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a  b  s  t  r  a  c  t

Studying  morphological  changes  of  subcortical  structures  often  predicate  neurodevelopmental  and  neu-
rodegenerative  diseases,  such  as  Alzheimer’s  disease  and schizophrenia.  Hence,  methods  for  quantifying
morphological  variations  in  the  brain  anatomy,  including  groupwise  shape  analyses,  are  becoming
increasingly  important  for studying  neurological  disorders.  In this  paper,  a  novel  groupwise  shape  anal-
ysis  approach  is  proposed  to  detect  regional  morphological  alterations  in  subcortical  structures  between
two study  groups,  e.g.,  healthy  and  pathological  subjects.  The  proposed  scheme  extracts  smoothed
triangulated  surface  meshes  from  segmented  binary  maps,  and  establishes  reliable  point-to-point  corre-
spondences  among  the  population  of surfaces  using  a spectral  matching  method.  Mean  curvature  features
are  incorporated  in  the  matching  process,  in order  to increase  the accuracy  of  the established  surface  cor-
respondence.  The  mean  shapes  are  created  as the  geometric  mean  of  all surfaces  in  each  group,  and  a
distance  map  between  these  shapes  is  used  to characterize  the  morphological  changes  between  the  two
study groups.  The  resulting  distance  map  is further  analyzed  to check  for statistically  significant  dif-
ferences  between  two  populations.  The  performance  of the  proposed  framework  is evaluated  on two

separate  subcortical  structures  (hippocampus  and putamen).  Furthermore,  the  proposed  methodology
is validated  in  a clinical  application  for detecting  abnormal  subcortical  shape  variations  in Alzheimer’s
disease.  Experimental  results  show  that  the  proposed  method  is  comparable  to  state-of-the-art  algo-
rithms,  has  less  computational  cost,  and is  more  sensitive  to  small  morphological  variations  in  patients
with  neuropathologies.
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1. Introduction

Quantifying groupwise neuroanatomical shape differences
has become an important topic in neuroscience as well as in
neuroimaging studies, since brain morphometry has been hypoth-
esized to be linked to various neurological disorders [1]. Recent
advances in medical image analysis have led to several morpho-
logical studies on different pathologies including schizophrenia

[2] and Alzheimer’s disease [3]. Early studies on brain morphol-
ogy were based on volumetric analysis, which had the advantage
of simplicity [3,4]. However, these methods lacked regional shape
information, which are potentially important for neurological
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dentification. Thus, shape analysis has emerged as an alterna-
ive of evaluating morphology location and magnitude in the brain
natomy, in order to detect the neuroanatomical changes in specific
egions of a single structure.

Several works have proposed groupwise shape analysis
pproaches based on creating a template image and estimating
he deformation field between each individual image and the tem-
late [5–7]. These methods non-rigidly register each image to a
pecific template, and evaluate the information contained within
he deformation field to detect the location and magnitude of shape
hanges. In deformation-based approaches the template creation
nd the choice of the registration technique has a critical impact
n the quality of the shape analysis results [8]. Indeed, deformable
egistration remains a challenging problem, particularly in smaller
egions such as subcortical structures, which requires a high level
f accuracy to precisely match sub-fields.

Another approach for shape analysis is based on medial surface
epresentations [9–12]. These methods provide a compact param-
terization of a volumetric object by extracting the 3D skeleton of a
hape. The local positional changes are then quantified by assessing
orphological variations of the skeleton across a population of

hapes. The medial surface representation has been applied to var-
ous subcortical structures including the cross sectional images of
he corpus callosum [9] and hippocampus/amygdala complex [11],
audate [12], and lateral ventricle [13], in order to evaluate changes
n patients diagnosed with schizophrenia. Since medial represen-
ation relies on a coarse-scale sampling of the structure of interest,
t may  be insensitive to small-scale shape differences, which might
e present in a studied population [2].

In addition to the above-mentioned methods, several works
ave proposed surface parameterization based approaches, in
hich a parameterization of a shape is performed on a simple
omain such as a sphere. One such approach is the spherical har-
onics (SPHARM) method by Styner et al. [14], which is used

n combination with Point Distribution Models (PDM) to dis-
over structural differences across populations. In this approach,
hich is called SPHARM-PDM, shapes first represented by binary

egmentations are converted into a corresponding spherical har-
onic description. Then, the correspondence problem is solved

y the alignment of the spherical parameterization using a first-
rder ellipsoid. In this method, the spherical description of surface
eshes is sampled into triangulated surfaces using icosahedron

ubdivision. These surfaces are then spatially aligned using rigid
rocrustes alignment.

The SPHARM-PDM method has been applied in various clinical
pplications, such as for studying shape variations of the hippocam-
us [2] and lateral ventricles [13] in schizophrenia, and analyzing
audate morphological changes [15] in bipolar disorder. Although
PHARM-PDM enabled the reliable assessment of local shape vari-
tion across populations, it requires establishing correspondence
n simplified spherical models of surfaces, which is restricted to
urfaces with spherical topology [16,17]. In order to overcome this
imitation, combining SPHARM-PDM with an entropy-based par-
icle system correspondence model has been proposed in [16].
urthermore, Cates et al. [17] proposed to model the shape as sets of
articles, where the particles are distributed on the surfaces of the
hapes by optimizing an entropy-based energy function. According
o a recent evaluation in [8], this method was not able to find the
ocation of group differences in some cases.

Chung et al. [18] proposed weighted-SPHARM, which expresses
urface data as a weighted linear combination of spherical har-
onics. The weighted-SPHARM method generalizes the traditional
PHARM representation as a special case. This method reduces
inging artifacts observed with the SPHARM representation espe-
ially for the high frequency components [18]. However, it is
pplicable for a limited class of shapes and is only able to detect
aging and Graphics 52 (2016) 58–71 59

the sufficiently large shape difference across populations. The
SPHARM-MAT (SPHARM Modeling and Analysis Toolkit) is another
shape analysis method, which creates parametric surface mod-
els using spherical harmonics [19]. This approach is similar to
the SPHARM-PDM framework [14] but applies different spherical
parameterization and shape alignment process [19]. A comparison
between the two spherical harmonics-based methods showed that
SPHARM-PDM could capture the shape differences more accurately
rather than the SPHARM-MAT [8]

In general, despite the development of various approaches in
the field of groupwise shape analysis, there are still some lim-
itations and challenges that need to be addressed. For instance,
the morphometry framework should be robust to different shape
topologies and shape segmentation approaches, while from a com-
putational perspective, the total population-wise shape analysis
process should be determined in an efficient time manner, in order
to be feasibly implemented as a clinical diagnostic tool.

