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Abstract—Brain surface analysis is essential to neuroscience,
however, the complex geometry of the brain cortex hinders
computational methods for this task. The difficulty arises from
a discrepancy between 3D imaging data, which is represented in
Euclidean space, and the non-Euclidean geometry of the highly-
convoluted brain surface. Recent advances in machine learning
have enabled the use of neural networks for non-Euclidean
spaces. These facilitate the learning of surface data, yet pooling
strategies often remain constrained to a single fixed-graph. This
paper proposes a new learnable graph pooling method for
processing multiple surface-valued data to output subject-based
information. The proposed method innovates by learning an
intrinsic aggregation of graph nodes based on graph spectral
embedding. We illustrate the advantages of our approach with
in-depth experiments on two large-scale benchmark datasets. The
ablation study in the paper illustrates the impact of various fac-
tors affecting our learnable pooling method. The flexibility of the
pooling strategy is evaluated on four different prediction tasks,
namely, subject-sex classification, regression of cortical region
sizes, classification of Alzheimer’s disease stages, and brain age
regression. Our experiments demonstrate the superiority of our
learnable pooling approach compared to other pooling techniques
for graph convolutional networks, with results improving the
state-of-the-art in brain surface analysis.

Index Terms—Learnable pooling, Graph Convolutional Net-
works, Brain surface analysis, Alzheimer classification.

I. INTRODUCTION

Brain surface analysis plays a crucial role in understand-
ing the mechanisms of perception and cognition in humans
[1]. However, the complex geometry of the brain surface,
comprised of intricate folding patterns, poses considerable
challenges in neuroscience. Notably, brain imaging data, for
instance acquired by magnetic resonance imaging, typically
comes in 3D, a Euclidean space, while its analysis often
focuses on the thin surface of the brain, a non-Euclidean space.
This fundamental difference between the domains of acquisi-
tion and analysis, coupled with the geometrical complexity
of brain surfaces, severely hinders computational approaches
for brain surface analysis. As an illustration, neighboring 3D
voxels in a neuroimage may in fact represent points that are far
apart on the brain surface, as shown on Fig. 1. To alleviate this
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Fig. 1. Complex geometry of the cerebral cortex. As illustrated, two nearby
points in the volume may in fact be far apart on the cortical surface.

problem, popular surface-based methods [2], [3] often simplify
the geometry of the brain, for instance, by mapping the surface
to a sphere. This process is, however, computationally expen-
sive. For example, the widely-used surface analysis pipeline
of FreeSurfer [2] requires several hours to inflate the cortical
surface to a sphere, match it to an atlas and finally perform
a cortical analysis. The geometry of brain surfaces similarly
complicates other conventional approaches for brain analysis,
such as those based on diffeomorphic transformations [4] or
on spherical harmonics [5].

A key application of brain surface analysis is detecting and
tracking the progress of neurodegenerative disorders, such as
Alzheimer’s disease, which often result in a severe atrophy
of brain tissues. Analyzing the geometrical changes of the
brain can thus aid in the early diagnosis of such conditions.
Initial work has focused on Euclidean 3D data based for
instance on the texture of magnetic resonance images [6],
[7], in order to differentiate Alzheimer’s disease from normal
aging. While volumetric approaches have shown usefulness in
detecting global changes in a Euclidean space [1], surface-
based methods [2], [3], [4], [5] are more adequate for analyz-
ing data on brain surfaces. For example, the analysis of shape
abnormalities on brain surfaces has improved the prediction
of Alzheimer’s disease [8] or the identification of stages in
this progressive disorder [9]. Nevertheless, all these studies
has focused on pre-established measurements of brain surface
information. In this paper, we propose to learn and exploit the
organizational structure of surface data in order to improve
prediction tasks that use data on highly-complex surfaces.

A. Related work

Current machine learning approaches have achieved state-
of-the-art performance in a broad range of computer vision and
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medical imaging applications. In particular, deep learning ar-
chitectures such as convolutional neural networks (CNNs) [10]
offer higher accuracy and speed over traditional approaches for
image analysis. In neuroimaging, CNNs are now widely used
for various segmentation [11] and classification [12] problems,
with architectures tailored for the target task and the available
imaging data. For example, various architectures have been
proposed to exploit volumetric data [13], [14], [15], [16].
A fundamental limitation of these models, however, is their
restriction to data lying on a fixed Euclidean grid representing
pixels or voxels. This restricted representation induces ambi-
guity when exploiting complex geometries such as in brain
surfaces, impeding the application of these Euclidean models
for brain surface analysis.

Geometric deep learning [17] generalizes deep learning
models to operate on non-Euclidean domains such as graphs
and manifolds. Recent advances in this field, particularly in
graph convolutional networks (GCNs), have enabled convo-
lution operations over graphs by exploiting spectral analysis,
where convolutions translate into multiplications in a Fourier
space [18], [19], [20], [21]. In such models, convolutions are
manipulated with eigenfunctions of graph Laplacian operators
[22], which can be approximated with Chebyshev [20] or
Cayley polynomials [23]. These learned convolution filters can
be expressed in terms of mixtures of Gaussians [21] or splines
[24]. Despite their advantages over standard CNNs, these
models are, however, limited to a fixed graph structure and
thereby not suitable for brain imaging applications involving
a population of subjects. Indeed, brain surfaces have varying
geometries with a different number of nodes and a distinct con-
nectivity across meshes. This variability poses computational
challenges, for example, arising from the fact that the values of
a Laplacian eigenfunction can drastically differ between brains
with distinct surface geometries [25]. To this effect, a learned
synchronization can correct for differences in eigenfunctions
[26]. An alignment of eigenbases [27] similarly provides a
common parameterization of brain surfaces. Such aligned
eigenbases enabled the direct learning of surface data across
multiple brain geometries [28]. Nevertheless, these types of
GCNs are limited to a fixed graph structure, for instance, with
the same number of nodes.

