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Abstract. The automatic segmentation of cardiac magnetic resonance
images poses many challenges arising from the large variation between
different anatomies, scanners and acquisition protocols. In this paper, we
address these challenges with a global graph search method and a nov-
el spectral embedding of the images. Firstly, we propose the use of an
approximate graph search approach to initialize patch correspondences
between the image to be segmented and a database of labelled atlases.
Then, we propose an innovative spectral embedding using a multi-layered
graph of the images in order to capture global shape properties. Finally,
we estimate the patch correspondences based on a joint spectral repre-
sentation of the image and atlases. We evaluated the proposed approach
using 155 images from the recent MICCAI SATA segmentation challenge
and demonstrated that the proposed algorithm significantly outperforms
current state-of-the-art methods on both training and test sets.

1 Introduction

An important step in the analysis of cardiac magnetic resonance (MR) images is
the segmentation of the images into different anatomical structures or regions.
One of the most popular category of segmentation approaches is based on multi-
atlas label fusion [15,10,1]. The main components of these methods are atlas
selection, atlas propagation and label fusion.

In the atlas propagation step, affine or non-rigid registration methods are
commonly used, such as the free-form deformation (FFD) [17] registration or
the Demons [19] algorithm. The registration is commonly based on intensity
similarities and constrained to ensure one-to-one correspondences between the
target image and the atlas. This restriction ensures a realistic deformation that
preserves the topology of the atlas structures in the target image. However, it
also limits the ability of the registration to capture large or local variations in
shape.

To relax the method’s dependence on accurate registrations, recent research
has focused on patch-based label fusion methods [16,8,3,20,11] including their
application to cardiac MR images [8,4]. These approaches compensate registra-
tion error by searching for correspondences between the target image and atlas
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within a limited search window. However, intensity based features, which are
often used as patch selection criteria, can have ambiguous matches especially for
larger search windows as shown in Fig. 1a.

(a) (b) (c)

Fig. 1. This figure shows the most similar patches under different representations of the
images. Red, green, and orange contours are the manual segmentation of endocardial,
epicardial boundaries and trabeculae/papillary muscles respectively. For spectral rep-
resentations, RGB color represents the first three eigenmodes. (a) shows the intensity
images and the correspondence; (b) shows the independent spectral representations and
the correspondence; (c) shows the joint spectral representation and the correspondence.

PatchMatch [5] is a popular search method to find global patch correspon-
dences between two images based on an approximate graph search. This ap-
proach is appealing due to its unique ability to capture large variations while
remaining computationally feasible. However, there is no intrinsic regularization
and corresponding patches do not necessarily preserve the topology of anatomi-
cal structures as shown in Fig. 3d.

In this paper, we aim to search for patch correspondences between the target
image and warped atlases without any restriction of the search window size for
the purpose of label fusion. There are two challenges, as discussed above: First-
ly, cardiac MR images exhibit significant variability in terms of anatomy. This
renders the application of conventional registration methods difficult. Secondly,
the optimal matching patches, in terms of intensity features, may come from d-
ifferent anatomical regions around the heart. This limits the usefulness of patch
selection methods like label fusion or the PatchMatch algorithm [5].

In this paper, we propose a novel method called multi-atlas spectral Patch-
Match (MASP) to overcome these limitations. Here we combine spectral match-
ing [13] with multi-atlas PatchMatch (MAPM) [18]. Recent advances in spectral
matching [13], based on spectral graph theory [7], allow global correspondences
to be established between two graphs by linking them together. By modelling
images as graphs, this method can be applied to image registration [12]. Howev-
er, any alteration in the images will inherently change the graph representation
and result in perturbations in shape isometry. These alterations include varia-
tion of the objects, changes of the regions of interest, and different views of the
scene. This will lead to the change in the spectral representation as shown in
Fig.2d and Fig. 1b, thus, affect the performance of matching.

