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Apprentissage géométrique de données surfaciques du cerveau
Karthik GOPINATH

RESUME

Les corps cellulaires de neurones résident principalement dans le cortex cérébral. L'étude de
cette fine surface, extrement pliée, est essentielle a la compréhension du fonctionnement du
cerveau. Cependant, I’analyse des données surfaciques reste difficile di a la grande variabilité de
la géométrie corticale. Ignorer cette géométrie complexe pose un défi non-résolu pour I’analyse
statistique des données surfacique. La plupart des méthodes conventionnelles reposent sur
un processus heuristique a plusieurs étapes, telles que les simplifications géométriques et les
inflations sphériques, nécessitant un temps de calcul considérable. L'objectif principal de cette
these est de développer des cadriciels géométriques afin d’apprendre directement des données
sur des surfaces corticales. Plus précisément, nous proposons d’abord un réseau de convolution
de graphes spectraux pour effectuer une analyse de surface avec une application a la parcellation
corticale. Ensuite, nous présentons une technique de regroupement adaptatif (adaptive pooling)
pour des taches de classification et de régression de données sur graphes dans le but de faciliter
un apprentissage hiérarchique de données sur des surfaces multiples. Enfin, nous illustrons une
approche conjointe de reconstruction et de segmentation de surfaces corticales afin d’exploiter
les données de surfaces directement a partir d’un volume IRM. Cette these a donné lieu a trois
publications dans des journaux et a cinq publications dans des conférences évaluées par les pairs.
Les contributions individuelles de cette thése sont présentées ci-dessous.

Dans notre premier objectif, nous présentons une nouvelle approche pour 1’apprentissage et
I’exploitation directe de données surfaciques sur de multiples domaines. L’apprentissage direct
des données de surface via des convolutions de graphes fournit une nouvelle famille d’algorithmes
rapides pour I’analyse de données corticales du cerveau. Cependant, la limite des approches
actuelles réside principalement en leur incapacité a comparer les données de surface entre
différents domaines de données. Les représentations surfaciques sont en effet incompatibles entre
différentes géométries de cerveau. Nous tirons parti des récentes avancées en appariement de
graphes spectraux pour faciliter le transfert de données surfacoques entre des domaines spectraux
alignés. Cette nouvelle approche permet un apprentissage directement sur des surfaces a I’aide
de bases spectrales compatibles. Un réseau de convolution de graphes spectraux peut ainsi
exploiter des filtres spectraux sur les représentations intrinseques de surfaces. Nous illustrons
les avantages de cette approche par une application a la parcellation du cerveau. Nous validons
I’algorithme sur 101 surfaces cérébrales étiquetées manuellement. Les améliorations de la
parcellation indiquent une augmentation de 29% de la précision ainsi que des gains significatifs
en capacité computationnelle par rapport aux méthodes conventionnelles.

Dans le deuxieme objectif, nous proposons une nouvelle méthode d’apprentissage d’appariement
sur graphes (graph pooling) afin de pouvoir aggréguer directement des données sur graphes
provenant de multiples sur surfaces. La méthode présentée innove en apprenant une agrégation
intrinseéque des nceuds d’un graphe basée sur 1’analyse spectrale de graphe. Nous illustrons les



avantages de notre approche par des expériences exhaustives sur deux ensembles de données de
référence. L'analyse par ablation présentée dans le chapitre illustre I’impact de divers facteurs
sur notre méthode d’appariement. La flexibilité de la stratégie d’appariement est évaluée sur
quatre taches de prédiction différentes, a savoir la classification du sexe des sujets, la régression
de la taille des régions corticales, la classification des stades de la maladie d’Alzheimer et la
régression de 1’age du cerveau. Notre approche d’apprentissage d’appariement présente des
améliorations allant de 7 a 11% par rapport a d’autres techniques d’appariement pour les réseaux
convolutifs sur graphes, avec des résultats améliorant I’état de 1’art de 1’analyse de surfaces de
cerveau.