Standard pooling strategies rely in fact on such consistency
of graph structures. Currently, heuristics are often used to
mimic a max-pooling strategy in GCNs [18], [20], [29]. They
include varying the number of feature dimensions across
layers [18] while retaining fixed layer sizes, or relying on
partition methods, for instance, based binary trees [20] or
Graclus clustering [29] to coarsen the initial graph. However,
these strategies are mainly used for point-wise operations in
fixed-size graphs [21], such as node classification [30], and
do not apply to the task of subject classification when the
geometry varies across subjects. A few recent studies [31], [32]
have attempted to tackle the problem of graph classification
in GCNs by incorporating adaptive pooling modules in the
network. For instance, [31] performs a hierarchical clustering
of nodes using their spectral coordinates, with a subsequent
pooling of node features within each cluster. While this
approach handles varying graph structures, clusters are defined

based only on node proximity in the embedding space, without
considering node features. Consequently, this unsupervised
pooling strategy may not be optimal for the classification or
regression task at hand. More recently, a differential pooling
technique [32] splits the network in two separate paths, one
for computing latent features for each node of the input
graph and another for predicting the node clusters by which
features are aggregated. Similarly, [33] proposes to use a top-k
graph pooling layer in order to down-sample the input graph.
This method selects the top-k nodes for the downsampled
graph based on a learned projection vector. However, these
approaches ignore the intrinsic localization of nodes within the
graph, which is sought when the geometry is highly curved
such as in brain surfaces.

B. Contributions

This paper proposes a novel method based on GCNs for
classification and regression of surface graphs. Our method
includes a learnable pooling strategy which predicts optimal
node clusters for each input graph, and thus can handle graphs
with varying number of nodes or connectivity. This adaptive
pooling technique is applied recursively to obtain a fixed-size
representation, which is then used for predicting a target classi-
fication or regression value. Our method also leverages spectral
embedding techniques for surface graphs [27], offering a more
powerful representation of complex surfaces like the brain
cortex. This contrasts with the differential pooling approach
in [32] or [33], where nodes lack intrinsic localization within
the graph.

We illustrate our approach on the challenging tasks of brain
surface classification and regression using the well-known
Mindboggle [34] and ADNI datasets [35]. We first consider the
problem of subject-sex1 classification and evaluate the impact
of our learnable pooling method’s hyper-parameters, including
the type of pseudo-coordinates, number of clusters, number of
eigenvectors, number of neighbors, graph convolution kernel,
and input graph size. In an ablation study, we also assess the
importance of alignment and regularization for this prediction
task. To evaluate the usefulness of our learnable pooling
strategy, we compare it against recently-proposed pooling
techniques for GCNs.

We show the ability of our pooling strategy to learn impor-
tant node clusters in a supervised manner by comparing the
relationship between these clusters and prominent anatomical
regions. To further validate the regions learned by our network,
we use it to predict the size of cortical regions as defined by a
standard parcellation atlas. Our model is also tested on cortical
surface data from the ADNI dataset to (i) discriminate between
control subjects and subjects suffering from different stages
of Alzheimer’s, and (ii) regress the brain age of subjects. We
choose the ADNI dataset [35] as it provides manual labels of
the subject age and three stages of Alzheimer’s disease. Our
method achieves a similar performance to the state-of-the-art
on the ADNI dataset [35], while using only simple cortical
measurements such as thickness and sulcal depth.

1As in most studies, we use the term sex instead of gender to designate
biological differences between male and female subjects.
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Fig. 2. An overview of the proposed graph convolutional network:The brain surface graph are mapped to a low-dimensional subspace using spectral
decomposition. The spectral bases of the input brain are then aligned to a common reference. Aligned spectral coordinates and cortical surface features are
fed as input to the network, composed of sequential Graph Convolution + Pooling (GC+P) blocks and two fully-connected (FC) layers. Each GC+P block
processes input node features Y(l) in two separate paths based on geometric convolutions, one (bottom) deriving a new set of features for each graph node
F(l) and the other (top) computing a soft assignment S(l) of nodes to clusters representing nodes of the reduced output graph. A pooling layer then obtains
reduced graph features Y(l+1) by aggregating F(l) in each predicted cluster of S(l).

In summary, the major contributions of our work are as
follows:

– A general model for classifying and regressing graphs
with varying geometry, which combines a learnable,
supervised pooling strategy with the intrinsic (non-
Euclidean) localization of nodes via graph spectral em-
bedding.

– A first fully-learned model for brain surface analysis
contrasting with previous approaches based on predefined
cortical features;

– An in-depth experimental evaluation on two large-scale
benchmark datasets (i.e., Mindboggle and ADNI) and
four different prediction tasks (i.e., subject-sex classifica-
tion, cortical region size regression, Alzheimer’s disease
classification, and brain age regression). Our extensive
experiments evaluate the impact of the main components
and hyper-parameters of our learnable pooling method,
and compares our method against four recently-proposed
pooling strategies for GCN;

– State-of-the-art performance for ADNI stages classifica-
tion and brain age prediction using cortical surface data.

This paper represents a significant extension of our previous
work in [36]. Beyond giving a deeper motivation of our work
and a more detailed description of the methodology, we thor-
oughly evaluate our method on a large multi-site dataset, i.e.
Mindboggle, as well as on two additional prediction tasks, i.e.
subject-sex classification and cortical region-size regression.
Added experiments also provide a more comprehensive study
of the main hyper-parameters and components of our pooling
method and demonstrate its advantage over state-of-art graph
pooling techniques relying on unsupervised spectral clustering
[31], differentiable pooling approaches in Euclidean space [32]
and a recent top-k pooling method [33]. Moreover, results of
new experiments highlight the relationship between the learned
clusters for these tasks and known cortical regions, and show
the robustness of our method to surface mesh variability in
terms of number of nodes and connectivity.

II. METHOD

We first describe a general formulation that extends standard
convolutions to non-rigid geometries, such as surfaces. We
then detail our strategy based on graph spectral embedding to
model the intrinsic localization of mesh nodes and align them
across multiple surfaces. Subsequently, we present our end-to-
end learnable pooling strategy for the adaptive clustering of
graph nodes. Finally, we provide detailed information on the
overall network architecture and training procedure.

