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Abstract

Neuronal cell bodies mostly reside in the cerebral cortex. The study of this thin and highly convoluted
surface is essential for understanding how the brain works. The analysis of surface data is, however, challeng-
ing due to the high variability of the cortical geometry. This paper presents a novel approach for learning
and exploiting surface data directly across multiple surface domains. Current approaches rely on geometri-
cal simplifications, such as spherical inflations, a popular but costly process. For instance, the widely used
FreeSurfer takes about 3 hours to parcellate brain surfaces on a standard machine. Direct learning of surface
data via graph convolutions would provide a new family of fast algorithms for processing brain surfaces.
However, the current limitation of existing state-of-the-art approaches is their inability to compare surface
data across di↵erent surface domains. Surface bases are indeed incompatible between brain geometries. This
paper leverages recent advances in spectral graph matching to transfer surface data across aligned spectral
domains. This novel approach enables direct learning of surface data across compatible surface bases. It
exploits spectral filters over intrinsic representations of surface neighborhoods. We illustrate the benefits of
this approach with an application to brain parcellation. We validate the algorithm over 101 manually la-
beled brain surfaces. The results show a significant improvement in labeling accuracy over recent Euclidean
approaches while gaining a drastic speed improvement over conventional methods.

Keywords: Graph Convolution Networks; Geometric Deep Learning; Spectral Graph Theory; Cortical
Parcellation

1. Introduction

Neuroimage analysis consists of studying functional and anatomical information over the brain geometry.
Various aspects of the brain are investigated using di↵erent imaging modalities, such as magnetic resonance
imaging (MRI) data. Structural MRI provides notably the geometry of the cortex. The thin outer layer
of the brain cerebrum is of particular interest due to its vital role in cognition, vision, and perception.5

Statistical frameworks on surfaces are, therefore, highly sought for studying various aspects of the brain.
For instance, variations in surface data can reveal new biomarkers as well as possible relations with disease
processes (Arbabshirani et al., 2017). The challenge consists of learning surface data over highly complex
and convoluted surfaces and across di↵erent subjects across a datasets.

The goal of separating the cerebral cortex into distinct regions based on structure or function is known10

as parcellation. Initially, automated parcellation techniques used clustering based on local regional statistics
(Craddock et al., 2012). For instance, a semi-supervised technique (Glasser et al., 2016) delineated the
cortical boundary from sharp changes in multimodal MRI data. Most research works use a cortical surface
based feature to find surface correspondence. BrainVisa (Cointepas et al., 2010; Rivière et al., 2003; Auzias
et al., 2013) uses sulcal features defined by the cortical folding patterns to find correspondence between brain15
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Figure 1: Overview of the algorithm – Graph convolutions of spectral filters are applied sequentially to process cortical
surface data. On the left are inputs: Surface data, such as sulcal depth, s, and aligned spectral coordinates, eu. In the middle
are the learned spectral features, y, found in each layer. On the right are: Predicted parcel probabilities, p, given by the
softmax and the final surface parcellation. Coloring represents the pointwise value of respective maps from low (blue) to high
(red) values.

surfaces. Features like sulcal pits or sulcal lines (Lohmann et al., 2007; Auzias et al., 2015) are other existing
features used for estimating surface correspondences. Conventional approaches typically rely on geometrical
simplifications, such as spherical inflation and slow mesh deformations (Tustison et al., 2014; Styner et al.,
2006; Yeo et al., 2010), a popular but costly process. For instance, the widely used FreeSurfer (Fischl et al.,
2004) takes around 3 hours to parcellate brain surfaces by slowly deforming brain models towards labeled20

atlases.
Convolutional Neural Networks (CNNs) (Lecun et al., 1998) have the potential to o↵er a drastic speed

advantage over traditional surface-based methods. CNNs are mostly used in neuroimage analysis for seg-
mentation (Wachinger et al., 2017) or finding structural abnormalities (Valverde et al., 2017). The network
architecture is either fixed for various segmentation applications (Ronneberger et al., 2015) or tailored to25

particular problems (Kamnitsas et al., 2017). Fundamentally, current statistical frameworks exploit spatial
information mostly derived from the Euclidean domain, for instance, based on vector fields, image or volu-
metric coordinates (Zhang and Davatzikos, 2011; Hua et al., 2013; Dolz et al., 2017; Kamnitsas et al., 2017).
Such information is highly variable across brain geometries and severally hinders the training of modern
machine learning algorithms.30