Notre troisieme objectif présente une stratégie antagoniste a 1’adaptation de domaine non-
supervisée afin d’apprendre des données de surface dans des domaines de graphes irréguliers.
Cette nouvelle approche comprend un segmenteur qui utilise des couches de convolution
de graphes pour permettre la parcellation de surfaces cérébrales a géométrie variable et un
discriminateur qui prédit le domaine d’alignement des surfaces a partir de leur segmentation.
L’entrainement antagoniste apprend une représentation invariante de 1’alignement produisant des
parcellations cohérentes pour des surfaces alignées différemment en trompant le discriminateur.
En utilisant les surfaces cérébrales étiquetées manuellement de MindBoggle, le plus grand
ensemble de données publiques de ce type, nous démontrons une amélioration de 2 a 13% de la
moyenne de Dice par rapport a une stratégie d’apprentissage non contradictoire pour les surfaces
cérébrales de test sans alignement ou alignées sur une référence différente des exemples sources.

Notre quatrieme objectif final propose SEGREcoN, une méthode d’apprentissage profond intégrée
de bout en bout pour reconstruire et segmenter conjointement les surfaces corticales directement
a partir d’un volume IRM en une seule étape. Nous entrainons un réseau neuronal basé sur le
volume pour prédire, pour chaque voxel, les distances signées a de multiples surfaces imbriquées
et leur représentation sphérique correspondante dans I’espace atlasique. Ceci est, par exemple,
utile pour reconstruire et segmenter conjointement I’interface matiere blanche-matiere grise
et 'interface matiere grise-CSF (pial). Nous évaluons les performances de notre méthode de
reconstruction et de segmentation de surface a ’aide d’un ensemble complet d’expériences sur
les jeux de données MindBoggle, ABIDE et OASIS. Notre erreur de reconstruction est inférieure
a0.52mm et 0,97mm en termes de distance de Hausdorff moyenne par rapport aux surfaces
générées par FreeSurfer. De mé€me, les résultats de la parcellation montrent une amélioration de
plus de 4% de la moyenne de Dice par rapport a FreeSurfer, en plus d’une accélération drastique
observée, passant de plusieurs heures a quelques secondes de calcul sur une station de bureau
standard.

Le travail décrit dans cette these profitera aux études en neurosciences. De fagcon pratique,
les algorithmes proposés aideront de maniere significative les cliniciens a cibler une zone
particuliere du cerveau, utiles au développement de médicaments, et a prédire les précurseurs
de I’atrophie corticale en exploitant explicitement la géométrie complexe du cortex cérébral
et a isoler la géométrie discriminante liée a la maladie d’Alzheimer. De plus, cette these peut
aider a I’extraction rapide et précise de surfaces et a leur parcellation directement a partir de
volumes IRM structurels. Ce travail permettra également de réduire la charge financiere des
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patients en fournissant des outils algorithmiques pour la recherche thérapeutique. D’une maniere
générale, ce travail sera utilisé pour trouver de nouveaux biomarqueurs basés sur la géométrie
pour mieux détecter la maladie d’Alzheimer et pour aider a la compréhension d’autres troubles
neurologiques.

Mots-clés: Apprentissage profond géométrique, Parcellation corticale, Regroupement sur
graphes, Segmentation et reconstruction de surface






Geometrical Learning of Brain Surface Data
Karthik GOPINATH

ABSTRACT

Neuronal cell bodies primarily reside in the cerebral cortex. The study of this thin and highly
convoluted surface is essential for understanding how the brain works. However, the analysis of
surface data is challenging due to the high variability of the cortical geometry. Ignoring this
complex geometry poses an unsolved challenge in the statistical analysis of surface data. Most
conventional methods rely on a heuristic multi-step process, such as geometrical simplifications
and spherical inflations, requiring a considerable computational time. The main objective of this
thesis is to develop geometrical frameworks to learn directly on cortical surfaces. Specifically,
we first propose a spectral graph convolution network to perform surface analysis applied to
cortical parcellation. Next, we present an adaptive pooling technique for surface classification
and regression tasks to facilitate a hierarchical learning of multiple surface data. Finally, we
illustrate a joint cortical surface reconstruction and segmentation approach to work directly from
the MRI volume. This thesis has resulted in three journals and five peer-reviewed conference
publications. The individual contributions of this thesis are presented below.