A. Convolutions on non-rigid geometries

In a standard CNN, the input is typically provided as a
set of features observed over a regular grid of points like 2D
pixels or 3D voxels. This information is then processed using
a sequence of layers composed of a convolution operation
followed by a non-linear activation function like the ReLU. Let
Y(l) ∈ RNl×Ml be the input feature map at convolution layer
l, such that y(l)iq is the q-th feature of the i-th input node. The
feature map consists of Nl input nodes with Ml dimensions
each. Assuming a 1D grid for simplicity, the output of layer
l obtained by a convolution kernel of size Kl is given by
y
(l+1)
ip = f(z

(l)
ip ), where

z
(l)
ip =

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
i+k, q + b(l)p . (1)

Here, w(l)
pqk are the convolution kernel weights, b(l)p the weights

of the layer, and f the activation function.
For a general surface, points are not necessarily defined on

a regular grid and can lie anywhere in a 3D Euclidean space.
Such surface can conveniently be represented as a mesh graph
G = {V, E} where V is the set of nodes corresponding to
points and E is the set of edges between the graph nodes.
Given a node i ∈ V , we denote as Ni = {j | (i, j) ∈ E}
the set of nodes connected to i, called neighbors. We extend
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Fig. 3. Illustration of standard grid-based 2D convolutions (left) and geometric graph convolution (right). The challenge is to exploit kernels on arbitrary
graph structures, and to add pooling operations over convolutional layers of graph nodes.

the concept of convolution to arbitrary graphs using the more
general definition of geometric convolution [21], [28], [24]:

z
(l)
ip =

∑
j∈Ni

Ml∑
q=1

Kl∑
k=1

w
(l)
pqk · y

(l)
jq · ϕij(θ

(l)
k ) + b(l)p , (2)

In this extended formulation, ϕij is a symmetric kernel pa-
rameterized by θk, which encodes the relative position of
neighbor nodes j to a node i when computing the convolution
at node i. The pseudo-coordinates uij of i relative to j are
usually defined based on Cartesian or polar coordinates. In
this work, we explore two types of kernels for geometric
convolutions: the Gaussian kernel [21] and B-spline kernel
[24]. The Gaussian kernel, which has learnable parameters
θk = {µk,Σk} corresponding to a mean vector and covari-
ance matrix, computes the response as

ϕij(θk) = exp
(
− 1

2 (uij − µk)
>

Σ−1k (uij − µk)
)
. (3)

As shown in Fig. 3, standard convolutions (left) can be seen as
a special case of geometric convolutions with Gaussian kernels
(right) where nodes are placed on a regular grid and kernels
are unit impulses (i.e., spherical Gaussian kernels with zero
variance) placed at the grid position of neighbor nodes. On the
other hand, B-spline kernels obtain the response as the product
of Ml B-spline basis functions of degree m based on uniform
knot vectors. Compared to Gaussian kernels, this kernel has
the advantage of making computation time independent from
the kernel size, thereby improving computational efficiency
and scalability.

B. Spectral embedding of multiple surface graphs

A significant limitation of the above geometric convolu-
tional model is its inability to process differently-aligned
surfaces. Thus, since local coordinates uij are determined
using a fixed coordinate system, any rotation or scaling of
the surface mesh will produce a different response for a
given set of kernels. Moreover, as shown in Fig. 1, geometric
convolutions in Euclidean space are poorly-suited for complex
surfaces like the highly-convoluted brain cortex.

We address these issues using a graph spectral embed-
ding approach. Specifically, we map a surface graph G to a
low-dimensional subspace using the eigencomponents of its
normalized Laplacian L = I − D−

1
2 AD−

1
2 , where A is

the weighted adjacency matrix and D is the diagonal degree
matrix with dii =

∑
j aij . Although binary adjacency values

could be used in A, we instead define the weight between
two adjacent nodes as the inverse of their Euclidean distance:
aij =

(
‖xi−xj‖2+ε

)−1
where ε is a small constant to avoid a

zero-division. Denoting as UΛU> the eigendecomposition of
L, where Λ is the diagonal matrix of real, non-negative eigen-
values, we then compute the normalized spectral coordinates
of nodes as the rows of matrix U

∧
= UΛ−

1
2 . Here, normalized

components are scaled proportionally to the inverse of their
eigenvalues since components with smaller eigenvalues encode
more relevant characteristics of the embedded graph [37].
Based on the same principle and as in [38], we limit the de-
composition to the d = 3 first smallest non-zero eigenvalues of
L. This allows capturing the important variability of surfaces,
while also limiting computational complexity.

We must align the spectral projection of different surface
graphs to a common reference U

∧ref
because the spectral em-

bedding of L is only defined up to an orthogonal transforma-
tion (i.e., rotation or flip). The spectral embedding of a random
brain surface in the dataset is chosen as the common reference
U
∧ref

. To perform alignment, we find a node correspondence
by using an iterative closest point (ICP) approach [27], where
each node i ∈ V is mapped to its nearest reference node
π(i) ∈ Vref in the embedding space. Denoting as u

∧
i the

normalized spectral coordinates of node i, the alignment task
can be expressed as

argmin
π,R

N∑
i=1

∥∥u∧i R − u
∧ref
π(i)

∥∥2
2
. (4)

Let U
∧ref

π be the matrix whose i-th row is u
∧ref
π(i). The transfor-

mation between corresponding nodes is approximated as

R =
(
U
∧>

U
∧)−1

U
∧>

U
∧ref

π = Λ
1
2 U>U

∧ref

π . (5)

We use the aligned spectral embedding Ũ = U
∧

R to define
the local coordinates corresponding to an edge (i, j) ∈ E :
uij = ũj − ũi. As illustrated in Fig. 3 (right), and based
on Eq. (2), the convolution at node i therefore considers
kernel responses ϕij(θ

(l)
k ) for neighbor nodes j, relative to

the spectral coordinates of i.
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C. Learnable pooling for graph convolutional networks

Pooling in standard CNNs is typically carried out by ag-
gregating values inside non-overlapping regions of features
maps. In graph convolutional networks [18], [19], [20], [21],
however, this approach is not applicable for the following
reasons. First, nodes are not laid out on a regular grid, which
prevents aggregation of features in predefined regions. Second,
the density of points may spatially vary in the embedding
space; hence regions of fixed size or shape are not suitable for
graphs with different geometries. Last, and more importantly,
input surface graphs may have a different number of nodes,
while the output may have a fixed size. This is the case when
predicting a fixed number of class probabilities from different
brain geometries.