One of the main challenges in a surface-based groupwise shape
analysis approach is to establish reliable one-to-one correspon-
dences among the population of surfaces. Among various surface
matching algorithms in the literature, the recent spectral match-
ing approach proposed by Lombaert et al. [20,21] have shown
promising results, which enables mapping brain cortical surfaces
in a computational efficient manner. To the best of our knowl-
edge, no studies have been based on spectral matching theory
directly for groupwise shape analysis. In this paper, we  employ
the spectral matching approach in a groupwise shape analysis
pipeline, designed for the population-wise comparison between
two groups of subcortical structures. In the proposed framework,
the mean curvature feature is used as feature information in the
spectral matching process in order to increase the surface match-
ing accuracy. This work presents a complete pipeline that allows the
detection, localization, and quantification of statistically significant
morphological differences in different subcortical brain structures
across various populations.

The main contribution of this paper is to propose a robust
and reliable spectral-based shape analysis framework using cur-
vature features for analyzing simple (e.g., putamen) and complex
(e.g., hippocampus) subcortical structures. Furthermore, in con-
trast to the above-mentioned methods, the suggested framework
can perform population-wise shape analysis in a computational
efficient fashion and integrates the spectral matching approach
with a groupwise shape analysis framework. This paper is the first
work that integrates spectral matching in to a groupwise subcor-
tical shape analysis pipeline and incorporates curvature features
to increase the surface matching accuracy (methodological contri-
bution). Experimental analysis on real clinical datasets show that
the extracted group differences are similar to the findings of other
clinical studies (clinical contribution). This work would represent
a significant forward for providing an alternative for future clinical
studies on sub-cortical brain structures.

The proposed shape analysis framework processes two groups
of segmented binary images from neuroimaging data (e.g., MRI)
as input. After converting the images into triangulated surface
meshes and applying the curvature flow smoothing process, the
surface correspondence is established between two  populations
using the spectral matching approach. The mean curvature fea-
tures are incorporated in the spectral matching process to improve
the accuracy of the resulting surface correspondence. Then, two
mean shapes for each group are created as the geometric mean
of all surfaces, and the distance map  between the two mean
shapes is computed. To verify for statistically significant differ-

ences between two  populations, a non-parametric permutation
testing scheme [22] is applied, followed an FDR correction [23] for
multiple comparisons. The evaluation of the proposed shape anal-
ysis framework is performed on three separate neuroanatomical
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atasets, and group differences across populations are detected by
oint-to-point correspondences. The output of these analyses is
ompared to a state-of-the-art method used for groupwise analysis
f anatomical shapes, namely SPHARM-PDM.

A preliminary version of the proposed method has been pre-
ented in [24], but was dependent of spherical representations of
nput shapes, integrated a point-based shape matching method,
nd with limited validation. The present paper provides the
etailed explanation of the methodology and offers the follow-

ng major contributions: (i) a curvature-based surface smoothing
s employed to smoothen extracted 3D surfaces, which has less
omputational requirements compared to the spherical-based
moothing method used in [24]; (ii) mean curvature feature was
dded into the spectral matching process to increase the surface
atching accuracy; (iii) a statistical permutation-based analysis is

pplied to detect the significant shape differences across popula-
ions; (iv) the evaluation of the proposed pipeline is performed on
n increased number of clinical datasets with more samples.

The remainder of this paper is organized as follows. In Section 2,
he methodology is presented, including the overview of the frame-
ork, the spectral surface matching approach, and the detailed
escription of the proposed population-wise shape analysis frame-
ork. The quantitative evaluation of the shape analysis method

s provided in Section 3. Section 4 presents a discussion on the
esults obtained from different neuroimaging datasets, followed by

 conclusion in Section 5.

. Materials and methods

.1. Framework overview

In this section, an overview of the proposed groupwise shape
nalysis pipeline is presented (Fig. 1). The inputs of the proposed
ramework are two sets of segmented binary maps of a particular
tructure of interest from medical images, obtained either manu-
lly or automatically. The output of the proposed pipeline is the
xtracted local and global shape differences between two  sets.

In the first step, the segmented binary maps are processed to
he same image orientation and isotropic voxel sizes, and then
onverted into 3D triangulated surfaces using the marching cube
lgorithm [25]. A smoothing process is subsequently applied on
ach surface in order to remove surface noise. Then, a reference sur-
ace is defined in an iterative process, and all triangulated surfaces
re aligned to this reference using a rigid registration algorithm.
n order to establish the point-to-point correspondences across all
urfaces, each mesh is matched to a selected reference surface using
he spectral matching algorithm. The vertices of all surfaces are
earranged to create the new reconstructed meshes with consis-
ent vertex ordering. This enables to create a mean shape of each
tudy group, and detect any morphological variations between two
roups. A distance map  between two mean shapes is computed to
apture the local group differences across populations. Moreover,
verage and maximum distances, as well as Dice volume overlap
re calculated to indicate the global group differences between two
tudy groups.

.2. Surface spectral matching

This section presents the theoretical framework of computing
he spectral matching between two surfaces in the spectral domain.
he matching between two surfaces S1 and S2 is conducted in a

wo-step process (Fig. 2a and b). In the first step, an initial map  is
alculated between the two surfaces [20]. This initial map  is then
sed in the second step to establish a smooth map  between the two
eshes [21].
aging and Graphics 52 (2016) 58–71

For each surface mesh Si(i ∈ {1, 2}) composed of the set of
vertices Vi and edges Ei (neighboring points in mesh faces), the
corresponding graph Gi = {Vi, Ei} is built. Then, the weighted adja-
cency matrix Wi is created based on a distance between connected
vertices and the graph Laplacian matrix Li [26] is defined as:

Li = Gi(Di − Wi) (1)

where, Di is a diagonal matrix with elements given by the degree
of vertices. Gi is another diagonal matrix, which could be considered
as Gi = D−1

i
or any other (positive valued) vertex weights [20,27].

The eigendecomposition of the Laplacian matrix Li computes the
eigenvalues and the associated eigenmodes. The spectrum (spectral
representation) S̃i is defined as the first k eigenmodes associated
with the non-zero eigenvalues.

Once the spectrums S̃1 and S̃2 are computed, the reordering
and sign adjustment [20] process are performed and the result-
ing spectrums are aligned using the Coherent Point Drift (CPD)
method [28]. Then, the correspondence map c between two sur-
faces S1 and S2 is established with a simple nearest-neighbor search
in the spectral domain. An overview of the procedure to find the
correspondence map  c is shown in Fig. 2a.

Given the initial map  c between two  surfaces, the final map  ϕ
(smooth match) is obtained according to Fig. 2b. In this procedure,
an association graph Ga = {V1,2, E1,2,c} composed of the set of ver-
tices and edges of S1 and S2 with the initial links c between the
two surface meshes is created. Then, the Laplacian matrix is cre-
ated as La = Ga(Da− Wa), where, Wa, Ga, and Da could be defined in
the similar way  as Eq. (1). The eigendecomposition of the Laplacian
matrix La produces a shared set of eigenvectors that enables a direct
mapping ϕ1 → 2 between two  meshes (see [21] for more details).