In order to build a consistent spectral embedding of the images, we first
represent the images as graphs [12]. However, different from [12], we construc-
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t a multi-layered graphical representation of the image and atlases by using
the patch correspondence stemming from the PatchMatch (Fig. 2a). We then
learn the joint spectral representation of the graph using the principles from [13]
(Fig. 2b). Finally, we estimate the correspondences using MAPM across differ-
ent images simultaneously based on the spectral representation of the patches
(Fig. 2c). Based on the estimated patch correspondences, we then segment the
images with the method proposed in [16].

The contribution of this paper is the introduction of a novel joint spectral
representation of images and atlases. This representation is intrinsically aware
of the image content, in our case, the anatomy of the cardiac region. In contrast
to the application of [12], we capture shape properties among all images simul-
taneously. By using this new representation, we enable a multi-layered graph
search strategy and recover unambiguous global patch correspondences between
the unseen image and atlases. Our results demonstrate that the proposed algo-
rithm significantly outperforms state-of-art algorithms. We confirm our results
through a blinded and external online evaluation.

2 Method

(a) (b) (c) (d)

Fig. 2. Algorithm overview – intermediate steps for segmenting an unseen image using
two atlases. The number of atlases, vertices and edges has been simplified for better
illustration. The unseen image is overlaid with an orange grid and atlases are overlaid
with a green grid. (a) shows the image-atlas graph as initialized by PatchMatch; (b)
shows the spectral representation of the image-atlas graph; (c) shows the final estima-
tion of the correspondences using the spectral representation and MAPM; (d) shows
the spectral representation of individual images.

2.1 Image-atlas graph initialization

The PatchMatch algorithm proposed by Barnes et al. [5] finds corresponding
patches between two images or regions without any restriction of the search
space. It is based on the assumption that given a good match of one patch,
it is very likely that the neighbouring patches share the same or similar cor-
respondences [5]. The first step of our segmentation method is to construct a
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multi-layered image-atlas graph from the unseen image and atlases using the
correspondences estimated with PatchMatch.

Given an unseen image U and an warped atlas database A (individual atlases
are denoted as Ak,K = |A|), we find for each point p = (x, y, z) in image U
a correspondence in each atlas Ak, Ck(p) = (q, k) where q = (x′, y′, z′) is the
closest match in atlas Ak for a given distance function D(p,q) between patches
P and Q centered at p and q. Here, the distance is the Euclidean distance of the
feature vectors. For each patch P, the feature vector consists of the intensity, the
intensity gradients in all three directions, and the spatial location x, y, z of each
point x ∈ P. This is equivalent to embedding each patch of the unseen image
and the K atlases in a M dimensional space, where M = 7|P| is the number of
features in the feature vector. The choice of the Euclidean distance ensures the
triangle inequality so that the multi-layered image-atlas graph introduced in the
next section is embedded in a metric space.

2.2 Image-atlas graph construction

Using the estimated correspondence fields C1, ...,CK, we can construct a single
multi-layered undirected graph G = (V,E) from image U and atlases A as
shown in Fig.2a. The graph is constructed with the vertices V = VU ∪ VA

representing voxels of image U and atlases A and the edges E consisting of
the union of EU, EA1 , ...,EAK

and EC1 , ...,ECK
. Within the unseen image U

and atlases A, we define EU,EA1 , ...,EAK
such that each voxel is connected to

its immediate spatial neighbours within the same image. Between the unseen
image and atlases, the edges EC1 , ...,ECK

are given by the corresponding fields
C1, ...,CK. The distance D(p,q) between the vertices is defined as in Sec. 2.1.