In our first objective, we present a novel approach for learning and exploiting surface data directly
across multiple surface domains. Direct learning of surface data via graph convolutions provide
a new family of fast algorithms for processing brain surfaces. However, the current limitation of
existing state-of-the-art approaches is their inability to compare surface data across different
surface domains. Surface representations are indeed incompatible between brain geometries.
We leverage the recent advances in spectral graph matching to transfer surface data across
aligned spectral domains. This novel approach enables a direct learning of surface data across
compatible surface bases. A spectral graph convolution network exploits spectral filters over
intrinsic representations of surface neighborhoods. We illustrate the benefits of this approach
with an application to brain parcellation. We validate the algorithm over 101 manually labeled
brain surfaces. The improvements in parcellation reveal a 29% increase in accuracy with drastic
speed gains over conventional methods.

In the second objective, we propose a new learnable graph pooling method for processing
multiple surface-valued data to output subject-based information. The presented method
innovates by learning an intrinsic aggregation of graph nodes based on graph spectral embedding.
We illustrate the advantages of our approach with in-depth experiments on two large-scale
benchmark datasets. The ablation study in the chapter illustrates the impact of various factors
affecting our learnable pooling method. The flexibility of the pooling strategy is evaluated on
four different prediction tasks, namely, subject-sex classification, regression of cortical region
sizes, classification of Alzheimer’s disease stages, and brain age regression. Our learnable
pooling approach demonstrates improvements ranging from 7% to 11% compared to other
pooling techniques for graph convolutional networks, with results improving the state-of-the-art
in brain surface analysis.
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Our third objective presents an adversarial training strategy for unsupervised domain adaptation
to learn surface data across inconsistent graph domains. This novel approach comprises of a
segmentator that uses graph convolution layers to enable parcellation across brain surfaces of
varying geometry and a discriminator that predicts the alignment-domain of surfaces from their
segmentation. The adversarial training learns an alignment-invariant representation that yields
consistent parcellations for differently aligned surfaces by fooling the discriminator. Using
manually-labeled brain surface from MindBoggle, the largest publicly available dataset of this
kind, we demonstrate a 2%—13% improvement in mean Dice over a non-adversarial training
strategy for test brain surfaces with no alignment or aligned on a different reference than source
examples.

Our fourth final objective proposes SEGREcoN, an integrated end-to-end deep learning method to
jointly reconstruct and segment cortical surfaces directly from an MRI volume in one single step.
We train a volume-based neural network to predict, for each voxel, the signed distances to multiple
nested surfaces and their corresponding spherical representation in atlas space. This is, for
instance, useful for jointly reconstructing and segmenting the white-to-grey-matter interface and
the grey-matter-to-CSF (pial) surface. We evaluate the performance of our surface reconstruction
and segmentation method with a comprehensive set of experiments on the MindBoggle, ABIDE
and OASIS datasets. Our reconstruction error is found to be less than 0.52 mm and 0.97 mm
in terms of average Hausdorff distance to the FreeSurfer generated surfaces. Likewise, the
parcellation results show over 4% improvements in average Dice with respect to FreeSurfer, in
addition to an observed drastic speed-up from hours to seconds of computation on a standard
desktop station.