We propose an end-to-end learnable pooling strategy for the
subject-specific aggregation of cortical features, inspired by
the differential pooling technique of Ying et al. [32]. Our strat-
egy, shown in Fig. 2, produces a sequence of convolutional fea-
ture maps {Y(1), . . . ,Y(l), . . . ,Y(L)}, with Y(l) ∈ RNl×Ml ,
by the repeated application of a Graph Convolution + Pooling
(GC+P) block. Each GC+P block takes as input a feature map
Y(l) on a Nl node graph, and processes it in two separate
paths: the first one computing latent features for each node of
the input graph and the second predicting the node clusters by
which the features are aggregated. The feature encoding path
applies a sequence of geometric convolutions as in Eq. (2) to
generate a new feature map F(l) ∈ RNl×Ml+1 on the block’s
input graph. The clustering path also consists of sequential
geometric convolutions, however the activation function of
the last convolution is replaced by a node-wise softmax. The
output of this last convolution, S(l) ∈ [0, 1]Nl×Nl+1 , gives
for each node i the probability sic that i belongs to cluster
c ∈ {1, . . . , Nl+1}.

Pooled features Y(l+1) ∈ RNl+1×Ml are computed as the
expected sum of convolutional features in each cluster c, i.e.

y(l+1)
cp =

Nl∑
i=1

s
(l)
ic · f

(l)
ip

Y(l+1) = S(l)>F(l).

(6)

The processing of aggregated node features, downstream the
pooling operation, requires computing a new adjacency matrix
A(l+1) and spectral coordinates Ũ(l+1) for the node clusters
which become the nodes of the block’s reduced-size output
graph. Here, we define the adjacency weights between pooling
clusters c and d as

a
(l+1)
cd =

Nl∑
i=1

Nl∑
j=1

s
(l)
ic · s

(l)
jd · a

(l)
ij

A(l+1) = S(l)>A(l)S(l).

(7)

Intuitively, a(l+1)
cd is the expected number of connected nodes

between clusters c and d. Likewise, the spectral coordinates of

cluster c is computed as the mean coordinates (i.e., centroid)
of all nodes assigned to c:

ũ(l+1)
cp =

Nl∑
i=1

s
(l)
ic · ũ

(l)
ip

Ũ(l+1) = S(l)>Ũ(l).

(8)

The bilinear formulation of Eq. (6) faces a challenging opti-
mization problem with several local minima. For instance, the
same output Y(l+1) in Eq (6) can be obtained by modifying
either S(l) or F(l). To alleviate this problem and obtain
spatially-smooth clusters, we add a Laplacian regularization
term to the loss function:

Lreg(S
(l)) =

Nl∑
i=1

Nl∑
j=1

a
(l)
ij ·
∥∥s(l)i − s

(l)
j

∥∥2
2

= tr
(
S(l)L(l)S(l)>),

(9)

where s
(l)
i denotes the cluster probability vector of node i

(i.e., the i-th row of S(l)). This well-known regularization
approach [39] penalizes connected nodes to be mapped to
different clusters, with a penalty proportional to the connection
strength.

D. Architecture details

Figure 2 presents the overall architecture of our graph
convolutional network. As input, we give to the network the
cortical surface features xi and aligned spectral coordinates
ũi of each node i. For computing graph convolutions as in
Eq. (2), we define the neighbors Ni of node i as the k = 5
nodes nearest to i in the spectral embedding (i.e., the distance
between node i and j corresponds to ‖ũi − ũj‖2) plus node
i itself. While various features could be considered to model
the local geometry of the cortical surface [2], we considered
sulcal depth and cortical thickness in this work, since the first
one helps delineate anatomical brain regions [40] and the latter
is related to ageing [41] and neurodegenerative diseases such
as Alzheimer’s [42].

The network comprises two cascaded GC+P blocks, fol-
lowed by two fully-connected (FC) layers. The first block gen-
erates an N×8 feature map and an N×16 cluster assignment
matrix, in two separate paths, and combines them using the
pooling formulation of Eq. (6) to obtain a pooled feature map
of 16×8. In the second block, pooled features are used to
produce a 16×16 map of features, pooled in a single cluster.
Hence, the second pooling step acts as an attention module
selecting the features of most relevant clusters. The resulting
1×16 representation is converted to a 1×8 vector using the
first FC layer, and then to a 1× NumOutputs vector with the
second FC layer, where the number of outputs NumOutputs
depends on the prediction task.

Except for the cluster probabilities and network output, all
layers employ the Leaky ReLU [43] as activation function:
y
(l)
ip = max(0.01z

(l)
ip , z

(l)
ip ). In the default setting of our

pooling method, for the graph convolution kernel ϕij of Eq.
(2), we used the B-spline kernel proposed by Fey et al.
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TABLE I
IMPACT OF OUR HYPER-PARAMETERS ON OUR LEARNABLE POOLING
METHOD. MEAN AND STANDARD DEVIATION WERE COMPUTED ON 5

SEPARATE RUNS USING A DIFFERENT RANDOM 50K NODE SUB-SAMPLING
OF EACH GRAPH. FOR EVERY HYPER-PARAMETER, THE DEFAULT SETTING

OF OUR METHOD IS HIGHLIGHTED IN BOLD FONT.

Experiments Parameters Mean ± Std.

Pseudo-coordinates
Cartesian 80.40 ± 4.21
Polar 83.15 ± 2.10
Ours - Spectral 84.21 ± 3.72

Number of clusters

4 73.68 ± 5.76
8 76.84 ± 7.87
16 84.21 ± 3.72
32 77.89 ± 2.10

Number of eigenvectors

Only cortical features 70.52 ± 5.36
1 75.78 ± 7.13
3 84.21 ± 3.72
5 77.89 ± 2.10
10 74.73 ± 8.40

Number of neighbors

2 81.05 ± 2.57
3 82.10 ± 2.57
5 84.21 ± 3.72
10 84.21 ± 3.93

Graph convolution kernel
Gaussian [21] 83.15 ± 2.15
B-Spline [24] 84.21 ± 3.72

Ablation study
W/o Alignment 69.47 ± 8.42
W/o Regularization 74.73 ± 5.15

[24]. However, we also test the Gaussian kernel [21] in our
experiments.

For training, the loss function combines the output predic-
tion loss and cluster regularization loss on the first GC+P
block:

L(θ) = Lout(θ) + αLreg

(
S(1)

)
, (10)

where α is a parameter controlling the amount of regulariza-
tion. For classification tasks (i.e., disease prediction), Lout is
set as the cross-entropy between one-hot encoded ground-truth
labels and output class probabilities. In the case of regres-
sion (i.e., brain age prediction), we use mean squared error
(MSE) for this loss. Network parameters are optimized with
stochastic gradient descent (SGD) using the Adam optimizer.
Experiments were carried out on an i7 desktop computer with
16GB of RAM and an Nvidia Titan X GPU. The model takes
less than a second for disease classification or age regression.