For the multi-layered graph G the |VU∪VA|×|VU∪VA| weighted adjacency
matrix has the form:

W =


WU WC1 ... WCK

WT
C1

WA1 0 0
... 0 ... 0

WT
CK

0 0 WAK

 , (1)

where WU and WAk
are the adjacency matrices of intra-image edges of

the unseen image and atlas Ak. WCk
are the weighted adjacency matrices of

inter image-atlas edges defined by the correspondence field Ck. For each wp,q

where p and q are two voxels of the unseen image and/or atlases, we define
wp,q = exp(−D(p,q)2/2σ2) if ∃ep,q ∈ E or 0 otherwise. The parameter σ is set
to the standard deviation of D(p,q) ∀ep,q ∈ E. The resulting graph is simplified
and illustrated in Fig. 2a. Examples are presented in the supplementary material.

2.3 Spectral feature extraction

Inspired by [13], we use the image-atlas graph G to exploit the joint spectral rep-
resentation of the unseen image and atlases. In this paper, we use the symmetric



5

normalized Laplacian [7] for the spectral embedding. The Laplacian is defined as
Lnorm = D−1/2(D−W)D−1/2 where D is the diagonal degree matrix [7]. The
spectral decomposition of the graph Laplacian Lnorm = SΛS−1 provides eigen-
values Λ and associated eigenvectors S = (s·,0, s·,1, ..., s·,|Λ|), where s·,i is the ith

column of S. We denote the spectral representation, SN = (s·,0, s·,1, ..., s·,N ), a
N -dimensional embedding of the images. Each voxel x of images in U and A
has the spectral feature defined as snormx,(1,...,N), which is a row of SN normalized
to the intensity range of the unseen image.

2.4 Multi-atlas spectral PatchMatch

MAPM was proposed to find the corresponding patches between one unseen im-
age and multiple atlases in [18]. Different from PatchMatch as described in Sec.
2.1, it finds only one correspondence for each point p = (x, y, z) in image U,
C(p) = (q, k), so that Ak(q) is the closest match in all atlases A. The MAP-
M algorithm [18] consists of three different steps which we briefly describe as
follows: The correspondence C(x) = (x, R(K)) is initialised by a uniform ran-
dom selection R(K) that selects between A1 to AK. After initialization, the
correspondence C is improved by iterating between propagating good matches
to its neighbours and searching for better matches across different atlases simul-
taneously. This process is performed until the sum of all distances between each
patch in the unseen image and its correspondence converges.

The advantage of MAPM is that it can find global patch correspondences
between an unseen image and multiple atlases simultaneously. The complexity
of the algorithm does not increase with the number of atlases [18]. However,
using intensity features, the match can be ambiguous and may connect different
anatomical structures. In this paper, we propose adding the spectral feature
snorm into MAPM. We redefine the distance function as follows,

Ds(p,q) := D(p,q) +

√√√√∑
p′∈P

N∑
i=1

(snormp′,i − snormq′,i )2, (2)

where q′ are corresponding points to p′ in the atlas patch Q. Using this
approach, the shape context contained in the spectral features can be used to
support MAPM to identify differences between different anatomical structures
as shown in Fig. 1. Compared to Spectral Demons [12], this is the first attempt
to build a joint spectral representation of multiple images. If we build the image
graph independently, large perturbations of the graph will cause fundamental
differences in the spectral representations which are difficult to recover [13].
The final label probability PL(x) at each voxel x is estimated with the method
proposed in [16]. We use a weighting function identical to the one in Sec. 2.2.

3 Application to cardiac MR image segmentation

The proposed framework was applied to cardiac cine MR images. The images
used were from healthy and clinical cohorts of the cardiac atlas project [9] and
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demonstrated a wide range of shape variations. This data set was also used
in the MICCAI-SATA 2013 segmentation challenge [2]. A standard acquisition
was performed, including an axial stack of cine b-SSFP MR images in the left
ventricular short axis plane. The image dimensions are 192 x 192 x 16 x 30
and the voxel sizes are 1.5 x 1.5 x 6 mm. Ground truth segmentations of the
myocardium were provided throughout the cardiac cycle for the training set of
83 subjects. In addition, a test set of 72 subjects was provided without ground
truth segmentations.

