expected that treatment decisions will greatly benefit
from diagnostic and prognostic tools that identify individuals likely to progress
to dementia sooner. This is especially important in individuals with mild cogni-
tive impairment (MCT), who present a conversion rate of approximately 15% per
year. Towards this end, neuroimaging datasets for AD including magnetic res-
onance imaging (MRI) and other types of biomarkers have shown considerable
promise to detect longitudinal changes in subjects scanned repeatedly over time
[13], by offering rich information on the patients morphometric and anatomi-
cal profiles. Their use stems from the premise that longitudinal changes may be



more reproducible and more precisely measured with MRI and other parameters
such as in clinical scores, cerebrospinal fluid (CSF), or proteomic assessments.

A number of studies reported structural changes in the hippocampus, parahip-
pocampal gyrus, cingulate, and other brain regions in both MCI and AD patients
[12]. Other studies have used intensity information to discriminate elderly nor-
mal controls (NC) with patients inflicted with AD or mild cognitive impairment
(MCI), based on T1-weighted MRI [6]. Previous machine learning algorithms
using MRI were based on traditional morphometric measures, such as subcor-
tical volume or shape descriptors of brain structures [3] and their change over
time [5]. These were based on finding a low-dimensional representation of com-
plex and high-dimensional data using principal component analysis (PCA) and
multidimensional scaling (MDS). However these methods are typically linear,
making it easy to transform data from image space into the learned subspace,
but lacks the ability to process irregular or abnormal structures, which tend to
follow non-linear patterns of variation. To cope with this limitation, manifold
learning methods on the other hand tend to better model highly non-linear data,
such as from neuroimaging datasets [1]. Recently, discriminant embeddings ex-
ploit within and between-class similarities to establish correspondences between
disparate data, thereby offering a more accurate relationship of subtile structural
alterations in AD.

The objective of this study is to propose a classifier which distinguishes NC
subjects from patients with MCI and patients afflicted with AD. First, seg-
mented hippocampus shapes from MRI are matched between each other using
a spectral representation of the 3D mesh surface of the sub-cortical surface in
order to have one-to-one vertex correspondences between hippocampus shapes
throughout a population. Once a training set of hippocampus shapes is cre-
ated for three clinical relevant groups (NC, MCI, AD), a discriminant manifold
based on Grassmannian kernels is trained to maximize the separation between
these three groups and improve the classification accuracy for any unseen MRI,
which can be processed by mapping the segmented hippocampus onto the trained
manifold. Th main contribution of this paper is to develop a hippocamus clas-
sification approach based on their spectral representation which is classified in
the Grassmannian space.

2 Methods

2.1 Hippocampus shape alignment

In the first step, segmented binary masks obtained from diagnostic T1-weighted
MRI are processed to the same image orientation and isotropic voxel sizes, and
then converted into 3D triangulated surfaces using the marching cube algorithm.
A Gaussian smoothing process is subsequently applied on each surface in order
to remove surface irregularities. Then, a reference surface is defined in an iter-
ative process, and all triangulated surfaces are aligned to this reference using a



rigid registration algorithm. In order to establish the point-to-point correspon-
dences across all surfaces, each mesh is matched to a randomly selected reference
surface using a spectral matching algorithm as proposed in [8].

The matching between two surfaces S; and S; of the hippocampus from two
separate subjects is conducted in a two-step process. In the first step, an initial
transformation is calculated between the two surfaces, followed by a second step
to establish a smooth map between the two meshes based on a diffeomorphic
mapping [7]. First, the spectrums of the meshes S; and S; are computed accord-
ing to spectral representation theory. Meshes are described by their principal
eigenmodes following an eigendecomposition of their respective Laplacian ma-
trix L. In order to add robustness to the feature matching process, the mean
curvature at each point of the mesh defined as C(i) = 0.5 * (Cpnin + Cinaz)
are calculated, where the principal curvatures C,,;, and C),q, are estimated as
the minimum and maximum curving degrees of a mesh S, respectively. Hence,
the mean curvature of C' is computed as {C(1),C(2),---,C(n)}, where n is the
number vertices. We incorporate these features in the weighting of the nodes of
the spectral graph G by computing the exponential of the mean curvature, and
defining the graph Laplacian as L = GL, where