Geometric deep learning (Bronstein et al., 2017) recently proposes to use convolutional filters on irregular
graphs. To handle the neural network on a graph, Scarselli et al. (2009) proposes to map and learn graph data
in a high-dimensional Euclidean space. Lately, (Bruna et al., 2014) formulates the convolution theorem from
Fourier space to spectral domains over graphs. Chebyshev polynomials are also used to avoid the explicit
computation of graph Laplacian eigenvectors (De↵errard et al., 2016). The main concern of these methods35

is their inability to compare surface data across di↵erent surface domains (Bronstein et al., 2013; Kovnatsky
et al., 2013; Ovsjanikov et al., 2012; Eynard et al., 2015). Laplacian eigenbases are indeed incompatible across
multiple geometries. Alternatively, Masci et al. (2015); Boscaini et al. (2016) propose a graph convolution
approach in the spatial domain. These approaches map local graph information onto geodesic patches
and use conventional spatial convolution as template matching. For instance, Monti et al. (2017) obtains40

geodesic patches with local parametric constructions of tangent planes to the surface. Another prominent
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spatial approach Veličković et al. (2018) proposes to include self-attentional layers in which neighborhoods
are used to avoid an explicit computation of a graph Laplacian. This attentional approach reduces to
a particular formulation of Monti et al. (2017). A related work (Simonovsky and Komodakis, 2017) also
conditions convolutional filter weights on specific edge labels over neighborhoods rather than on graph nodes.45

Applications of graph convolution networks in neuroimaging remain yet limited. Existing work includes the
use of graph convolutions over population graphs for predicting brain disorders and learning distance metrics
in functional brain networks (Parisot et al., 2018; Ktena et al., 2017). A recent work (Cucurull et al., 2018)
proposes to parcellate the cerebral cortex into three parcels using an attention-based method (Veličković
et al., 2018). Brain meshes are, however, constrained within a unique graph structure, limiting all meshes to50

use the same mesh geometry. Fundamentally, these methods either lack the capability to process multiple
surface domains (Bronstein et al., 2013; Kovnatsky et al., 2013; Ovsjanikov et al., 2012; Eynard et al.,
2015) or have spatial representations of surface data defined in a Euclidean space, which ignore the complex
geometry of the surface. They rely, for instance, on polar representations of mesh vertices (Boscaini et al.,
2016; Masci et al., 2015; Monti et al., 2017; Veličković et al., 2018).55

This paper leverages recent advances in spectral graph matching to transfer surface data across aligned
spectral domains (Lombaert et al., 2015a). The transfer of spectral coordinates across domains provides
a robust formulation for spectral methods that naturally handles di↵erences across Laplacian eigenvectors,
including sign flips, ordering, and mixing of eigenvectors in higher frequencies. This spectral alignment
strategy was exploited to learn surface data (Lombaert et al., 2015b) within the random forest framework.60

Spectral Forests are operating in a spectral domain and use the first spectral coordinates as well as sulcal
depth of each cortical point. This approach is, however, limited to only pointwise information, ignoring
local patterns within surface neighborhoods. Our approach consists of leveraging spectral coordinates within
graph convolutional networks to bridge a gap between learning algorithms and geometrical representations.
To the best of our knowledge, this is the first attempt at intrinsically learning surface data via spectral65

graph convolutions in neuroimaging. This novel approach enables a direct learning of surface data across
compatible surface bases by exploiting spectral filters over intrinsic representations of surface neighborhoods.

The main contributions of our work are:

• A novel spectral graph convolutional approach for cortical parcellation,

• A direct learning of surface data using trainable spectral filters over surface embeddings,70

• The training of spectral filters across multiple mesh geometries of various graph structures,

• The leverage of spectral filters to exploit local patterns of data within surface neighborhoods,

• An evaluation on the largest publicly available dataset of manually labeled brain surfaces (Klein et al.,
2017),

• An improved state-of-the-art performance for cortical surface parcellation with graph convolutions.75