III. EXPERIMENTS AND RESULTS

We validate our method on two large-scale, publicly-
available datasets: Mindboggle-101 [34] and ADNI1 [35]. The
first one contains T1-weighted MRI from 101 healthy subjects
(males: n=57, females: n=44, age: 20–61 years) collected from
9 different sites. We use this dataset for the tasks of subject-
sex classification and cortical region size regression since
both subject-sex labels and manual annotations for 32 cortical
parcels are provided with imaging data. The ADNI1 dataset
[35] is comprised of multi-sequence MRI data from 400
subjects diagnosed with mild cognitive impairment (MCI), 200
subjects with early Alzheimer’s disease (AD) and 200 elderly
control subjects (NC), obtained from 55 participating sites.
Both datasets contain brain surface meshes with pointwise

cortical thickness and sulcal depth measurements, generated
by FreeSurfer2. Cortical meshes in these datasets vary from
102K to 185K nodes. The code for our work is available at
the following URL: https://github.com/kharitz/learnpool.git.

In the first series of experiments, we evaluate the effects of
hyper-parameters influencing the performance of our pooling
method. Next, an ablation study is presented to assess the
effect of our spectral alignment and our Laplacian regulariza-
tion. Different pooling strategies for our graph convolutional
network are thereafter compared on the subject-sex classifica-
tion problem, while also evaluating the impact of input graph
size on prediction accuracy. We then illustrate our network’s
ability to learn meaningful node clusters by predicting the
size of cortical parcels from an anatomical atlas. Finally, we
highlight the advantages of working in the spectral domain on
the problems of disease classification (NC vs AD, MCI vs AD,
and NC vs MCI) and brain age regression.

A. Impact of hyper-parameters

Our learnable pooling method requires the selection of
several hyper-parameters: the type of pseudo-coordinates, the
number of clusters, the number of eigenvectors, the number
of neighbors, and the type of graph convolutions. In the next
series of experiments, we assess the impact of each of these
hyper-parameters on the task of subject-sex classification with
the MindBoggle dataset, using a 70-10-20 split for training,
validation, and testing. To have a measure of variance, keeping
the same split, we generated 5 different subsets by randomly
sub-sampling 50K nodes in each training, validation and
testing graph, and used the sub-sampled graphs as input to
our model. Performance (mean and standard deviation) is
measured across 5 runs, each one carried out on a different
subset. The same architecture, shown in Fig. 2, is used across
the following experiments.

1) Pseudo-coordinates: We first evaluate the benefit of
using spectral information when computing the pseudo-
coordinates of nodes in the graph convolution kernel, by com-
paring it against conventional Cartesian and polar coordinates.
The same architecture of Fig. 2, based on B-spline kernels,
is used for all three settings. As reported in Table I accuracy
improvements of 3.81% and 1.06% are obtained over Cartesian
and polar coordinates, respectively, showing the ability of
spectral pseudo-coordinates to better capture the local geome-
try of a complex surface. Note that, to have a fair comparison,
spectral node coordinates were used as input to the network
in all three settings, hence the models using Cartesian and
polar pseudo-coordinate also leverage spectral information.
Comparing Cartesian and polar pseudo-coordinates together,
we find that polar ones provide a higher accuracy. While both
encode similar information, polar coordinates offer a more
direct description of distance and direction between two points,
which could help to learn their relation. This may explain why
polar pseudo-coordinates were preferred in earlier work [21].

2) Number of clusters: Next, we train our GCN network
using different numbers of clusters for the pooling operation
of the network’s first GC+P block. As presented in Table I,

2https://surfer.nmr.mgh.harvard.edu/

https://github.com/kharitz/learnpool.git
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four settings are tested: 4, 8, 16 and 32 clusters. We see a
regular increase in accuracy from 73.64% to 84.21% when
going from 4 to 16 clusters. This reflects the fact that sex-
related differences are present in various cortical regions,
which can be learned by the network. However, the accuracy
drops significantly when further increasing the number of
clusters to 32. This could be due to the creation of near-empty
clusters that add no useful information to the training while
increasing the number of parameters to learn.

3) Number of eigenvectors: The inputs of our GCN are the
aligned spectral components (the Laplacian matrix eigenvec-
tors) and two cortical features, i.e., sulcal depth and cortical
thickness, corresponding to each mesh node. In the next ex-
periment, we vary the number of spectral components given as
input, testing five different settings: 0 (only cortical features),
1, 3, 5, and 10. For all settings, three eigenvectors are used to
compute pseudo-coordinates in the graph convolutions, and the
same 70-10-20 split as the previous experiments is employed.
Results presented in Table I demonstrate the importance of
including spectral information as input, with an accuracy
improvement of 5.26% when adding the first component (i.e.,
eigenvector with smallest non-zero eigenvalue) to cortical
features. The best performance of 84.21% is achieved when
considering the first three eigenvectors in addition to cortical
features. A possible explanation for this result is that three
is the minimal number of eigenvectors required to uniquely
locate a point on a 3D surface [27]. As suggested by the
decreasing accuracy for 5 and 10 spectral components, higher-
order eigenvectors may capture highly-varying and subject-
specific patterns of sulcal and gyral geometry, which is not
predictive of subject sex.

4) Number of neighbors: The number of neighbors k
directly impacts the computation of convolutions in Eq. (2).
To better assess the effect of this hyper-parameter, the perfor-
mance of a classification task is evaluated while increasing the
number of neighbors within randomly sub-sampled graphs of
50K nodes. More precisely, for every node i in the graph, the k
nearest neighbors are defined in the spectral embedding space.
The smoothness of the Laplacian matrix eigenvectors ensures
that neighbors are locally close to each other on the brain
surface. Performance is then evaluated using a classification
model that is trained on sub-sampled graphs with k = 2, 3, 5,
and 10 neighbors.

Table I shows a higher classification accuracy when the
number of neighbors increases. From a classification accuracy
of 81.05% for k = 2 neighbors, the performance improves
gradually to 84.21% with k = 5 and k = 10 neighbors. However,
the computational overhead of employing larger neighbor-
hoods must also be taken into account. For instance, runtime
increases by a factor of 1.7, from 93.6 ms to 158.5 ms, when
going from k = 5 to k = 10. For this reason, a neighborhood
size of k = 5 is used in the default setting of our method.