G = P (exp(diag({C(1),C(2),--- ,C(n)}))) ! (1)

and P is the diagonal node degree matrix integrating distance weights. Once
meshes are described in the spectral domain, the first e eigenvectors associated
with non-zero eigenvalues are chosen to define the spectral representations S; and
S ;. After reordering and sign adjustment [7] of the resulting spectrums S; and S'j,
we perform non-rigid alignment of the spectral coordinates using Coherent Point
Drift (CPD) [9]. The CPD approach finds a continuous transformation between
the surfaces S; and Sj in the spectral domain. Once the two spectral representa-
tions are aligned, the point-by-point correspondences between two meshes could
be directly established in the Euclidean space, such that the two closest points
in the spectral domain are considered as corresponding points in the Euclidean
space. Thus, the correspondence map c between S; and S; is established with a
simple nearest-neighbor search in spectral domain.

It was shown in [8] that incorporating extra features might create discontinu-
ities in the correspondence map c. As a solution, a diffeomorphic matching is
applied to find the final map between two shapes. This is obtained by defining
an association graph composed of the set of vertices and edges, based on the
initial set of correspondence links. The graph Laplacian operator is applied on
the resulting graph, followed by a spectral decomposition to produce a shared
set of eigenvectors, from which the first and last eigenvalues are used to obtain
one-to-one vertex correspondences between the mesh vertices. This procedure is
repeated for all training meshes in the three groups of the database, with (1)
normal controls, (2) MCI patients and (3) AD patients.



2.2 Learning the discriminant Grassmannian manifold

Manifold learning algorithms are based on the premise that data are often of
artificially high dimension and can be embedded in a lower dimensional space.
However the presence of outliers and multi-class information can on the other
hand affect the discrimination and/or generalization ability of the manifold.
We propose to learn the optimal separation between three classes (1) normal
controls, (2) MCI patients and (3) AD patients, by using a discriminant graph-
embedding based on Grassmannian manifolds for the classification problem ini-
tially proposed in [4]. Each sample mesh surface S, which vertices has been
rearranged using the alignment method in 2.1, can be viewed as the set of low-
dimensional m subspaces of R" on a Grassmannian manifold and represented by
orthonormal matrices, each with a size of n X m, with n the higher dimensionality
of vertices defined earlier. Two points on a Grassmannian manifold are equiv-
alent if one can be mapped into the other one by a m x m orthogonal matrix.
In this work, similarity between two surfaces (S;,.S;) on the manifold is mea-
sured as a combination of projection and canonical correlation Grassmannian
kernels K; ; defined in the Hilbert Space. By describing different features of the
hippocampus shape with each kernel, K; ; can improve discriminatory accuracy
between shapes.

In order to effectively discover the low-dimensional embedding, it is necessary
to maintain the local structure of the data in the new embedding. The struc-
ture G = (V, W) is an undirected similarity graph, with a collection of nodes
V connected by edges, and the symmetric matrix W with elements describing
the relationships between the nodes. The diagonal matrix D and the Laplacian
matrix L are defined as L = D — W, with D(i,i) = >_,,, W;Vi. Here, N
labelled points S = {(S;, ¢;)}}¥, are generated from the underlying manifold M,
where ¢; denotes the label (NC, MCI or AD). The task at hand is to maximize a
measure of discriminatory power by mapping the underlying data into a vector
space, while preserving similarities between data points in the high-dimensional
space. Discriminant graph-embedding based on locally linear embedding (LLE)
[11] uses graph-preserving criterions to maintain these similarities, which are in-
cluded in a sparse and symmetric N x N matrix, denoted as M.