In this work, we propose a surface learning algorithm. We illustrate the learning capabilities of this ap-
proach with an application to brain parcellation. We choose cortical parcellation since it provides established
benchmarks with publicly available datasets of manual labelings. The validation over the largest publicly
available dataset of manually labeled brain surfaces (Klein et al., 2017), with 101 subjects, demonstrates
a significant improvement in using spectral graph convolutions over Euclidean approaches. This change of80

paradigm indeed improves the parcellation accuracy when using graph convolutions, from a Dice score of
53% to 85%. Our approach is at least at par with the well established FreeSurfer algorithm (Fischl et al.,
2004) when benchmarking over a large dataset (Klein et al., 2017), while gaining a drastic speed improve-
ment in the order of seconds. The next section details the fundamentals of our spectral approach, followed
by experiments evaluating the impact of our spectral strategy over standard Euclidean approaches for graph85

convolutions.
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Figure 2: Overview of the network architecture – Dense connections are used among successive layers constituted with
graph convolutions of learned spectral filters and leaky ReLU activations. Weights (w), biases (b), and parameters of our
spectral filters (µ,�) are learned via back-propagation. A final softmax function produces parcel probabilities (p) on the brain
surface.

2. Method

An overview of the proposed method is shown in Fig. 1. In a first step, each cortical surface is modeled
as a graph. Spectral decomposition is then applied on these graphs to capture the intrinsic geometry of
brain surfaces and embed this information in a low-dimensional feature space (Lombaert et al., 2015a;90

Lefèvre et al., 2018). Subsequently, the transfer of surface data between spectral embeddings enables graph
convolution networks to process cortical data across multiple mesh domains. This is implemented with a
realignment of spectral embeddings. Finally, cortical parcellation is performed by learning spectral filters
over realigned spectral coordinates and cortical features like the sulcal depth. Dense connections (Huang
et al., 2017) improve convergence by propagating information from the initial layers to output layers. We95

therefore use dense connections among successive graph convolution layers. The overview of the network
architecture is shown in Fig. 2.

2.1. Spectral embedding of brain graphs

Let G = {V, E} be a brain graph defined with node set V, such that N = |V|, and edge set E . Each
node i has a feature vector vi = (xi, si) composed of 3D spatial coordinates xi and surface data features100

si. Various features could be considered to model the local geometry of the cortical surface, including mean
curvature, average convexity, and cortical thickness (Fischl et al., 2004; Li et al., 2015). In this work, we
use sulcal depth since the boundaries of several regions in anatomical parcellation protocols typically follow
such sulcal features (Destrieux et al., 2009).

We map G to a low-dimensional subspace using the eigencomponents of the normalized graph Laplacian105

operator L = I � D� 1
2 AD� 1

2 , where A is the weighted adjacency matrix and D is the diagonal degree
matrix (Chung, 1997). Here, we define the weight between two adjacent nodes in terms of node a�nity

(Grady and Polimeni, 2010), such as the inverse of their Euclidean distance: aij =
�
kxi �xjk2 + ✏

��1
where

✏ is a small constant to avoid a zero-division. Let U⇤U> be the eigendecomposition of the normalized
Laplacian matrix L. Since the most relevant characteristics of the embedded surface are captured by the110

principal spectral components of L, following Lombaert et al. (2015b), we limit the decomposition to the
d = 3 first smallest non-zero eigenvalues of L. We then obtain the normalized spectral coordinates of nodes
as the rows of matrix bU = ⇤

1
2 U.

Because the spectral embedding of L is only defined up to an orthogonal transformation, we need to align
spectral representations of di↵erent brain graphs to an arbitrary reference. Denote as bU(0) the normalized
spectral embedding of this reference, we align an embedding bU to bU(0) with an iterative method based on the
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ICP algorithm (Lombaert et al., 2015a). In this method, each node i 2 V is mapped to its nearest reference
node ⇡(i) 2 V(0) in the embedding space via a nearest neighbor search. The optimal transformation R
between matched nodes is then obtained by solving a Procrustes analysis problem. Let bui be the normalized
spectral coordinates of node i, the overall alignment process can thus be formulated as:

arg min
⇡,R

NX

i=1

��R bui � bu(0)
⇡(i)

��2

2
. (1)

We solve this problem by updating the node correspondence mapping ⇡ and the transformation R as
described above, until convergence.115

2.2. Graph convolution on surfaces

We start by presenting the standard CNN model for rigid grids and then explain how this model can be
extended to an arbitrary geometry. Let Y(l) 2 RN⇥Ml be the input feature map at convolution layer l of

the network, such that y(l)
iq is the q-th feature of the i-th input node. The network input thus corresponds

to Y(1). Assuming a 1D grid, the output feature map of layer l is given by y(l+1)
ip = f(z(l)ip ) with:

z(l)ip =
MlX

q=1

KlX

k=�Kl

w(l)
pqk · y(l)

i+k,q + b(l)p . (2)