According to [20,27], considering higher node weights in the
graph Ga could improve the spectral matching precision between
two surfaces. This could be achieved by adding extra features on
node weights Ga [20,27]. In this paper, we  propose to use the mean
curvature [29] as an additional feature, due to its ability to rep-
resent the pointwise characteristic within a surface. In fact, the
exponential of the mean curvature is added to the node weights
in the Laplacian graph La to assign higher weights to each vertex. In
order to compute the mean curvature at each vertex v, the principal
curvatures Cmin(v) and Cmax(v) [29] are calculated as the minimum
and maximum curving degrees of the surface Si. Then, the mean
surface curvature C at each vertex v is defined as:

C(v) = 1
2

(Cmin(v) + Cmax(v)) (2)

Hence, the mean curvature of surface Si is computed as {C(1),
C(2), . . .,  C(n)}, where, n is the total number of vertices in the surface
Si. The additional information is incorporated in the weighting of
the nodes by computing the exponential of the mean curvature,
and defining the diagonal node weighting matrix Ga as:

Ga = D−1
a (exp(diag(C(1),  C(2), . . ., C(n))) (3)

The effect of the curvature feature on the matching accuracy will
be assessed in Section 3.

2.3. Groupwise shape analysis

2.3.1. Preprocessing and surface representation
Let {IA

i
}
i=1,...,NA

and {IB
i
}
i=1,...,NB

be two  separate sets of seg-

mented binary maps of a particular subcortical structure, with NA
and NB as the number of samples in each set, respectively. To extract

smooth 3D triangulated surface meshes from input binary maps,
the labeled datasets are first reoriented in the same image ori-
entation and resampled to isotropic voxel sizes of 1 × 1 × 1 mm3.
Then, the isosurfaces of the segmentation are extracted using the
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Fig. 1. Shape analysis pipeline based on spectral decomposition between two  groups of subjects ({IA
i
}
i=1,...,NA

and {IB
i
}
i=1,...,NB

, where, NA and NB are the number of samples in

each  set). Once 3D triangulated surfaces {MA
i }i=1,...,NA

and {MB
i }i=1,...,NB

are extracted, a mesh smoothing process is performed to create surfaces {SA
i
}
i=1,...,NA

and {SB
i
}
i=1,...,NB

.

Then,  the reference surface Sr is created and all surface meshes are aligned to the reference. The point-to-point matching between all surfaces is computed using the spectral
matching algorithm to generate the surfaces {S′Ai }i=1,...,NA

and {S′Bi }i=1,...,NB
. Finally, the mean surfaces S′A� and S′B� are created and local and global shape differences are

computed.

Fig. 2. Surface matching between two surfaces. (a) Initial matching of two  meshes. (b) Final correspondence mapping between two surfaces based on diffeomorphic spectral
matching approach.
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arching cube algorithm [25] to generate 3D surface meshes
enoted as {MA

i
}
i=1,...,NA

and {MB
i
}
i=1,...,NB

for the two  study groups.

The 3D triangulated surface meshes are then smoothed using
ean curvature flow algorithm [30], in order to create the

moothed meshes {SA
i
}
i=1,...,NA

and {SB
i
}
i=1,...,NB

. This smoothing

tep is an iterative process, which removes surface irregularities
nd improves the appearance of surfaces. Given a triangulated sur-
ace Mi and for each mesh vertex x, the mean curvature flow is
omputed using the following explicit vertex-updating scheme:

new ← xold + � H(xold) (4)

where, the step-size � is a small positive number. This parameter
hould be chosen small enough to keep the smoothing process sta-
le. Here, H(xold) is a discrete approximation of the mean curvature
ector at a mesh vertex x, which is defined as:

(xold) = 1
4∅

∑
i

(cot ˛i) + cos ˇi(Qi − xold) (5)

where, ∅ is the sum of the areas of the triangles surrounding x
nd {Qi} are the neighbors of the vertex xold. Here, ˛i and ˇi are
he two angles opposite to the edge Qixold. The process defined in
q. (4) is applied to every point of each triangulated surface Mi
teratively to further smooth the mesh. High iterations produce
moother mesh, but it might cause the loss of fine surface details.
emoving fine surface information could mislead a groupwise mor-
hological study in capturing small shape differences. In this paper,
he 3D surfaces are smoothed after five iterations. This is the least
moothing that is required to avoid failure in spectral matching
rocess. The parameter � is set to 1.0 as suggested in [30].

.3.2. Reference surface and alignment
As a prerequisite for any shape analysis study, objects have to be

ormalized with respect to a reference coordinate frame. In order to
efine the reference surface Sr, an arbitrary surface from the input
ataset can be chosen randomly, and used as a reference mesh.
lternatively, an average template could be created in an iterative
rocess and employed as a reference surface. In this study, these
wo different reference selection approaches are tested, in order to
valuate their impact on the performance of the proposed shape
nalysis framework.

The step-by-step procedure of the average reference computa-
ion is presented in Algorithm 1. This algorithm is based on the
pproach proposed by Guimond et al. [31], in which an average
mage was created by alternating between pairwise registrations
nd updates of the average image. The input to Algorithm 1 is the
nion of the two sets {SA

i
}
i=1,...,NA

and {SB
i
}
i=1,...,NB

, which is defined

s {Si}i=1,...,(NA+NB). Starting from an initial reference surface (e.g.,
r = S1), all other surfaces Si are rigidly aligned to the selected ref-
rence mesh. This rigid alignment is performed using the iterative
losest point (ICP) algorithm [32], which finds the optimal rigid
ransformation between each mesh and the reference Sr. In the
ext step, the point-to-point mapping ϕi → r between each surface Si
nd Sr is computed based on the spectral matching framework pre-
ented in Section 3. In the final step, the geometrical mean shape is
stimated from all matched structures, and used as an updated ref-
rence shape. This process terminates when no more changes in Sr

btained or the maximum number of iterations is achieved. Accord-

ng to preliminary experiments, the maximum iteration value is set
s 10.

Once the reference surface Sr is defined, using either random
election or average surface creation, all surfaces Si are registered
igidly to Sr. This global surface alignment between each surface Si
nd reference surface Sr consists of rigid transformations.
aging and Graphics 52 (2016) 58–71

Algorithm 1 (:).  Average template

Input: N = (NA + NB) triangulated surfaces Si , and an initial reference surface (e.g.,
Sr = S1)
repeat

1. Align all surfaces Si–Sr using rigid ICP
2. Find point-to-point mapping ϕi → r between each surface Si and Sr

3. Update reference Sr = 1
N

∑N

i=1
(Si
•ϕi → r )

until No more changes in Sr obtained or the maximum number of iterations is
reached

Output: average template Sr

2.3.3. Groupwise shape analysis
Given two  sets of aligned surface meshes {SA

i
}
i=1,...,NA

and

{SB
i
}
i=1,...,NB

, the point-to-point correspondences between each sur-

face and the reference Sr is established using the spectral matching
approach presented in Section 2.2. Then, the mesh vertices of all
surfaces are rearranged to have the consistent ordering across the
populations. The resulting reconstructed meshes are denoted as
{S′Ai }i=1,...,NA

and {S′Bi }i=1,...,NB
for the two  study groups.