5) Graph convolution kernel: Last, we compare the B-
spline convolution of our default architecture with the Gaus-
sian kernel of [21] with diagonal covariance matrix. As
reported in Table I, we observe a small improvement of
1.06% when employing B-spline kernels. Interestingly, the
number of parameters is almost the same for both kernel

types (2,257 for Gaussian compared to 2,233 for B-spline)
and, thus, performance differences are not due to overfitting.
Note that similar improvements of B-spline kernels compared
to Gaussian kernels were also observed in [24] for various
analysis tasks.

B. Ablation study on alignment and regularization

In this section, we perform an ablation study to evaluate the
contribution of spectral alignment and Laplacian regularization
on our method’s performance for the task of predicting the sex
of Mindboggle subjects. To assess the usefulness of spectral
alignment, we first train a model with unaligned spectral
coordinates and with cortical features. The results in Table
I show the unaligned components to yield a low accuracy of
69.47%, demonstrating the importance of this alignment for
learning across different surfaces. Results also highlight the
role of Laplacian regularization in learning, with a 9.48% drop
in accuracy when removing the corresponding term in the loss
of Eq. (10), i.e. using α=0 in the loss. As explained before,
this regularization term is necessary to avoid getting stuck
in a local minimum caused by the bi-linear formulation of
the pooling operation. Laplacian regularization also provides
spatially-smoother clusters that better reflect the underlying
anatomy of the brain.

C. Comparison of different pooling methods

We compared our learnable pooling strategy against four
other pooling techniques applicable to graph convolutional
networks: 1) taking the global average of feature maps,
2) pooling feature maps in fixed regions computed from a
cortical parcel atlas, 3) pooling the same features in regions
obtained by applying k-means clustering on the spectral em-
bedding, 4) the top-k pooling approach proposed in [33] for
downsampling. For all tested methods, we used a network
composed of two graph convolution layers followed by two
fully-connected layers, as described in Section II-D. In the
case of global average pooling and fixed parcellation pooling,
a single pooling operation is applied after the second graph
convolution. For spectral clustering pooling, nodes are grouped
after each of the two convolution layers as in our learnable
pooling. However, the pooling path of the network is replaced
by a static node clustering. Likewise, for top-k pooling, we
employ the same architecture as presented in Section II-D,
but replace our pooling path with the top-k pooling after the
graph convolution operation. We train and test all methods on
subject-sex classification using the MindBoggle dataset with
a 70-10-20 split for training, validation, and testing. Once
again, we perform 5 separate runs with a different random
sub-sampling of 50K nodes for each graph.

Table II summarizes the results of this experiment. We see
that global average pooling yields the poorest performance
with a mean accuracy of 60.76%. Using atlas-defined corti-
cal parcels to aggregate features improves accuracy slightly
to 64.59%, suggesting that these parcels are informative
for identifying subject sex. Moreover, applying unsupervised
clustering on the spectral embedding further increases mean
accuracy to 67.94%, which indicates the benefits of having a
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a b c
Fig. 4. Clusters of different pooling methods: (a) Clusters obtained by spectral k-means clustering. (b) Fixed clusters computed from a cortical parcel atlas.
(c) Clusters learned by our learnable pooling method. Colors on the brain surface represent different regions.

TABLE II
BASELINE METHODS COMPARISON. MEAN AND STANDARD DEVIATION
WERE COMPUTED ON 5 SEPARATE RUNS USING A DIFFERENT RANDOM

50K NODE SUB-SAMPLING OF EACH GRAPH.

Pooling method Mean ± Std.
Global Average Pooling 60.76 ± 3.62
Fixed Parcellation Pooling 64.59 ± 7.84
Spectral Clustering Pooling [31] 67.94 ± 4.97
Top-k pooling [33] 78.94 ± 3.32
Learnable Pooling (ours) 84.21 ± 3.72

hierarchy of non-fixed clusters. The advantage of a learnable
top-k pooling over fixed pooling methods can be seen with
a classification accuracy of 78.92%. However, by learning
clusters in a supervised manner from spectral embeddings,
our method achieves the highest accuracy of 81.33%, an
improvement of 13.39% over spectral clustering and a 5.3%
gain over top-k pooling.

Figure 4 gives examples of clusters for the different pooling
strategies (except global average pooling, which considers
all nodes as part of a single cluster and top-k pooling as
it selects nodes to drop for downsampling). While spectral
clustering yields spatially-regular clusters, the distribution of
these clusters is arbitrary and does not seem to match known
parcels of the cortex (shown in Fig. 4b). In contrast, the
clusters predicted by our pooling strategy are larger and better
aligned with these known parcels.

D. Impact of input graph size

In the next experiment, we investigate whether our method
is robust to variability in the size of the surface mesh. Toward
this goal, we use the same split of the MindBoggle dataset as
in the first experiment, and randomly sub-sample the original
mesh to 100, 1K, 5K, 10K, 25K, 50K and 75K nodes. Because
convolutions at each node use information from its k = 5
nearest neighbors, as described in Eq. (2), testing multiple
sub-sampling with the same number of nodes also assesses
the robustness of our model to variations in graph connectivity.
We train our model on each of these reduced graph datasets
to predict the sex of MindBoggle subjects.

Table III-D gives the classification accuracy for different
sizes of training graphs when testing on sub-sampled graphs
of the same size, or on the original full-sized graph. The first
case evaluates whether the same accuracy can be achieved

TABLE III
SUBJECT-SEX CLASSIFICATION PERFORMANCE OF OUR POOLING
APPROACH ON DIFFERENT SUB-GRAPHS: MEAN CLASSIFICATION

ACCURACY (%) WITH STANDARD DEVIATION OVER TEST SET FROM THE
MINDBOGGLE DATASET.

Num. of nodes Testing on
Sub-sampled graphs

Testing on
Full graphs

100 55.02 ± 13.18 52.63 ± –
1k 55.98 ± 4.25 52.63 ± –
5k 64.11 ± 1.58 47.36 ± –

10k 67.94 ± 5.98 52.63 ± –
25k 71.77 ± 4.86 73.68 ± –
50k 84.21 ± 3.72 78.94 ± –
75k 85.26 ± 3.93 84.21 ± –

Full graph 94.73 ± – 94.73 ± –

with less information at the input of the network, whereas
the second case tests if the convolution parameters learned
by the network generalize to larger graphs. As expected,
classification performance decreases when reducing the size
of input graphs, both when testing on sub-sampled graphs
and full-sized graphs. When testing on sub-sampled graphs,
accuracy drops from 94.73% while training with full graphs
to 55.02% for graphs with only 100 nodes. However, high
accuracy values of 84.21% and 85.26% can be achieved when
training graphs of 50K and 75K nodes, respectively, about
half the size of the original graphs. Furthermore, we see
that our model trained with moderately-reduced graphs can
still perform well on full-sized ones. For instance, the model
trained with graphs of 50K nodes and 75K nodes achieves an
accuracy of 78.94% and 84.21% respectively, when tested on
original graphs with twice the number of nodes.