Here, w(l)
pqk are the convolution kernel weights, b(l)p the bias weights of the layer, and f is a non-linear

activation function, for instance, the sigmoid or rectified linear unit (ReLU) functions.
To extend this fixed-grid formulation to a graph G = {V, E}, we denote as Ni = {j | (i, j) 2 E} the

neighbors of node i 2 V. A generalized convolution operation can then be defined as:

z(l)ip =
X

j2Ni

MlX

q=1

KlX

k=1

w(l)
pqk · y(l)

jq · 'ij(⇥
(l)
k ) + b(l)p , (3)

where 'ij(⇥k) is a symmetric kernel with parameters ⇥k. In Monti et al. (2017), this kernel is defined
on a tangent plane of a mesh at node i and is parameterized using polar coordinates. Learning is however120

constrained to a single graph structure, which hinders the application of convolutions across multiple graphs.

2.3. Learning across multiple mesh geometries

To learn surface data across multiple graphs, we leverage the spectral transfer of information across
spectral embeddings. The transformation R of Eq. (1) is first used to obtain the aligned spectral coordinates

with eU = R bU. Convolution kernels ' is then defined in the common spectral domain:

z(l)ip =
X

j2Ni

MlX

q=1

KlX

k=1

w(l)
pqk · y(l)

jq · '(eui, euj ; ⇥(l)
k ) + b(l)p . (4)

While any symmetric kernel can be used, in this work, we set ' as the Gaussian kernel with mean (or o↵set)
µk and variance (or bandwidth) �k:

'(eui, euj ; µk, �k) = exp
�
� k(euj � eui) � µkk22 /2�2

k

�
. (5)

In an image domain, the neighborhood structure is regular, often organized in a lattice with fixed edge
lengths between neighboring pixels. However, in a graph embedding, neighborhoods can have arbitrary
structures with di↵erent edge lengths across the embedding. The continuous Spectral domain embeds the125

geometric information of the graph. We define learnable kernels in a spectral domain relative to node i
in order to capture the neighborhood information. This is thus the reason for subtracting eui in Eq. (5).
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Figure 3: Illustration of the convolution operation – (a) Standard convolution on grids. (b) Geometric convolutions
using three Gaussian kernels on a spectral embedding. Operations on grids can be shown to be a special case of operations on
surfaces.

Keeping kernels relative to node i allows the application of convolutions over a continuous space and reusing
the same kernel parameters across di↵erent nodes. This fundamental change from Euclidean space to the
spectral domain enforces the learning process to be geometry-aware.130

The di↵erence between the proposed graph convolution and standard convolutions over a fixed grid is
illustrated in Fig. 3. Grid-based convolutions can be seen as a special case of our graph convolutions, for
which the kernel o↵sets µk are positioned regularly on the grid and the bandwidth �k ! 0. In addition to
extending standard convolutions to irregular grids in continuous space, the proposed formulation can also
model filter responses at di↵erent scales by varying �k. Moreover, since kernel parameters µk and �k are135

learned directly from training data, instead of being defined during architecture design, our formulation can
better adapt to the task at hand. For instance, kernels with small bandwidth can be learned to recognize
thinner cortical structures, while large bandwidth kernels can be learned to model broader regions. Finally,
the proposed strategy avoids the use of tangent planes, polar pseudo-coordinates (Monti et al., 2017) or the
costly computation of geodesic distances (Masci et al., 2015; Boscaini et al., 2016).140

Using the formulation of Eq. (4), we define a fully-convolutional network whose input at node i is given

by y(0)
i = (eui, si), where eui is the aligned spectral coordinates of i and si is the sulcal depth at this node.

The output layer of the network has a size corresponding to the number of parcels to be segmented, 32 in

our case. Leaky ReLU is applied after each layer to obtain filter responses: y(l)
ip = max(0.01z(l)ip , z(l)ip ). Since

the parcels to segment are mutually exclusive, we use a softmax operation after the last graph convolution

layer to obtain the parcel probabilities of each node. The softmax function is given by
exp(y(l)

ip )
P

q exp(y(l)
iq )

. Finally,

the weighted cross-entropy is employed as output loss function:

E(⇥) = �
NX

i=1

CX

c=1

!c · sic · log pic(⇥), (6)

where ⇥ = {w(l)
pqk, b(l)p , ⇥(l)

k } are the trainable network parameters, pic(⇥) is the output probability for
node i and parcel label c, and sic is a one-hot encoding of the reference segmentation. The weights !c

compensate for the size di↵erence of parcels, and are set inversely proportional to their surface areas such
that smaller parcels have similar emphases than larger parcels. This loss is minimized by back-propagating
the error using standard gradient descent optimization.145

3. Results

We now validate our spectral learning approach. To do so, we benchmark our performance using the
largest publicly available dataset of manually labeled brain surfaces, Mindboggle (Klein et al., 2017). It
contains 101 subjects collected from di↵erent sites, with cortical meshes varying from 102K to 185K vertices.
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Figure 4: Model selection - Each line indicates the segmentation accuracy in terms of Dice scores on the test split for di↵erent
architectural models. It is observed that performance improves when the number of layers, L, increases, but quickly reaches
a plateau. Performance also increases with the number of kernels, K. A peak is observed with 6 kernels and 4 layers. This
configuration requires about 10GB of RAM. Increasing the model complexity would unnecessarily burden memory usage.

Each brain surface includes 32 manually labeled parcels. The experiments are carried out on an i7 desktop150

computer with 16GB of RAM and a Nvidia Titan X GPU. First, we evaluate the influence of di↵erent
parameters in our learning framework. Second, we highlight the e↵ect and advantages of spectral alignment
in our graph learning framework. Finally, we assess the improvement in accuracy of learning frameworks
when directly operating in a spectral domain rather than a conventional Euclidean domain.

3.1. Model selection155

The hyper-parameters in our formulation are the number of graph convolution layers, L, in the fully-
convolutional network and the number of Gaussian kernels, K, in each layer. To evaluate the e↵ect of these
parameters, we first set the size of the output layer to be equal to the number of parcels, 32 in our case. We
measure the change in performance when increasing the number of layers from 1 to 4. Dense connections are
removed in order to benchmark performance in a same controlled experimental settings. Along the layers of160

our architecture, the size of feature maps is reduced by two between two consecutive layers. This is to focus
information towards the final parcellation and to preserve memory usage. We also evaluate the performance
when changing the number of kernels from 1 to 7. Our goal is to study how performance improves with an
increasing number of layers and kernels. The total number of trainable parameters in a layer l that has a
feature map of size Ml and K kernels is given by K

�
Ml�1 + Ml�1 ⇥ Ml

�
+ Ml.165

This indicates that the number of trainable parameters grows with the size of our network architecture.
The model becomes computationally expensive in terms of memory usage for architecture beyond 4 layers
and 7 kernels. Using relatively large sized brain meshes of the Mindboggle dataset, we use random splits for
training, validation, and testing in a 70-10-20% ratio. Each evaluated architecture is trained for 250 epochs
on the train split. We observe an increase in segmentation accuracy in terms of Dice score when the number170

of kernels, K, increases. However, for the same number of kernels, adding more layers burdens the model
complexity, while accuracy increases but stagnates from 2 to 4 layers. This is shown in Fig. 4.

This experiment indicates that L = 4 with K = 6 would be the optimal hyper-parameter values. The
model has a total number of 264, 768 trainable parameters and takes up to 10GB of GPU memory. The
trainable parameters for our dense version doubles and takes up to 11GB of shared GPU memory. We175

similarly train our dense model for 250 epochs. The best performing model on the validation set is used for
testing. Fig. 5 illustrates the evolution of the learning algorithm over iterations when classifying one parcel.
We use this dense model for the rest of our experiments.

3.2. Spectral alignment

Our contribution is to operate in a geometry-aware spectral domain. This is enabled by aligning spectral180

embeddings across various mesh domains. We now evaluate the e↵ect of a spectral alignment when learning
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Figure 5: Evolution of learning algorithm - The prediction of a particular parcel over multiple epochs is shown. A coarse
to fine refinement of the parcel region is observed. After training, the predicted parcel probability corresponds to the ground
truth parcel, shown on the right.

graph convolution kernels. We align the spectral representations of di↵erent brain graphs to an arbitrary
reference from the dataset.

First, we verify independence of our method with respect to the choice of a reference for alignment. To
do so, we train and test our algorithm with 5 di↵erent reference brains, where the whole dataset is aligned185

to a reference. The evaluation of our algorithm on these 5 di↵erent references shows a performance having
an average dice score of 86.4% and a standard deviation of 0.17% (Table 1). This indicates that our learning
algorithm is robust to the choice of reference.