The mean shapes S′A� and S′B� are computed by averaging the 3D
coordinates of corresponding surface points across each group:

S′A� =
1

NA

NA∑
i=1

S′Ai , where S′Ai = S′Ai
•ϕi→r

S′B� =
1

NB

NB∑
i=1

S′Bi , where S′Bi = S′Bi
•ϕi→r

(6)

with ϕi → r the mapping from instance Si to reference Sr. The
local shape differences between groups can be detected by com-
puting a distance map  between two mean shapes S′A� and S′B�. This
will provide the visual assessment of the location and magnitude
of the differences between groups A and B. We  use a standard,
non-parametric Hotelling T2 test [22] to check for significant group
differences, with the null hypothesis that the two groups are drawn
from the same distribution. The resulting raw p-values are then cor-
rected for multiple comparisons by the false discovery rate (FDR)
approach [33].

The performance of the method is further evaluated by signif-
icant vertex ratio metric, which is estimated by computing the
ratio of the number of statistically significant vertices over the total
number of surface points of the mesh [8].

The global shape difference between two  groups is computed by
averaging the distances between the mean surfaces, which results
in the mean absolute distance (MAD). The mean absolute distance
(MAD) attempts to estimate the average distance of surfaces S′A�
and S′B� by projecting the vertices of the first surface on the second
one [34]. Moreover, the Hausdorff distance [35] is calculated as the
maximum distance between two  mean shapes. This measure has
high sensitivity to positional differences between two surfaces. In
addition, Dice coefficient [36] is reported as a global measure, which
indicates the amount of volume overlap between two mean shapes.
The 3D Dice coefficient metric between two  surfaces S′A� and S′B� is
defined as the intersection divided by the mean volume of the two
Dice(S′A�, S′B�) = |S � ∩ S �|( |S′A�|+|S′B�|
2

) (7)

For identical surfaces, Dice coefficient achieves its maximum
value of 1, with decreasing values indicating less volume overlap.
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. Results

In this section, we will first evaluate the accuracy of the proposed
ethod under different configurations and initial conditions. Then,

he performance of the shape analysis approach will be evaluated
n different subcortical structures (hippocampus and putamen)
rom various neuroimaging datasets. Finally, the proposed method-
logy is applied on a clinical application of Alzheimer’s disease.
his disorder is one of the most widespread diseases in the elderly
opulation, which gradually damages the brain regions including
ippocampus. Here, we use our framework to quantify subcortical
orphological changes in patients diagnosed with Alzheimer’s and
ild cognitive impairment.

.1. Datasets

For accuracy and performance evaluation, two separate neu-
oimaging datasets were used. The first dataset includes putamen
tructures (PT dataset) and the second dataset consists of hip-
ocampus shapes (HPC dataset).

The PT dataset includes 36 T1-weighted MR  images from healthy
ontrols. Subjects were recruited from a pediatric brain study
mean age 11, 24 males). Acquisition was performed on a 3.0 T MRI
ystem (Philips Acheiva or Siemens) with an in-plane resolution of
56 × 256, slice thickness of 1 mm,  and voxel size ranging between

 × 0.9677 × 0.9677 mm3 and 1 × 1 × 1 mm3. In this dataset, the left
utamen was segmented using FSL-FIRST automatic segmentation
oolbox [37] and corrected by an experienced user. The segmented
utamen structures in the dataset have been randomly separated

nto two groups to create two different groups A and B.
The HPC dataset contains 42 hippocampus shapes obtained

rom schizophrenic patients and matched healthy controls
mean age 32, all male gender) [2]. The hippocampi were

anually segmented from IR-Prepped SPGR (Inversion Recovery-
repared Spoiled Gradient Echo) data segmented originally at
.9375 × 0.9375 × 1.55 mm3 resolution. In the HPC dataset, all cases
ere randomized and group association was performed to create

wo different groups (group A and group B). The SPHARM-PDM
oolbox developers prepared this dataset at the UNC Neuro Image
nalysis Laboratory (see www.nitrc.org/projects/spharm-pdm), as
art of the public UNC Shape Tool distribution for shape analysis
tudies. Since the HPC dataset was provided by the SPHARM-PDM
oftware developers, it is relevant to assess the performance of the
roposed shape analysis method compared to the SPHARM-PDM
pproach on this dataset.

In order to validate the proposed framework on clinical appli-
ations, a popular brain imaging dataset in Alzheimer’s disease,
amely the Alzheimer’s disease Neuroimaging Initiative (ADNI)
as used. Capturing the structural morphometry have always been

 target of interest in Alzheimer’s disease studies, since evaluating
he structural changes could provide a clue for early detection of
he pathology. The ADNI database (adni.loni.usc.edu) was launched
n 2003 as a public-private partnership, led by Principal Investiga-
or Michael W.  Weiner, MD.  The primary goal of ADNI has been
o test whether serial magnetic resonance imaging (MRI), positron
mission tomography (PET), other biological markers, and clinical
nd neuropsychological assessment can be combined to measure
he progression of mild cognitive impairment (MCI) and early
lzheimer’s disease (AD). For up-to-date information, see www.
dni-info.org. The database of ADNI consists of cross-sectional and
ongitudinal data including 1.5 or 3.0 T structural MR  images. The
etailed description of the MRI  protocol of ADNI is provided in

38]. For this study, a subset of screening 1.5 T MR  images is used
ncluding 47 normal controls (NC), 47 AD patients, and 47 indi-
iduals with MCI. The three groups are matched approximately
y age and gender (NC with mean age of 76.7 ± 5.4, 23 males; AD
aging and Graphics 52 (2016) 58–71 63

with mean age of 77.4 ± 7.2, 21 males; and MCI  with mean age
of 75.0 ± 6.9, 28 males). For the purpose of reproducibility, the
list of the study participants’ identifiers is provided in the Sup-
plementary material. Contributors of ADNI performed additional
post-processing steps on MR  images to correct certain image arti-
facts and to enhance standardization across sites and platforms.
The post-processing steps include gradient non-linearity correction
[39], intensity inhomogeneity correction [38], bias field correction
[40], and phantom-based geometrical scaling to remove calibration
errors [41]. Here, we use these processed images. Left and right
hippocampi were segmented using FSL-FIRST automatic segmen-
tation software package [37] and visual inspection was performed
on the output binary masks to ensure the quality of the automatic
segmentation.

3.2. Validation methodology

The proposed framework was  first tested under different config-
urations using both PT and HPC datasets. The minimum number of
spectral coordinates, which is required for having a stable output,
was determined. Then, the impact of curvature features and differ-
ent reference surfaces on the accuracy of the proposed framework
was tested. In each case, mean absolute distance (MAD)  measure,
along with Hausdorff distance [35] and Dice coefficient [36] was
computed to assess the group differences between mean shape A
and B. To evaluate the accuracy of the proposed framework, the per-
formance of the spectral approach under different configurations
was compared with a state-of-the-art method used for group-
wise analysis of anatomical shapes, namely SPHARM-PDM [14].
The maximum spherical harmonics degree of the SPHARM-PDM
method is set to 15 for putamen structures and 12 for hippocampus
shapes.