The work described in this thesis benefits neuroscience studies. Practically, the proposed
algorithms will significantly assist clinicians in targeting any particular area of the brain for
drug planning and in early prediction of cortical atrophy using the geometry of the complex
folding of the cortex and isolate the discriminating geometry linked with the Alzheimer’s disease.
Additionally, this thesis can help in fast and accurate surface extraction and parcellation from
structural MRI volumes. This work will also reduce financial burdens on patients by providing
algorithmic tools for therapeutic research to aid clinicians. In general, the work would be used
to find new geometry-based biomarkers for the early detection of the Alzheimer’s disease and
assist the understanding of other neurological disorders.

Keywords: Geometric deep learning, Cortical surface parcellation, Graph pooling, Surface
reconstruction segmentation
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INTRODUCTION

The brain is the largest processing unit of the nervous system. The overall structure of the
brain is most common across the mammal species (Budday, Steinmann IIT & Kuhl, 2015). The
Figure 0.1 shows a comparison between different mammal species illustrating the size difference.
It is responsible for voluntary and involuntary actions, perception, thinking, emotions, planning,
behavior, and memory. Due to the complexity of functions the brain performs, understanding
the working of the brain is vital for the neuroscience community. Next, a brief description of the

general anatomy of the brain and its surface is provided.

Chimpanzee Human

Dolphin

Figure 0.1 Different species brain comparison — The complexity and structural difference
of brain across mammals and vertebrae species. Taken from Molnar ez al. (2015, p. 687)

0.1 Anatomy of the Brain

The brain comprises three primary tissues at a cellular level, namely gray matter, white matter,
and cerebrospinal fluid (CSF) (Nolte, 1993; Saladin & Miller, 1998). The left figure in Fig. 0.2
shows these three tissue types of the brain. Grey matter is the processing part of neurons in the
living brain. White matter consists of bundles of myelinated axons which link various parts of
the brain to information exchanges. CSF is the fluid present in the ventricles acting as a cushion

to the brain, providing essential mechanical and immunological protection.

The brain at a higher level is composed of three central units called the brainstem, cerebellum,

and cerebrum (Molnar et al., 2015). On the right of Fig. 0.2, shows the three central units of
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Figure 0.2 Anatomy of the brain — Left: The three main tissue types of healthy human
brain. Taken from Cornell (2016); Right: The brain stem, cerebellum and the Cerebrum of
the human brain. Taken from Gray (1918)

the brain. The brainstem is a distinctive center that connects the spinal cord to the brain. The
primary function of the brainstem is linked to automatic, involuntary actions like heart rate,
breathing, digestion, and sleep cycles. The cerebellum attached to the brainstem is linked with
motor and muscle movements, maintaining balance and posture. Above the cerebellum is the
largest part of the brain called the cerebrum. The cerebrum, also known as the cerebral cortex,
is made of the right and left hemispheres. Billions of neurons reside on the surface, performing

higher functions like vision, touch, hearing, speech learning, and emotions.

0.1.1 Brain Surface — Cerebral Cortex

The surface of the brain or the cerebral cortex is a remarkably complex organ functionally and
structurally. It is particularly convoluted with numerous folding patterns. The ridges and the
grooves of the cortical surfaces are referred to as gyri and sulci, respectively. These folding
patterns assist this structural division into two hemispheres connected by the corpus callosum
(Molnar et al., 2015). This thick band of neural fibers contains millions of axons responsible for

inter-hemispheric communication.
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Figure 0.3  Gyri, sucli and lobes of the brain — Left: The brain cortex depicting the gyri,
sulci and the hemispheres. Taken from Butte (2021); Right: The main four areas or lobes of
the brain cortex. Taken from Fejtek (2019)

The surface area of the brain is increased by facilitating numerous foldings to fit the skull of the
head. This increase in the folding of the surface enabling higher functions (Shipp, 2007). During
the initial development, the cortex starts as a smooth surface and develops complex convolution
patterns(Razavi, Zhang, Liu & Wang, 2015). The primary folding formed at the central sulcus is
similar across a population, with the secondary and tertiary folding patterns developing unique

signatures (Tallinen, Chung, Rousseau, Girard, Lefévre & Mahadevan, 2016).