E. Task-specific pooling regions

In this section, we qualitatively and quantitatively evaluate
the predicted clusters and feature maps learned by our net-
work. Once more, we consider the task of classifying males
vs. females subjects from the Mindboggle dataset with the
architecture depicted in Fig. 2.

Figure 5 shows examples of features and clusters learned by
our graph pooling model for a male and a female subject. The
first and third columns give the distribution of four different
activation maps learned by the network for the two subjects.
The mean activation in each predicted cluster for the same
subjects is illustrated in the second and fourth columns of
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MaleFemale

Fig. 5. Feature maps and predicted clusters for the task of subject-sex classification: The first column shows examples of activation maps computed
by the embedding path of our network for a female subject. The second column gives the average activation in each predicted cluster for the same subject
and feature maps. Coloring indicates output of the ReLU activation with minimum value indicated by blue and maximum value indicated by red. Third and
fourth columns depict the same information for a male subject.

the figure. We observe the diversity of depicted clusters,
spawning different regions of the brain both on the cortex
and around regions of the basal ganglia. Interestingly, several
of the learned clusters focus on sub-cortical regions like the
hippocampus (first row) and amygdala (last row), which have
been linked to sex-related differences in the literature [44].
This illustrates the benefit of learning task-specific clusters in a
supervised manner. Additionally, we see that predicted feature
maps and clusters in both subjects are similar, demonstrating
that the model can adapt to the specific brain geometry of
individual subjects.

We further evaluate the relevance of learned clusters by
training the same model to predict the size of 32 anatomical
parcels of each brain surface, using labeled data from Mind-
boggle. For this experiment, we hypothesize that the network
should learn clusters that are related to the predefined parcels.
To do so, we modify the last layer of the architecture in
Fig. 2 to have 32 outputs, one for the size of each parcel, and
change the loss function to mean square error. Adjusted mutual
information (AMI) is used to measure the similarity between
learned clusters and ground-truth parcels. AMI values range
from 0 to 1, a score of 0 corresponding to random clusters
and a score of 1 for clusters identical to ground-truth.

Figure 7 gives the mean AMI obtained at each training
epoch, and examples of predicted clusters at four different
epochs are shown in Fig. 6. In the initial stages of training,

the model predicts a small number of clusters corresponding
mainly to the components of the spectral embedding (see
the network input in Fig. 2). In the first 500 epochs, the
AMI score between predicted clusters and ground-truth parcels
drops. Then, as training progresses, we observe increasing
AMI values and progressively more defined clusters. At the
end of training (2500 epochs), the model achieves an AMI
score of 0.39. Obtained clusters appear to be a combination of
different ground-truth parcels, suggesting that fully-connected
layers further help regressing parcel sizes.

F. Disease classification
In the following experiment, we evaluate our method on

the task of classifying subjects from the ADNI dataset as
normal control (NC), mild cognitive impairment (MCI) or
Alzheimer’s disease (AD). Specifically, we consider three
different binary classification problems: NC vs AD, MCI vs
AD and NC vs MCI. We compare our method against the
random forest approach in [45], which also considers surface-
based information from the ADNI dataset. To measure the
contribution of the spectral embedding in our method, we also
evaluate our model trained with only cortical thickness and
sulcal depth as input. The same random split of 70-10-20 is
employed for all three models.

The classification performance of tested models is reported
in Table IV. We see that our method outperforms the random
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Epoch : 0
AMI : 0.2195

Epoch : 100
AMI : 0.3120

Epoch : 1000
AMI : 0.3362

Epoch : 2500
AMI : 0.3911

Manual Labels
AMI : 1

Fig. 6. Pooling regions learned during training: The pooling regions are learned for the model training to regress the size of cortical regions. During initial
epochs, random regions are clustered together to aggregate feature maps. A low AMI score indicates this random clustering compared to the ground-truth. After
training, the model finally learns to group multiple parcels (cyan) into on cluster pooling region. AMI score increases over epochs, indicating task-dependent
learning by our model. The last figure shows manual parcels with AMI score of 1 for reference.

Fig. 7. Evolution of AMI score: The adjusted mutual information score
between the pooling regions and the manual parcels over multiple epochs
is shown. A random overlap between learned pooling regions and parcels is
observed at initial epochs. After training, the AMI score increases with the
pooling regions corresponding to ground-truth parcels.

forest approach of [45] on all three classification problems.
Relative to this approach, the proposed method yields mean
accuracy improvements between 7.79% and 11.92%. A sig-
nificant gain in performance is also observed when comparing
the same method trained without spectral node coordinates.
This is particularly notable for NC vs MCI, where adding
spectral coordinates increases the mean accuracy by 13.33%.
Note that we have also tried giving the network original
(x, y, z) coordinates of mesh nodes. However, this led to worse
results. This illustrates the advantage of using intrinsic node
localization when processing surface data.

TABLE IV
EVALUATION OF THE PROPOSED WORK: AVERAGE ACCURACY OF

DISEASE CLASSIFICATION (%), WITH STANDARD DEVIATION OVER THE
COMPLETE ADNI DATASET. FIRST ROW IS A RANDOM FOREST (RF) WITH
MULTIPLE CORTICAL-BASED FEATURES [45]. SECOND ROW IS OUR GRAPH

CONVOLUTIONAL MODEL WITHOUT GEOMETRICAL INFORMATION
(SPECTRAL NODE COORDINATES Ũ). LAST ROW IS WITH THIS

INFORMATION.