Once the configuration of the proposed framework was  com-
pleted, the proposed framework was validated on PT and HPC
subcortical datasets. In these experiments, both local and global
group differences were analyzed and compared to SPHARM-PDM.
Finally, the proposed methodology was  applied for quantifying hip-
pocampal morphological variations in Alzheimer’s disease (AD).
Hippocampal morphometry have been increasingly used in the
AD research in the perspective of early detection of the pathol-
ogy and future treatments. Here, the proposed framework was
applied for detecting the morphological changes in individuals with
Alzheimer’s disease, in order to verify the accuracy of the spec-
tral based shape analysis approach in the statistical studies of this
clinical application.

3.3. Framework configurations

3.3.1. Number of spectral coordinates
The number of eigenvectors used to model surfaces in the spec-

tral domain has an impact on the accuracy of the established surface
correspondences in the spectral matching process. In this experi-
ment, we examine the effect of the number of eigenvectors used
as spectral coordinates on the groupwise shape analysis output.
The eigendecomposition process is performed twice in the spec-
tral matching approach: once for generating the initial map  c, and
once for establishing the final map  ϕ (see Section 2.2). As men-
tioned in Section 2.2, the first k eigenvectors associated with the
smaller non-zero eigenvalues are extracted as spectral coordinates.
The rationale for this choice is that the eigenvectors associated with
the lower non-zero eigenvalues represent coarse intrinsic geomet-

ric properties of a shape (i.e., depicting the global shape model).
However, the question remains how many eigenvectors is enough
to represent the surfaces in the initial step, as well as the association
graph Ga in the final process.

http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.adni-info.org/
http://www.adni-info.org/
http://www.adni-info.org/
http://www.adni-info.org/
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ig. 3. Performance of the shape analysis framework under varying number of eige
ifferent number of eigenvectors in creating the initial map. Right: average mean ab
he  framework result becomes stable with three eigenvectors for PT dataset and fo

Here, we apply our shape analysis framework on both PT and
PC datasets with varying number of eigenvectors, and evaluate

he framework output by measuring the mean absolute distance
etween two groups A and B. In this experiment, 10 separate study
roups A and B are created from each dataset, and the average mean
bsolute distance is reported under varying number of eigenvectors
Fig. 3). This experiment demonstrates that the framework output
ecomes stable at k = 3 for PT dataset and k = 4 for HPC dataset,
nd gains no further significant changes beyond these values. The
ifference in the sufficient numbers of eigenvectors between two
atasets is due to the higher complexity of hippocampus struc-
ures compared to putamen surfaces. Thus, more eigenvectors are
equired to model hippocampus surfaces. Therefore, we consider
initial = kfinal = 3 for PT, and kinitial = kfinal = 4 for HPC dataset as the
umber of eigenvectors for the remainder of the experiments.

.3.2. Incorporating curvature feature
In this section, the impact of integrating additional features on

he performance of the spectral groupwise approach is first evalu-
ted to understand the value of surface curvature in the matching
rocess. Then, the robustness of the subcortical surface matching
rocess, both with and without additional features, is assessed by
pplying synthetic deformations to the surfaces.

As mentioned previously in Section 2.2, one can include addi-
ional information in the spectral matching process, by establishing

 meaningful node weight for each vertex. Here, we compute the
xponential of the mean curvature at each vertex (Eq. (3)), and use

he combination of curvature and spectral coordinates for surface

atching.
In order to evaluate the performance improvement after incor-

orating additional information, 10 separate subsets are created

able 1
hape differences between mean shape A and mean shape B with and without incorporat
ignificantly different results compared to the SPHARM-PDM.

Spectral method 

No additional features 

Dice coefficient 0.93 ± 0.02 p = 0.02 

Hausd. Dist. (mm)  2.08 ± 0.90 p < 0.01 

MAD  (mm)  0.37 ± 0.14 p = 0.03 

he average Dice coefficient, Hausdorff distance, and MAD  are reported on 10 subsets 

ramework are also shown. Spectral method without additional features produces sign
ntegrated with curvature features generates similar results to the spherical method.
ors used as spectral coordinates. Left: average mean absolute distance obtained for
e distance computed for different number of eigenvectors in creating the final map.
envectors for HPC dataset.

from 36 putamen structures of PT dataset. Each subset includes
10 different surfaces, i.e., five surfaces are considered as the mem-
ber of the study group A and the rest are marked as group B. The
proposed shape analysis framework is then applied on each subset
with and without curvature features. In addition, the accuracy of
the two implementation of the shape analysis framework is com-
pared with the state-of-the-art groupwise shape analysis method,
SPHARM-PDM [14]. Table 1 provides the average Dice coefficient,
Hausdorff distance, and mean absolute distance in 10 separate sub-
sets. Comparing our framework to the SPHARM-PDM approach
revealed that the groupwise shape analysis is more accurate using
curvature features (MAD = 0.25 ± 0.99 mm rather than using the
spectral coordinate alone (MAD = 0.37 ± 0.14 mm).

We then tested the proposed shape analysis pipeline on the
HPC dataset with and without curvature features, in order to
investigate the influence of incorporating additional features.
The extracted group differences show that the groupwise shape
analysis integrated with curvature features (Dice = 0.93, Hausd.
Dist. = 1.16 mm,  MAD  = 0.25 ± 0.23 mm)  is more accurate rather
than using the spectral coordinate alone (Dice = 0.70, Hausd.
Dist. = 2.56 mm,  MAD  = 0.95 ± 0.57 mm).  Hence, we can conclude
that adding mean curvature has a significant positive effect on
the framework’s precision, when matching the hippocampus struc-
tures.

Now, we evaluate the accuracy of the subcortical surface match-
ing process with and without additional features by testing for
robustness to synthetic deformations on the PT dataset. To achieve

this, we  synthetically deform putamen surfaces, and match each
putamen structure to its deformed instance. Since the vertex index-
ing remains the same, we are able to establish a ground truth
for correspondence maps. Thus, we  measure the average distance

ing curvature features. The Spectral method with out additional information shows

SPHARM-PDM

With additional features

0.94 ± 0.02 p = 0.03 0.95 ± 0.02
1.15 ± 0.47 p = 0.18 1.04 ± 0.34
0.25 ± 0.09 p = 0.64 0.25 ± 0.09

of PT dataset. p-values of t-test between the spectral method and SPHARM-PDM
ificantly different results compared to SPHARM-PDM, while spectral framework
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Fig. 4. Testing the robustness of the spectral matching approach with respect to added deformations. Left: deformation in the z direction, simulating surface compression;
Right: radial distortion. The average error at each deformation is shown for two separate im
additional features (curvature). This shows that using additional features improves the pr

Table 2
Shape differences between mean shape A and mean shape B.