Areas of the Cerebral Cortex

Each hemisphere of the cerebral cortex has four different lobes based on distinctive fissures. The
frontal, parietal, temporal, and occipital lobes control specific neural activity on the cortical
surface. The Frontal lobe is the largest region in the front of the head is responsible for

problem-solving, behavior, emotions, and planning. The Parietal lobe in the middle-top part of



the brain is responsible for sensations like touch, pain, and pressure. In the back of the brain, the
occipital lobe is involved in assessing visual and spatial information. The temporal lobes at the

sides are responsible for sound, smell, and memory.
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Figure 0.4 Areas of the cerebral cortex — Left: The main functional areas of the cerebral
cortex. Taken from Bruce Blaus (2014); Right: Primary motor cortex represented by areas
associated to different body parts along the central sulcus. Taken from Wikimedia
Commons (2011)

The cerebral cortex of the brain can also be divided further into different functional areas (Fischl,
van der Kouwe, Destrieux, Halgren, Segonne, Salat, Busa, Seidman, Goldstein, Kennedy,
Caviness, Makris, Rosen & Dale, 2004a; Klein, Ghosh, Bao, Giard, Hame, Stavsky, Lee,
Rossa, Reuter, Chaibub Neto & Keshavan, 2017). In particular, a strip of the region called the
primary motor cortex along the side of the brain is responsible for voluntary motor actions like
handshakes and smiling. Fig. 0.4 (right) shows the regions in the central sulcus associated with
the corresponding body parts. Neuroscientists have been studying the primary cortical area of
the brain to divide them into anatomically and functionally relevant regions. In literature, some

works divide the brain roughly from 30 to 200 regions for each hemisphere (Klein ez al., 2017).



usion MRI

Figure 0.5 Brain imaging techniques — The different MRI imaging techniques used for
analysing human brain. Taken from Tymofiyeva & Gaschler (2021, p. 3)

0.2 Imaging the Brain

In the last few decades, neuroimaging has become an essential tool to visualize non-invasively
the human brain (Cacioppo, Berntson & Nusbaum, 2008; Geftroy, Riviere, Denghien, Souedet,
Laguitton & Cointepas, 2011). This technology has attracted people from different research
fields (Epstein, Stern & Silbersweig, 2001) to attempt at understanding the brain. Various aspects
of the mind are studied using imaging modalities such as magnetic resonance imaging (MRI)
and magnetoencephalography (MEG). Different MRI-related techniques namely structural MRI
(sMRI), functional MRI (fMRI), and diffusion MRI (dMRI) are used to obtain information
about the structure and function of the brain. Visualization of the brain at one cubic millimeter
resolution is possible with the advancements in the structural MRI techniques (Liang & Lauterbur,
2000). Fig 0.5 shows images obtained from different MRI techniques. These images are ideal for
studying brain structures along with abnormalities like tumors or lesions. Functional areas of the
brain associated with actions are analyzed using data obtained from fMRI. fMRI measures brain
activity by detecting changes in the blood oxygen (DeYoe, Bandettini, Neitz, Miller & Winans,
1994; Ogawa, Lee, Kay & Tank, 1990). On the other hand, dMRI allows the inferring white
matter connectivity between different anatomical regions of the brain (Le Bihan, Mangin,

Poupon, Clark, Pappata, Molko & Chabriat, 2001; Merboldt, Hanicke & Frahm, 1985).