Second, we evaluate the impact of aligning spectral embeddings in learning graph convolution kernels.
When both, training and testing sets, are aligned towards one same reference, the trained model yields an190

accuracy of 86.62% in terms of Dice overlap. However, when training and testing sets are both aligned
towards di↵ering references, Reftraining and Reftesting, the performance drops to 79.73%. This may be
expected since both training and testing sets are expressed using di↵ering spectral domains. To solve this
discrepancy, our methodology consists of realigning the testing set towards one unique spectral domain, for
instance, using Reftraining. In such case, the performance on realigned embeddings is improved to 84.7%.195

To evaluate the e↵ect of varying references between training and testing sets, we iterate over all possible
combinations, summarized in Fig. 6. It is observed that if spectral alignment is not present between the
training and testing set, the classification accuracy degrades, while a spectral realignment of the testing set
brings back the accuracy to initial scores.

3.3. Comparison with the state-of-the-art200

We now compare our method with state-of-the-art approaches in learning graph-structured methods.
First, we show the limitations of working in the Euclidean domain with the Random Forest method (Lom-
baert et al., 2015b) as well as the latest approaches of graph convolution networks (Monti et al., 2017).
Second, we show the advantage of changing the paradigm in graph learning frameworks from operating in
a conventional Euclidean domain towards a spectral domain. This is enabled by our transfer of spectral205

embeddings across brain surface domains. Finally, we assess the improvement of exploiting neighborhoods of
surface data versus the pointwise Spectral Forest method (Lombaert et al., 2015b), as well as a comparison
with the established FreeSurfer algorithm (Fischl et al., 2004).

Table 1: Robustness to reference across all parcels – The average dice percentage obtained after separate training and
testing with 5 references. The last column provides the mean and standard deviation of the results across all 35 parcels tested
with all 5 references.

Ref1 Ref2 Ref3 Ref4 Ref5 Mean

86.62%± 1.72 86.20%± 1.56 86.42%± 1.73 86.26%± 1.67 86.52%± 1.75 86.40%± 0.17
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Figure 6: Robustness to the choice of reference – (Left) Dice score performance of two spectral models trained and tested
using di↵erent aligned references. Row-column (i, j) provides the score of a using model trained via reference i, and tested
via reference j. If references di↵ers, scores degrades. This illustrates the current limitation of current graph convolutional
approaches. (Right) Dice score performance of models when references are aligned. Row-column (i, j) indicates that di↵erence
references are used during trained and testing. The higher scores in o↵-diagonal experiments indicates that a realinment of
spectral embeddings is essential to exploit multiple mesh domains.

We train and test all methods on the entire dataset with a 5-fold cross-validation. We train a random
forest with 50 trees on 3D spatial location and sulcal depth, which we name Euclidean Forest, as in Lombaert210

et al. (2015b). For comparison, we also train a graph convolution network similarly to Monti et al. (2017)
in the Euclidean domain, with 3D spatial location and sulcal depth. The architecture remains the same
as described earlier, as in Fig. 2. The average Dice overlap across all parcels in our dataset is 45.87%
with Euclidean Forests. Graph convolution networks in the Euclidean space has an average Dice overlap of
50.78%, which is an increase of 4.9%.215

To put in perspective, a pure spectral alignment of brain surfaces yields aligned parcellations that have an
average Dice overlap of 77.67% over all pairs of possible brains. This pure alignment process does not involve
learning of surface data while producing scores 16.9% superior to the previous Euclidean learning approaches.
This indicates the benefits of operating in a spectral domain instead of the conventional Euclidean domain.

The e↵ect of learning over spectral domains is assessed using, first, pointwise information in the Random220

Forest framework and in graph convolutional networks. Input for all random forests consists of sulcal depth
and the first three spectral coordinates. This is referred to the Spectral Forest, similarly to Lombaert et al.
(2015b), and yields an average Dice overlap of 79.89%. This is important to note that Spectral Forests learn
over pointwise information only. Our graph convolutional network benefits from exploiting neighborhood
information of surface data. The trained kernels on spectral embeddings yield an average Dice overlap of225

85.37%. These results are summarized in Table 2. Fig. 7 shows that indeed learning using spectral method
produces an improved parcellation quantitatively. The qualitative results from our algorithm look similar

Table 2: Comparisons with graph learning approaches – Average dice overlaps (in %) over 32 parcels of 101 subjects
are shown along classification accuracy (in %), and average Hausdor↵ distances (in millimeters).