Within and between similarity graphs: In our work, the geometrical struc-
ture of M can be modeled by building a within-class similarity graph W, for
hippocampus of same group and a between-class similarity graph Wy, to sep-
arate hippocampus from the three classes. When constructing the discriminant
LLE graph, elements are partitioned into W,, and W classes. The intrinsic
graph G is first created by assigning edges only to samples of the same class
(ex: MCI). The local reconstruction coefficient matrix M (i,7) is obtained by
minimizing:

. .. 2 N .
min SIS - MGHSIP DY M(,§) =1 Vi (2)
JENW (3) JENW (7)



with AV, (4) as the neighborhood of size k1, within the same region as point i (e.g.
hippocampus from MCI patient). Each sample is therefore reconstructed only
from 3D meshes of the same clinical group. The local reconstruction coefficients
are incorporated in the within-class similarity graph, such that the matrix W,
is defined as:

(M+MT7MTM)1‘]‘, if S; ENw(Sj) or x; ENw(Sl)
0, otherwise.

Ww(ivj) = { (3)

Conversely, the between-class similarity matrix W, depicts the statistical prop-
erties to be avoided in the optimization process and used as a high-order con-
straint. Distances between healthy and pathological samples are computed as:

1/k’2, if S; € Nb(Sy) orS; € Nb(Sz)
0, otherwise

Wi (i, ) = { (4)

with AV containing ko neighbors having different class labels from the ith sample.
The objective is to transform points to a new manifold M of dimensionality d,
i.e. S; — y;, by mapping connected samples from the same group in W ,, as close
as possible to the class cluster, while moving NC, MCI and AD meshes of W,
as far away from one another. This results in optimizing the objective functions:

Ji = min % Z(yz —y;)*Wu(i,j)  fo = max % Z(yz — ;) Wali,5) ()
i,j ()

Supervised manifold learning: The optimal projection matrix, mapping new
points to the manifold, is obtained by simultaneously maximizing class separa-
bility and preserving interclass manifold property, as described by the objective
functions in Eq.(5). Assuming points on the manifold are known as similar-
ity measures given by the Grassmannian kernel K; ;, a linear solution can be
defined, i.e., y; = ((a1,5:),...,{a,,S;))T for the r largest eigenvectors with
o; = Z;vzl a;;S;. Defining the coefficient A; = (a;1,...,a;n)7 and kernel K; =
(ki1, ..., kin)T vectors, the output can be described as y; = (ay, S;) = AlTKi.
By replacing the linear solution in the minimization and maximization of the
between- and within-class graphs, the optimal projection matrix A is acquired
from the optimization of the function as proposed in [4]. The proposed algorithm
uses the points on the Grassmannian manifold implicitly (i.e., via measuring
similarities through a kernel) to obtain a mapping A. The matrix maximizes a
quotient similar to discriminant analysis, while retaining the overall geometrical
structure. Hence for any new segmented surface mesh S;, a manifold represen-
tation can be obtained using the kernel function based on S, and mapping A.



3 Experiments and results

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with
1.5 or 3.0 T structural MR images (adni.loni.usc.edu). For this study, a subset
of baseline 1.5 T MR images is used including 47 normal controls (NC), 47 AD
patients, and 47 individuals with MCI. The three groups are matched approx-
imately by age and gender (NC with a mean age of 76.7 &+ 5.4, 23 male; AD
with a mean age of 77.4 £+ 7.2, 21 males; MCI with a mean age of 75.0 + 6.9, 28
males). Additional post-processing steps were performed on the MR images to
correct certain image artifacts and to enhance standardization across sites and
platforms. The post-processing steps include gradient non-linearity correction,
intensity inhomogeneity correction, bias field correction, and phantom-based ge-
ometrical scaling to remove calibration errors. Here, we use these processed im-
ages. Left and right hippocampi were segmented using FSL-FIRST automatic
segmentation [10] and visual inspection was performed on the output binary
masks to ensure the quality of the segmentation. Fig. 1 shows the shape differ-
ences in the left and right hippocampus between NC, MCI and AD.