0.3 Challenges and Motivation

Neuroimage analysis consists of studying functional and anatomical information over the brain
geometry. The thin outer layer of the brain cerebrum is of particular interest due to its vital role
in cognition, vision, and perception. Neurological disorders affect nearly 1 in 6 adults in the
world, causing financial burdens to millions of lives (DiLLuca & Olesen, 2014; Ernst & Hay, 1994;
Rice, 1999). Every minute someone in North America, including Quebec, develops Alzheimer’s
disease (AD). AD is characterized by the loss of cognitive function due to the impairment of the
neuronal connections (Arbabshirani, Plis, Sui & Calhoun, 2017). The concern on AD is that it
is challenging to identify its early stages, with currently no therapies to stop or cure the disease.
Schizophrenia is another disorder that affects about 1% of the total population (Bhugra, 2005).
This disease is usually characterized by cognitive problems, and misinterpretation of reality
(Heinrichs & Zakzanis, 1998). Major depressive disorder, as the name suggests, is related to a
lack of interest in activities traditionally enjoyed by sufferers, including pervasive low mood,
self-esteem (Kessler, Berglund, Demler, Jin, Koretz, Merikangas, Rush, Walters & Wang, 2003;
Lewinsohn, Duncan, Stanton & Hautzinger, 1986). By the end of 2030, depression will be
ranked second for the financial burden on society, right after heart disease (Kessler, McGonagle,
Zhao, Nelson, Hughes, Eshleman, Wittchen & Kendler, 1994). Fig. 0.6 illustrates how diseases
such as Alzheimer’s can affect the brain. Structural MRI is often used to study the brain atrophy
associated with AD and other disorders or diseases (Buffalo, Movshon & Wurtz, 2019). A
learning framework operating directly on the surface can aid the identification of biomarkers for

AD, drug planning, and surgical interventions.

Limitations of the conventional methods make it hard to learn directly over the surface data.
Current popular approaches, for instance, FreeSurfer (Fischl er al., 1999) typically rely on
geometrical simplifications, such as spherical inflation and slow mesh deformations and takes

around 3 hours for surface analysis. Deep learning methods on medical imaging data have



Figure 0.6 Normal brain vs diseased brain stages — An illustration of normal brain vs
stages of diseased brain. Adapted from Islam & Zhang (2018, p. 2)

shown drastic improvements in classification and segmentation problems. Convolutional Neural
Networks (CNNs) can offer a drastic speed advantage over traditional surface-based methods.
Fundamentally, current CNNs exploit spatial information mostly derived from the Euclidean
domain. Such information is highly variable across brain geometries and severely hinders the
training of modern machine learning algorithms. Geometric deep learning (Bronstein et al.,
2017) recently proposes to use convolutional filters on irregular graphs. However, geometric
deep learning methods either lack the capability to process multiple surface domains or have
spatial representations of surface data defined in a Euclidean space, ignoring the surface’s
complex geometry. Hence, there is a need for this thesis to develop a geometric framework that

can directly learn and analyze cortical surface data across the population.

0.4 Research Objectives and Contributions

As highlighted in the challenges and limitations of the above subsection, the main objective of

this research thesis is to develop geometry aware tools that can aid in direct analysis of brain

surface data. We tackle this main objective by elaborating on four specific objectives. The first

objective is to build a framework based on spectral graph theory for learning surface data via



graph convolutions in neuroimaging. This novel approach enables a direct learning of surface

data for a surface level segmentation. The second objective proposes to develop a learnable

graph pooling for brain surfaces to perform subject level classification and regression tasks.

The third objective presents a domain adaptation strategy to learn multiple surface data that is

independent from any spectral domain with an application to cortical parcellation. The fourth

objective is to build a method for the joint extraction and segmentation of cortical surfaces

directly from MRI volume. These specific objectives of this thesis can be further detailed as

follows:

1.