Method Dice overlap (%) Accuracy (%) Avg.Hausdor↵ (mm)

Euclidean Forest 45.87± 8.74 49.26± 8.32 4.97± 1.11

GC on Euclidean 50.78± 10.78 54.24± 10.33 5.82± 1.66

Spectral Alignment 77.67± 3.65 81.87± 3.39 2.87± 0.47

Spectral Forest 79.89± 2.62 81.94± 2.54 1.97± 0.40

FreeSurfer 84.39± 1.91 85.19± 1.98 2.11± 0.29

Ours 85.37± 2.36 86.97± 2.43 1.75± 0.35

Ours + MRF 86.61± 2.45 88.08± 2.47 1.66± 0.44
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Euclidean Forest 

Ours Ours + MRF

Reference (Ground Truth)

GC in Euclidean domain

Spectral Forest Spectral Alignment 

Dice overlap : 79.8%
Avg. Hausdorff dist: 1.9 mm

Dice overlap : 77.6%
Avg. Hausdorff dist: 2.8 mm

Dice overlap : 50.78%
Avg. Hausdorff dist: 5.8 mm

Dice overlap : 85.3%
Avg. Hausdorff dist: 1.7 mm

Dice overlap : 86.6%
Avg. Hausdorff dist: 1.6 mm

Dice overlap : 45.8%
Avg. Hausdorff dist: 4.9 mm

Figure 7: Cortical Parcellation – (First column, Left) Learning with Euclidean coordinates: yields low Dice score (45.8%
with Random Forests, 50.8% with graph convolutions) and inconsistent boundaries (Hausdor↵ distance of 4.9-5.8mm). (Second
column, Middle) Learning with Spectral coordinates: improves Dice score (79.8% with Spectral Forests, 85.3% with our Spectral
convolutions) and boundary regularity (1.9-1.7mm). (Third column, Top) A pure spectral alignment without learning yields
a Dice score of 77.6%. This is used as a benchmark to assess improvement in learning strategies. (Third column, Bottom)
The parcel probability maps generated with our spectral filters could be further refined with an MRF regularization, leading
to an improvement in boundary regularity (1.6mm) and Dice score (86.6%). (Right) Reference ground truth for comparison
purposes. Brain surfaces are inflated for visualization.

to the manual parcellation.
As an illustration of further refinement, we use a Markov Random Field (MRF) regularization for our

method. We apply a standard graph cut algorithm (Boykov and Kolmogorov, 2004) with minus-log parcel230

probabilities as unary potentials and the Potts model for defining binary potentials. MRF regularization
further improves the overall classification accuracy from 85.37% to 86.62.1%. The Spectral Forest parcellates
the brain with an average Dice overlap of 79.8%. With an MRF as post-processing over the prediction of
Spectral Forest, the Dice overlap improves to 83.7%, still lower than our approach without MRFs. The
improvement of 3.9% in Dice overlap is seen with the use of neighborhood information from MRF. We235

see an increase of 1.3% in terms of Dice overlap when we use MRF with our approach. We can observe a
similar improvement regarding average Hausdor↵ distances, with a reduction of distance error from 2.1mm to
1.75mm (Table 2). However, our graph convolution based approach has higher performance of 2.7% average
dice overlap over the Spectral Forest + MRF. A closer look at the performance scores for each parcel (Fig. 8)
also reveals a general improvement when exploiting neighborhoods (Our method) over pointwise surface data240

(Spectral Forest). This is a 34.59% improvement (Table 2) over learning in the standard Euclidean domain.

4. Discussion and Conclusion

This paper presented a novel framework for learning surface data via graph convolutions of spectral
filters. The algorithm leverages recent advances in spectral matching to enable the comparison of surface
data across multiple surface domains. Our experiments illustrated the benefits of our approach with an245

application to cortical surface parcellation. This is a particularly challenging problem where current graph
convolutional approaches remain limited by the inability to compare surface data across brain geometries.
This typically results in spatial irregularities of parcel boundaries as illustrated in Fig. 7.