Different initial references (n = 36) Average template

Dice coefficient 0.97 ± 0.001 0.97
Hausd. Dist. (mm)  0.83 ± 0.12 0.83
MAD  (mm)  0.14 ± 0.005 0.14 ± 0.12

The average Dice coefficient, Hausdorff distance, and MAD  are reported for 36 sepa-
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ate runs by choosing 36 different initial references. In addition, Dice coefficient,
ausdorff distance, and MAD  are listed for a shape analysis test using average

emplate as a reference surface.

etween the locations of corresponding points found with spectral
atching and the real locations of corresponding points defined by

he ground truth.
Here, each vertex x = (X, Y, Z) of the surface Si is deformed by

pplying the transformation Z′ = (1 + ˛)Z. This deformation provides
urface compression with out changing the topology of the mesh.
ll 36 putamen surfaces are deformed by varying  ̨ in the range of

0,0.4]. Fig. 4 left shows the accuracy of the surface matching with
nd without additional curvature features. At maximal deformation

 ̨ = 0.4), the spectral matching method achieves an average error of
.47 ± 0.10 mm with curvature features, and 2.65 ± 0.87 mm with-
ut extra information. In the next experiment, a radial distortion
f X ′ = X + ˇ(X2 + Y2)

2
/ max((X2 + Y2)

2
) is applied to each vertex

 = (X, Y, Z) of all 36 putamen surfaces. This deformation simulates a
rastic change in a surface shape, while preserving the mesh topol-
gy. The controlling parameter  ̌ is varied in the range of [0,15] and
he surface matching accuracy is assessed as shown in Fig. 4 right.
hese experiments show the performance of the point-to-point
pectral matching under synthetic deformation and indicate that
sing additional curvature features enhances the surface matching
ccuracy.

.3.3. Reference surface selection
In this section, we verify that the proposed shape analysis

pproach is unbiased to the choice of the reference surface within
 study group. To this end, an arbitrary initial reference is selected
s one of the surfaces in the PT dataset. Then, all surfaces are
atched to this reference surface and shape analysis is con-
ucted to estimate group differences. We  performed 36 separate
ests by iteratively selecting a new putamen surface as reference
hape and computing the average mean distance in multiple runs
see Table 2). The average mean difference for the whole dataset
plementations of the spectral approach, one with and another without incorporating
ecision of the surface matching.

is 0.14 ± 0.005 mm.  In order to further examine the impact of
reference surface on the shape analysis accuracy, in the next exper-
iment, an average template is created in an iterative process, as
described in Section 4.2. This template is applied as a reference
surface in a shape analysis study on PT dataset, yielding a MAD
of 0.14 ± 0.12 mm (see Table 2). These results suggest that the
method produces near identical shape differences even by vary-
ing the choice of the initial reference. Therefore, if reducing the
computational time is important in a study, it is possible to choose
one of the input surfaces as a reference surface, instead of creating
an average template.

3.4. Accuracy on subcortical shapes

In this section, we validate the performance of our proposed
methodology on localizing structural morphologies across popu-
lations. The spectral based shape analysis framework is applied
on both PT and HPC datasets to detect shape differences between
groups A and B in each dataset. The performance of our spectral-
based framework is compared with the state-of-the-art groupwise
shape analysis method, SPHARM-PDM [14].

For putamen shapes, the local group differences produced by
both methods are illustrated in Fig. 5, which shows that both
methods capture similar shape differences. However, no signif-
icant difference is found after applying statistical analysis (see
vertex ratio in Table 3). Since PT dataset includes healthy control
subjects, detecting no significant differences between two  groups
was expected. The Dice coefficients between A and B (Dice = 0.97)
and the mean absolute distances (MAD = 0.14 ± 0.11 mm in spec-
tral framework, and MAD  = 0.14 ± 0.12 mm in SPHARM-PDM) were
the same for both methods (see Table 3). Also, the Hausdorff dis-
tances were 0.87 mm and 0.74 mm for spectral-based method and
SPHARM-PDM, respectively. In order to further verify the accuracy
of the proposed framework in comparing two  groups of healthy
subjects, we  perform another experiment, in which the proposed
pipeline is applied on different randomly separated datasets (i.e.,
five study group pairs, where each group contain 18 random puta-
men structures). The significant vertex ratio is computed on all five

separate tests, which results in an average vertex ratio of zero. This
experiment shows that the proposed method is working well by
not detecting any significant shape variations between two  healthy
groups.
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Table 3
Evaluation of shape differences between mean shape A and mean shape B obtained with spectral method and SPHARM-PDM for the two datasets (HPC and PT).

Hippocampus (HPC) Putamen (PT)

Spectral method SPHARM-PDM Spectral method SPHARM-PDM

Dice coefficient 0.93 0.92 0.97 0.97
Hausd. Dist. (mm)  1.16 1.12 0.87 0.74
MAD  (mm)  0.25 ± 0.23 0.28 ± 0.23 0.14 ± 0.11 0.14 ± 0.12
Vertex ratio 0.16 0.23 0 0

R t.), the mean absolute distance (MAD), and significant vertex ratio.

d
p
m
i
r
a
t
o
a
b
a
g
t
M
D
t
u
p

a
t
i
2
p
u
s
d
a

3

d
n
t
[
t
t
p
t
s
p
s
p
t
s
r
s
T
(

n
b

Fig. 5. Putamen shape analysis. Distance maps were computed using the proposed
esults are compared using the Dice coefficient, the Hausdorff distance (Hausd. Dis

For hippocampus shapes, the location and magnitude of group
ifferences is consistent between two methods (see Fig. 6). The
-values maps show a strong significance in tail region for both
ethods, while the head region does not show the same signif-

cant difference. On one hand, the subjects in HPC dataset are
andomly divided into two groups A and B, thus we are not
ble to compare the pattern of hippocampal deformation with
he one reported in previous studies on schizophrenia. On the
ther hand, inconsistencies between groupwise shape analysis
pproaches have been reported in the literature [8,42]. This might
e due to the use of different strategies in extracting surface meshes
nd establishing surface correspondences between methods. The
lobal shape differences show considerable agreement between
he spectral framework (Dice = 0.93, Hausd. Dist. = 1.16 mm,  and

AD  = 0.25 ± 0.23 mm)  and SPHARM-PDM (Dice = 0.92, Hausd.
ist. = 1.12 mm,  and MAD  = 0.28 ± 0.23 mm)  (see Table 3). In general

he two methods are consistent in global group difference meas-
res and distance maps, although they show a small difference in
-value maps.

The computational time of both methods was measured on
 3.2 GHz Core i5 computer with 32 GB of RAM. The compu-
ational cost of spectral method (PT: 5 min  and HPC: 54 min)
s significantly lower than SPHARM-PDM (PT: 14 min  and HPC:
42 min  (or 4 h)), especially for more complex shapes, like the hip-
ocampus. This significant speed advantage was achieved without
sing parallel programing. These results suggest that the proposed
pectral framework not only produces similar groupwise shape
ifferences as the SPHARM-PDM, but it also has a clear speed
dvantage.