The optimal size was found at k1 = 7 for within-class neighborhoods (N, ), and
ko = 4 for between-class neighborhoods (N}). The optimal manifold dimension-
ality was set at d = 5, when the trend of the nonlinear residual reconstruction
error curve stabilized for the entire training set. Fig. 2 shows the resulting man-
ifold with embedded hippocampus shapes which can be clearly identified into
three separate groups, due to the discriminative nature of the framework. Table
1 presents accuracy, sensitivity and specificity results for SVM (nonlinear RBF
kernel), LLE and the proposed method between three clinically relevant pairs
of diagnostic groups (NC/AD, NC/MCI, MCI/AD). The classifier performance
was obtained by repeating 100 times a random selection of samples, using 75% of
the data for training and 25% for testing in each run. Results show a significant
improvement using the discriminant manifold embedding compared to standard
approaches. It also illustrates that increased accuracy can be achieved using the
discriminant embedding with combined kernel (a; = 1, s = 5), which suggests
the benefit of extracting complementary features from the dataset for classifica-
tion purposes compared to different types of classification models (SVM, LLE).

4 Conclusion

Our main contribution consists in describing morphometric variations of the
hippocampus in a discriminant nonlinear graph embedding with Grassmannian
manifolds to detect the presence of Alzheimer’s disease. A spectral matching pro-
cess based on the eigendecomposition of the Laplacian matrix of hippocampus
shapes extracted from a dataset of MRI images enabled to establish one-to-one
correspondences in mesh vertices. This is critical to construct a reliable training
set of sub-cortical shapes from various pathological groups and normal con-
trols. A manifold embedding including intrinsic and penalty graphs measuring



Fig.1: (a) Distance maps of left and right hippocampal shape deformations in
AD patients compared with normal controls. (b) Distance maps of left and right
hippocampal shape deformations in MCI patients compared with normal con-
trols.

Table 1: Classification results for the classification of NC, MCI and AD patients
from segmented hippocampal regions. We compare a standard SVM classification
approach, with a single LLE method and the proposed discriminant LLE method.
NC/AD NC/MCI MCI/AD All groups
SVM|LLE|DLLE(SVM|LLE|DLLE|SVM|LLE|DLLE|SVM|LLE|DLLE
Sensitivity tp/(tp+fn) |0.75|0.84| 0.90 |0.58 [0.61| 0.69 |0.50|0.57| 0.60 |0.61|0.67| 0.73
Specificity tn/(tn+fp) |0.69|0.77| 0.85 |0.62 |0.70| 0.77 |0.57 |0.61| 0.67 |0.62 [0.69| 0.77
Overall accuracy 0.7210.79| 0.88 | 0.60 |0.65| 0.72 | 0.54 |0.58| 0.65 | 0.62|0.67| 0.74

similarity within clinical relevant groups and between NC, MCI and AD pa-
tients, respectively, was trained to differentiate between the different hippocam-
pus shapes. A combination of canonical correlation kernels creates a secondary
manifold to simplify the deviation estimation from normality, improving detec-
tion of pathology compared to standard LLE. Experiments show the need of
nonlinear embedding of the learning data, and the relevance of the proposed
method for stratifying different stages of dementia progression. In the context
of Alzheimer’s disease, the method can improve for the early detection of the
disease with promising classification rates based on ground-truth knowledge.
Future work will compare results to volumetric measurements and improve the
deviation metric using high-order tensorization and investigate into fully auto-
mated hippocampus segmentation, as it can affect the precision of the spectral
correspondence process.
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Fig. 2: Resulting manifold embedding with low-dimensional coordinates of sam-
ples points taken from the NC, MCI and AD groups.
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