Shifting graph convolutions into a spectral domain endows the learning process with a geometry-aware
representation of surface data. This strategy reveals that the use of spectral features improves a classification250

from a 50% Dice score in a conventional Euclidean domain to an 85% Dice score in a spectral domain. A
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Figure 8: Performance Evaluation – Dice scores for all 32 cortical parcels across the dataset when learning with: (Blue) Eu-
clidean Forest, (Orange) Graph convolutions in the Euclidean domain, (Green) Spectral Forest with pointwise information,
(Red/Ours) Graph convolutions in a spectral domain, exploiting neighborhood information, (Purple/Ours+MRF ) Final MRF
refinement of our spectral maps, and (Brown) FreeSurfer provided for comparison. Improvements are consistent across all 32
parcels. The first leap in accuracy (Orange area, +11%) corresponds to an improvement from using convolutional networks over
random forests. The second leap (Green area, +58%) corresponds to an improvement from learning in a spectral domain rather
than Euclidean. The third leap (Red area, +7%) corresponds to the extra improvement of exploiting spectral neighborhoods
when learning spectral convolutional filters. The fourth leap (Purple area, +1%) indicates the e↵ect of regularizing final parcel
probability maps with MRFs.

performance gain is also noted when using a graph convolutional network instead of a standard random
forest, from 45% to 50% when learning from a conventional representation of spatial information. Our
experiments further indicate that an extra improvement is also gained by exploiting spectral neighborhoods.
Fig. 8 indeed exhibits a major performance leap when leveraging spectral features over Euclidean features.255

This corresponds to the green area in Fig. 8, from 50% to 79% – a 29% improvement. The next leap in
the graphic indicates an improvement due to exploiting spectral neighborhoods, from pointwise Spectral
Forests (Lombaert et al., 2015b), where no neighborhoods can be exploited with random forests, to our
graph convolutional approach exploiting spectral neighborhoods. It is also worth noting that our graph
convolutional approach uses only the first three principal components whereas the Spectral Forests (Lombaert260

et al., 2015b) considers five principal components to perform the same task. This is the red area in Fig. 8,
from 79% to 85%, across all parcels in our dataset – an extra 7% improvement. These results confirm that
exploiting a spectral domain provides a significant gain in performance, 29%, and exploiting convolutions
over spectral neighborhoods provide an additional 7% improvement.

The experiments used the largest publicly available dataset of manually labeled brain surfaces (Klein265

et al., 2017). The performance of our spectral strategy is comparable to the state-of-the-art approaches for
cortical parcellation. It reduces, however, the computation time by an order of magnitude. The Spectral
Forest approach requires 23 seconds to run one pass over all 50 trees, yielding an accuracy of 79.89% ±
2.62%. Our method requires 3 seconds to run one forward-pass on a trained network, yielding an accuracy
of 85.37% ± 2.36%. Both models roughly take 15 seconds to obtain the spectral coordinates and align to a270

reference brain. This is an 83% improvement in computation time. Using an additional MRF regularizer,
as is often used in network approaches, brings up accuracy to 86.61% ± 2.45%. The parcellation process of
FreeSurfer, starting from a brain surface, requires 3 hours of computation and yields an accuracy of 84.39%
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± 1.91%. It is to be also noted that in the protocol of the Mindboggle dataset, annotations by experts are,
in e↵ect, manual corrections from FreeSurfer parcellations (Klein et al., 2017). This creates a positive bias275

for FreeSurfer results. Our claim in our experiments is not necessarily a superiority of our approach, but to
rather provide a parcellation accuracy that is at least equivalent to FreeSurfer.

The advantage of using a spectral method is, on one hand, computational, by providing parcellation in
seconds rather than hours, and on the other, methodological, by opening up a new learning strategy for pro-
cessing cortical surface data. The technical contribution leveraged recent work on transfer of spectral bases280

across brain surface domains (Lombaert et al., 2015a,b). This enables the learning of spectral convolution
filters across multiple brain geometries. This overcomes a major limitation in current graph convolutional
approaches (Monti et al., 2017; Boscaini et al., 2016; Masci et al., 2015; Veličković et al., 2018), which
are restrained to a unique fixed graph structure. Our method ameliorates graph spectral approaches by
exploiting transfers of spectral bases. Furthermore, our experiments also used a multi-centric, multi-data285

and publicly available dataset. This provides an exhaustive, reproducible, evaluation for directly exploiting
spectral features.

While the potential of our method is demonstrated on cortical parcellation, it can be applied to other
analyses of surface data. For instance, our framework has a direct impact on regression problems that involve
predictions of cortical thickness over time, potentially leading to new families of geometry-based biomarkers290

for neurological disorders.
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