.5. Application to Alzheimer’s disease

Alzheimer’s disease (AD) [43] is the most common form of
ementia in the elderly population. There is evidence that the
europathological changes in AD damage the hippocampus struc-
ure, which is a brain region crucial to various cognitive functions
43,44]. Mild cognitive impairment (MCI) [45] is considered as a
ransition state between normal aging and dementia. The cogni-
ive deficits in MCI  patients are not as severe as those seen in
eople with AD. However, MCI  has a 10-fold risk of a transition
o early Alzheimer’s disease [45]. According to neuroanatomical
tudies, MCI  patients have shown hippocampal deformation com-
ared with healthy elderly people [43,46]. Here, our groupwise
hape analysis is applied on the ADNI dataset including 47 AD
atients, 47 individuals with MCI, and 47 matched normal con-
rols (NC). The shape variation of left and right hippocampi was
tudied between AD and NC, as well as MCI  and NC. To cor-
ect for head size differences across populations, each hippocampi
urface was scaled by the individual’s total intracranial volume.
he total intracranial volumes were collected from ADNI database

adni.loni.usc.edu).

Fig. 7(a) and (b) shows shape variations between AD and
ormal controls for the left and right hippocampi produced
y the spectral and SPHARM-PDM methods. In both methods,
spectral method on the left and SPHARM-PDM on the right. The resulting distance
maps are shown in lateral and medial views. Statistical analysis showed that none
of  the captured group differences were significant.

hippocampal surfaces of AD patients show inward local deformity
mainly in lateral zones (CA1) and inferior-medial zones (subicu-
lum), which is consistent with findings from previous studies
[44,46,47]. Table 4 shows the global shape differences between
the spectral framework (Left hippocampi: MAD  = 0.58 ± 0.26 mm
and Right hippocampi: MAD  = 0.55 ± 0.29 mm)  and SPHARM-PDM
(Left hippocampi: MAD  = 0.52 ± 0.28 mm and Right hippocampi:
MAD  = 0.55 ± 0.28 mm).  The p-values maps are almost similar
between the two  methods, however, in general both methods limit
the shape changes to CA1 and subiculum. In addition, the ratio of
the statistically significant vertices over the total number of surface
points shows agreement between both methods.

The result of the same comparison performed between MCI
patients and normal controls is shown in Fig. 8 and Table 5. The dis-
tance maps produced by both methods are almost similar, while the
p-value maps do not agree. Indeed, the spectral matching approach
found significant inward variation in CA1 and subiculum regions
of left and right hippocampi, however, no significant region was
captured by SPHARM-PDM. The amount of vertex ratio is interest-
ingly different between spectral approach (Left hippocampi = 0.17
and Right hippocampi = 0.19) and SPHARM-PDM (Left hippocampi
and Right hippocampi = 0). However, since there is no ground truth
for the clinical datasets and the previous neuroanatomical stud-
ies on these pathologies used different input samples, it is unclear
which method can be considered as the gold-standard. However,
both methods provided almost the same global regional differences
(Dice, Hausd. Dist., and MAD) and similar distance maps. In addi-

tion both methods are in line with the previous neuroanatomical
studies [46,48], which reported capturing weaker group differences
between MCI  and normal individuals rather than AD and normal
controls.
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Fig. 6. Hippocampus shape analysis. Distance maps are computed using the spectral method and the SPHARM-PDM. The resulting distance maps are shown in lateral and
medial  views. The respective FDR-corrected p-value maps are shown below distance maps.

Table 4
Evaluation of shape differences between AD and control groups obtained with spectral method and SPHARM-PDM for the left and right hippocampus.

Left hippocampus Right hippocampus

Spectral method SPHARM-PDM Spectral method SPHARM-PDM

Dice coefficient 0.85 0.86 0.86 0.86
Hausd. Dist. (mm)  1.49 1.50 1.39 1.50
MAD  (mm)  0.58 ± 0.26 0.55 ± 0.28 0.52 ± 0.29 0.55 ± 0.28
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Vertex  ratio 0.45 0.4

esults are compared using the Dice coefficient, the Hausdorff distance (Hausd. Dis

. Discussion

In this work, a new framework for groupwise shape analysis
f subcortical structures, such as the hippocampus or putamen,
s proposed in order to detect regional morphological alterations

f subcortical structures from patients with neurological con-
itions, such as schizophrenia and Alzheimer’s. The proposed
ethod extracts the 3D meshes from input binary maps using the

able 5
valuation of shape differences between MCI  and control groups obtained with spectral m

Left hippocampus 

Spectral method SPHARM

Dice coefficient 0.95 0.95 

Hausd. Dist. (mm)  1.1 1.0 

MAD  (mm)  0.20 ± 0.18 0.21 ± 0.
Vertex  ratio 0.17 0 

esults are compared using the Dice coefficient, the Hausdorff distance (Hausd. Dist.), the
0.46 0.45

 mean absolute distance (MAD), and significant vertex ratio.

Marching cubes algorithm, which is one of the most popular 3D
modeling algorithms in medical visualization. Since this approach
was not able to generate high quality smoothed surfaces out of
subcortical structures, the mean curvature flow algorithm was
employed to smoothen the 3D surface meshes. Mean curvature

flow smoothes a surface mesh by moving the surface nodes along
the normal direction and achieves the best smoothing result with
respect to the geometric information of the surface. In the next step,

ethod and SPHARM-PDM for the left and right hippocampus.

Right hippocampus

-PDM Spectral method SPHARM-PDM

0.95 0.95
1.17 1.64

21 0.20 ± 0.20 0.24 ± 0.24
0.19 0

 mean absolute distance (MAD), and significant vertex ratio.
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ig. 7. Left and right hippocampal shape deformations in AD patients compared wit
-values maps using spectral method (a) and SPHARM-PDM (b).

ll surfaces are rigidly registered to a reference surface and mean
urvature is computed at each node of all surfaces. Once all shapes
re globally aligned, the spectral matching approach as proposed
n [20,21] is applied in order to match each surface to the reference

esh. The proposed pipeline then creates two mean shapes as the
eometric mean of all surfaces in each study group and a standard
on-parametric permutation test is applied at every vertex point
o detect significant local group differences. The framework termi-
ates by applying various metrics in order to assess local and global
hape differences across populations.