Input NC vs AD MCI vs AD NC vs MCI

RF [45] 80 ± 5 65 ± 6 63 ± 4

Ours w/o Ũ 76.00 ± 6.06 74.03 ± 8.63 63.71 ± 5.72
Ours with Ũ 89.33 ± 4.30 76.92 ± 4.78 70.79 ± 6.40

G. Brain age prediction
The last experiment demonstrates our method in a regression

problem where the age of NC subjects of the ADNI dataset

is predicted using pointwise surface-based measurements. In
this case, the network outputs a single value, and MSE is used
as loss function. Once more, we test our method trained with
or without spectral node coordinates as input. Moreover, to
evaluate brain age prediction as a potential imaging biomarker
for Alzheimer’s, we also measure the prediction accuracy of
our model on AD test subjects.

The results of this experiment are summarized in Fig. 8,
which gives the distribution of mean absolute error (MAE)
and prediction bias (predicted age minus real age) for NC
subjects and AD subjects. When testing on NC subjects, our
method achieves an MAE of 4.35 ± 3.19 years, which is
comparable with results in the literature. As expected, a higher
MAE of 6.80 ± 6 years is obtained for AD subjects, since the
symptoms of early Alzheimer’s are similar to premature brain
aging. The brain age, calculated as the predicted age minus the
real age, shows a statistically significant difference with a p-
value of 0.0032. This value suggests the potential application
of brain age prediction as a biomarker for AD.

IV. CONCLUSION

We presented a novel strategy that enables pooling oper-
ations on arbitrary graph structures. The performance of our
learnable pooling scheme was evaluated in seven experiments.

The first series of experiments evaluated the impact of
hyper-parameters: the type of pseudo-coordinates of nodes in
graph convolution kernels, showing improvement when em-
ploying our spectral-based coordinates instead of Cartesian or
polar-based ones; the number of clusters in pooling operations,
with a regular increase of performance up to 16 clusters; the
number of eigenvectors, suggesting that a minimal number of
three Laplacian eigenvectors is necessary for optimal accuracy;
the number of neighbors, revealing a compromise between
accuracy and computation time; the type of graph convolution
kernel, showing an improvement of accuracy when using B-
spline convolution kernels in our default architecture instead
of Gaussian kernels.

A second experiment provided an ablation study validat-
ing the positive effects of spectral alignment and Laplacian
regularization in our method. Results showed a significant
performance gain when using both techniques, compared to
employing only one of them.

A third experiment compared different pooling techniques
for graph convolutional networks on the subject-sex classifi-
cation task. A simple global average pooling failed to capture
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Fig. 8. Distribution of absolute prediction error (left) and predicted minus real age (right), for NC and AD test subjects. Our learnable pooling strategy
yielded graph models that could correctly capture age discrepancies between real and geometry-based ages, as expected between subjects with NC and AD.

geometric information from consecutive layers, yielding a
low performance of 60%. In comparison to employing fixed
pooling regions, learning these regions with unsupervised
clustering, or applying the top-k pooling strategy to select
nodes from a learned projection vector, our learnable pooling
strategy offers significantly higher accuracy.

A fourth experiment evaluated the effect of the graph size
on the performance of subject-sex classification. The results
showed that small graphs lack information to capture the
complete geometry of surfaces. However, reducing the size
of the graph by 25% up to 75K still yields a high accuracy,
while improving memory and computational requirements.

The fifth experiment explored the relationship between
learned features and anatomy. The visualization of activation
maps and clusters in the network revealed diversity in terms
of brain regions. Several learned clusters highlighted essential
regions of the basal ganglia, such as the hippocampus and
amygdala, which are associated with sex-related differences in
the literature. We further evaluated this result with an experi-
ment to regress the size of cortical parcels. As expected, the
trained model learns pooling regions similar to the manually-
annotated parcels.

The sixth experiment focused on predicted stages of
Alzheimer’s disease from surface data, including cortical
thickness and sulcal depth. Our results showed that pointwise
surface values could be efficiently aggregated into a fixed num-
ber of class probabilities using the proposed network architec-
ture. Compared to another approach exploiting surface-based
features [45], our method achieved significant improvements
ranging from 7% to 11%. This performance gain is mainly
due to including spectral coordinates of graph nodes as input
to the network, demonstrating the importance of intrinsic node
localization.

In a final experiment, the age of ADNI subjects was
predicted using pointwise surface data. Results showed that
our method provides an accuracy comparable to previous
approaches in the literature, while using only surface-based in-
formation. As expected, subjects with Alzheimer’s have higher
discrepancies than subjects with normal cognition (Fig. 8). The
potential of the proposed method as an imaging biomarker for
AD could be evaluated in a future study.

To summarize, the proposed pooling strategy enables the

exploration of a new family of architectures for graph con-
volutional networks. Our method exploits the spectral embed-
dings of graph nodes in order to learn spatially-representative
pooling patterns across different layers. However, this requires
having datasets of comparable brain geometry, since the eigen-
decomposition of the graph Laplacian matrix assumes that
shapes are topologically equivalent. Differences in the meshing
procedure as well as the presence of holes or cuts in the mesh,
for instance caused by ablated tumors, might therefore impact
the performance of our method. In future work, we plan to
investigate domain adaptation techniques, for example based
on adversarial learning, to learn an internal representation
which is robust to such differences. Moreover, by incorpo-
rating unpooling operations in the proposed model, we could
also explore applications requiring node-level outputs like
regressing cortical thickness over time.
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Hervé Lombaert is Associate Professor of Com-
puter Engineering at ETS Montreal, Canada, and
holds a Canada Research Chair in Shape Analysis
in Medical Imaging. He earned his PhD in 2012 and
had the chance to work in multiple centers, including
Microsoft Research (UK), Inria (France), McGill
University (Canada), Siemens Corporate Research
(USA), and the University of Montreal (Canada).
His research focuses on the statistics and analysis of
shapes in the context of medical imaging. His work
on graph analysis has impacted the performance of

several applications in medical imaging, from the early image segmentation
techniques with graph cuts to recent surface analysis with spectral graph
theory. His research has received several awards including the Erbsmann Prize.


	Introduction
	Related work
	Contributions

	Method
	Convolutions on non-rigid geometries
	Spectral embedding of multiple surface graphs
	Learnable pooling for graph convolutional networks
	Architecture details

	Experiments and results
	Impact of hyper-parameters
	Ablation study on alignment and regularization
	Comparison of different pooling methods
	Impact of input graph size
	Task-specific pooling regions
	Disease classification
	Brain age prediction

	Conclusion
	References
	Biographies
	Karthik Gopinath
	Christian Desrosiers
	Hervé Lombaert