MASP was applied between slices of the unseen image and the atlases to
deal with the respiratory motion and large slice thickness. Before label fusion,
the atlases were aligned to the unseen image followed by intensity normalization
[14]. The initial alignment was obtained using five manual landmarks similar to
[4]. In the experiments, the patch size was set to 3 x 3 voxels [4]. To initialize
the image-atlas graph, each pixel was connected to its four neighbouring pixels
within the same image and one inter image-atlas neighbour from the unseen
image to each atlas using PatchMatch [5]. The dimension of spectral features
was N = 3 [12].

3.1 Results

Table 1. The mean and standard deviation of Dice metric for different methods.
The first, second and third rows show the results using affine registration, the result
using FFD registration and the differences between the FFD and affine registration
respectively. Paired sample t-test shows a significant difference between the proposed
method and the other approaches (p-value < 0.01 indicated by *).

Majority Patch based [8] Joint label [20] MAPM [5] MASP

Affine 0.673 (0.098)∗ 0.736 (0.090)∗ 0.729 (0.068)∗ 0.720 (0.050)∗ 0.800 (0.054)

FFD 0.737 (0.086)∗ 0.762 (0.083)∗ 0.761 (0.060)∗ 0.728 (0.050)∗ 0.801 (0.048)

Differences 0.065 (0.029)∗ 0.026 (0.021)∗ 0.035 (0.022)∗ 0.008 (0.013)∗ 0.001 (0.015)

(a) (b) (c) (d) (e)

Fig. 3. This figure illustrates the segmentation results of different methods using FFD.
(a) shows majority voting; (b) shows patch-based segmentation [8]; (c) shows joint
label fusion [20]; (d) shows the MAPM [18]; (e) shows the proposed MASP.

We performed a leave-one-out cross-validation using the end diastolic (ED)
frame on the training set. We compared the Dice metric between the segmenta-
tion result and the ground truth using different segmentation techniques includ-
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ing the majority voting, patch-based fusion [8], joint label fusion [20], MAPM
[18] and MASP. To ensure fair comparison, all methods were based on the same
affine registration and refined by FFD registration. To estimate the sensitivity
of the methods against different registrations approaches, we presented results
based on both affine and FFD registration. For each unseen image, 20 atlases
were selected from a pool of 82 images after affine registration as in [1].

The results are summarized in Tab. 1. MASP yields a significant improve-
ment in the segmentation accuracy. MASP is also significantly less sensitive to
the initial registration as shown in the third row. The difference when using
MASP with different initialisation methods (affine, FFD) was not significant.
The intensity based methods have difficulties in distinguishing the difference be-
tween liver and myocardium (Fig.3b,Fig.3c and Fig.3d). In particular, MAPM
did not preserve the topology of the myocardium. In contrast, MASP can recov-
er large variation in shape while preserving the topology (Fig.3e). This is due
to the fact that MASP uses a global search strategy which is, due to spectral
features, aware of the anatomical context.

We also submitted our results on the test set using affine registration to the
SATA segmentation challenge. To label the myocardium consistently across tem-
poral frames, we used graph cuts [6] with the label probability PL(x) as the data
term and linked between neighboring frames as the smoothness term. The results
are summarized in the leader board4 under the entry name MASP AREG GC
with a mean Dice metric of 0.807 and a mean Hausdorff distance of 1.287mm.

4 Conclusion

In this paper we developed MASP: a segmentation method for, but not limit-
ed to, cardiac MR images. By creating a multi-layered image-atlas graph, we
used spectral embedding to estimate spectral features of the unseen image and
multiple atlases simultaneously. Compared to the intensity features, the spectral
features contain shape context and facilitate the estimation of an unambiguous
correspondence field. We have shown that our method is less sensitive to the
initial registration and robust to the presence of large shape variations.

Acknowledgement: This research was supported by British Heart Founda-
tion grant PG/12/27/29489.
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