As suggested by the authors of the spectral matching approach
20,21], adding extra features, such as texture information, anatom-
cal information, or landmark positions could lead to a better

urface correspondence. For instance, in the case of matching cor-
ical surfaces, the technique in [21] proposed to use sulcal depth
s additional feature, which provides information about the depth
f the cerebral cortex. Therefore, the choice of additional features
al controls. Distance maps are computed along with the respective FDR-corrected

and assessing the effect of incorporating them into the matching
process depends completely on the type of structures under study.
In this work, we included the exponential of the mean curvature
features in the node weights of the Laplacian matrix (Eq. (2)), since
it intrinsically describes the local shape information of a 3D sur-
face, without being too application specific. Experimental analysis
in Section 3.3.2 revealed that embedding this additional feature sig-
nificantly improves the matching accuracy to a greater extent. For
instance, adding mean curvature has a significant positive effect on
point correspondence performance, when matching hippocampus
shapes. However, this feature is not crucial for analyzing putamen
shapes. Hence, one might conclude that incorporating curvature
features has more relevance to evaluate complex structures.
In order to verify the performance of the proposed approach, the
robustness of the shape analysis framework was  evaluated using
two reference selection approaches. According to these experi-
ments, the use of an average reference shape gave slightly better
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Fig. 8. Left and right hippocampal shape deformations in MCI  patients compared with normal controls. Distance maps are computed along with the respective FDR-corrected
p
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l
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f
h
m
c

-values maps using spectral method (a) and SPHARM-PDM (b).

esults than using a single reference shape. However, the differ-
nce between average and randomly selected initial shape was  not
oticeable, indicating that the proposed framework is not signifi-
antly sensitive to this initial choice. Therefore, since computing an
verage reference is time-consuming, it is preferable to choose an
rbitrary reference surface from input surfaces if the computational
ime is a critical issue in a particular study.

A series of experiments were conducted in this study to ana-
yze the performance of the proposed groupwise shape analysis
pproach. According to these experiments, the proposed group
nalysis framework and the state-of-the-art method, the SPHARM-
DM have considerable agreement in most of the cases. However,

rom a computational perspective, the proposed spectral method
as a clear speed advantage over the spherical harmonics based
ethod. This speed advantage becomes more noticeable for more

omplex structures, such as for example analyzing a complex shape
like the hippocampus, with a fourfold decrease in time compared
to SPHARM-PDM. According to the experiments, the total run-
ning time of SPHARM-PDM could be reduced, by employing lower
number of spherical harmonic coefficients. For instance, groupwise
shape analysis on HPC dataset took on average 5.5 h, when the
structures were represented by 15 spherical coefficients, compared
to 4 h when 12 spherical coefficients were used. The problem is that
the sufficient number of spherical coefficients must be provided in
order to obtain an appropriate representation of a structure. In this
paper, the number of spherical harmonic descriptions has been cho-
sen in the range of 12–15, according to the SPHARM-PDM software
manual (www.nitrc.org/projects/spharm-pdm) [14].
Aside from the consistency in the group distance maps produced
by the two shape analysis methods, spectral and SPHARM-PDM
methods, the generated p-value maps did not agree in some exper-
iments. This type of inconsistency, which have been previously

http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
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eported in the literature [8,42], mainly comes from the spe-
ific surface representation used by each method. A method like
PHARM-PDM generates smooth surfaces based on spherical har-
onics, while our approach keeps the original meshes and applies

nly a slight smoothing process to remove surface irregularities.
evere smoothing can cause a method to miss small surface defor-
ations in a groupwise morphological study. This might be the

eason why the SPHARM-PDM does not capture any region of group
ifferences in the comparison between MCI  and healthy controls.
nother reason for inconsistency in capturing significant group-
ise variations is the choice of surface correspondences across
opulations. This influence seems to be higher in studies with lower
umber of samples, especially when there is large shape variabil-

ty due to the high age range and gender differences. Therefore,
sing relatively higher number of samples in the input populations,
ould reduce the inconsistency in groupwise morphological frame-
orks. Since there is no ground truth for the clinical datasets, it is
ot clear which one of the two methods (spectral group analysis or
PHARM-PDM) are more accurate. Nonetheless, one should keep in
ind that both methods produce similar distance maps and close

lobal group differences, which shows that the two methods are
onsistent in general. In addition, both methods did not detect any
ignificant shape variations when the two groups of controls were
sed as inputs. This indicates that the two methods are working
ell.

As an application, the proposed framework was applied on
he ADNI dataset including AD, MCI, and normal controls. In pre-
ious neuroimaging studies, it has been reported that subjects
ith AD and MCI  could be discriminated from healthy subjects by

xamining the pattern of hippocampal surface variations [43–48].
ippocampal atrophy begins in lateral zones (CA1) and spreads to

nferior-medial zones (subiculum) [48]. The superior zones includ-
ng CA2–4 and Gyrus Dentatus are preserved [48]. We  validated our
cheme through a statistical shape analysis on hippocampal surface
eformity in ADNI dataset, by demonstrating a consistency with
revious clinical findings. These results suggest that the proposed
pectral-based shape analysis framework could allow for quantita-
ive assessment of variations in subcortical structures, associated
ith a neurological disorder, which leads to the better understand-

ng of a pathology.
An important issue in any surface-based shape analysis

pproach is the reliance on the segmentation accuracy. This step
as a crucial impact on a shape analysis pipeline, since its quality
ould affect the accuracy of the detected shape variations. The seg-
entation process becomes more challenging, when we attempt

o capture slight group differences across a population, since small
hape variations have greater chances of being lost in a segmenta-
ion process. In this paper, we used an openly-available automatic
egmentation tool (FSL-FIRST [37]) for segmenting structures in PT
nd ADNI datasets. However, in order to ensure about the quality
f the structural delineations, we asked a trained expert user to
orrect the segmentations. These corrected labels were then used
s an input in the proposed shape analysis framework. As future
ork, it would be helpful to incorporate a more accurate segmen-

ation process in the pipeline, which is able to correctly define the
oundary of each structure and extract smoothed meshes directly
rom MR  images.

In summary, the proposed groupwise morphological framework
ith its methods for surface extraction, smoothing, matching, and

tatistical analysis is novel, and produced comparable results to the
tate-of-the-art algorithm, while being faster. This paper was the
rst work that integrated curvature-based spectral matching in to
 groupwise shape analysis pipeline. Experimental analysis on real
linical dataset even showed that the extracted group differences
ere in line with the findings in other clinical studies. This paper
roposed an alternative to the current state-of-the-art groupwise
aging and Graphics 52 (2016) 58–71

shape analysis framework and provides a new pipeline for future
clinical studies.

5. Conclusion

In this paper, a new groupwise shape analysis framework is pro-
posed for subcortical surfaces based on spectral matching theory.
This spectral matching process is able to establish reliable corre-
spondences between different surface meshes and may  help in
the investigation of groupwise structural differences between two
study groups. From a clinical perspective, the proposed method
can contribute to the diagnosis of subcortical shape variations in
different pathologies, like Alzheimer’s disease.

One important future direction of the proposed framework is to
extend the available approach for diagnosis of different pathologies,
which cause morphological variations in subcortical structures.
This could be done by modeling the existing shape variations in
patients using a classification approach, and try to distinguish the
pathological subjects from normal individuals. Such a framework
would become a complementary technique to other available diag-
nosis approaches, which are currently used for identifying different
diseases. However, this kind of diagnosis framework requires incor-
porating larger datasets to achieve high and stable classification
accuracy.
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