Spectral graph convolutions for cortical surface parcellation: The first objective of this
thesis is to learn surface data directly across multiple brain surfaces to separate the cerebral
cortex into distinct regions based on structural information known as parcellation. Current
conventional approaches (Fischl et al., 2004b) typically rely on geometrical simplifications,
such as spherical inflation and slow mesh deformations algorithms, often neglecting
geometry and shape information. Graph-based deep learning (Bronstein e al., 2017,
Kipf & Welling, 2017; Monti, Boscaini, Masci, Rodola, Svoboda & Bronstein, 2017) will
be used to preserve geometry. However, geometric deep learning methods (Bronstein e al.,
2017; Kipf & Welling, 2017; Monti et al., 2017) either lack the capability to process multiple
surface domains or have spatial representations of surface data defined in a Euclidean
space, ignoring the surfaces complex geometry. The principles from spectral graph theory
will be exploited to formulate a function mapping multiple brains to a shared space. This
formulation will enable learning across multiple surfaces. This research contribution is
the first attempt at intrinsically learning surface data via spectral graph convolutions in
neuroimaging to the best of our knowledge. This novel approach enables direct learning
of surface data across compatible surface bases by exploiting spectral filters over intrinsic

representations of surface neighborhoods. The results from the experiments indicate higher



parcellation accuracy and at par with the well-established FreeSurfer algorithm while

gaining a drastic speed improvement from hours to seconds.

Learnable pooling in graph convolutional networks for brain surface analysis: The next
objective of the thesis is to analyze surface data across the dataset to have a subject-level
diagnosis, such as AD classification or birth age regression. A graph pooling operation is
required to perform classification or regression directly on surface data represented as a
graph. In the conventional Euclidean domain, pooling operation is straightforward with
a fixed number of nodes and neighbors. However, a learnable pooling technique with
geometry preserving features is essential for a brain surface with varying connectivity and
size across the dataset. Contributions will be made by developing a learning framework
to pool brain surfaces of arbitrary size hierarchically in spectral-domain for classification
and regression tasks. The adaptive pooling technique will learn to aggregate information
hierarchically depending on the output task. Various experiments will help to understand
the effect of different parameters of the method. The learned regions for pooling and the
performance of the method could potentially be used to reveal new biomarkers in the early

diagnosis of diseases like Alzheimer’s.

Alignment invariant brain surface analysis: The third objective of the thesis is to directly
learn the surface data in a shared domain. Previous graph learning methods in the spectral
domain depend on a mapping function (often referred to as spectral alignment) that projects
the brain surfaces to shared space. This mapping enables learning of cortical data directly
across multiple brain surfaces via graph convolutions. However, current spectral graph
learning algorithms fail when brain surface data are misaligned across subjects, thereby
requiring to apply a costly alignment procedure in pre-processing. Here, we focus on
generalizing parcellation across multiple brain surface domains by removing the dependency
on these domain-specific alignments. The graph domain adaptation method in an adversarial

manner, learn a fully-convolutional GCN segmentator and a GCN domain discriminator,
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both of which operate on the spectral components of surface graphs. The learned spectral
filters of the GCN surface parcellation network is robust to differences in domain-specific
alignment. Moreover, it also provides a better generalization for surfaces aligned to different
references, without requiring an explicit re-alignment or manual annotations of these
surfaces. The results from the experiments will validate the domain generalizability of the

method, further increasing the overall computation time.

Direct joint cortical surface reconstruction and segmentation from MRI volumes:
Cortical surface extraction from MRI volumes using traditional methods is computationally
expensive (Fischl ef al., 1999). Recent advancements in deep learning has resulted in faster
extraction of cortical surfaces (Cruz, Lebrat, Bourgeat, Fookes, Fripp & Salvado, 2021;
Henschel et al., 2020). However, surface analysis methods (Fischl ez al., 2004a; Lombaert,
Criminisi & Ayache, 2015b) rely on the pre-reconstructed cortical surfaces. The final
objective of the thesis is to jointly reconstruct and segment the brain surface directly from an
input MRI volume. Existing traditional methods for these tasks follow a heuristic multi-step
process that typically involves: the segmentation of brain tissues, the explicit computation
of a surface mesh from segmentation masks, the geometric simplification of the mesh
using non-linear projection techniques such as spherical inflation, the registration of the
projected surface to an atlas, and finally the transfer of atlas labels to the registered mesh.
These commonly-used tools for cortical reconstruction and parcellation, such as FreeSurfer,
require extensive computation times, often in hours. A contribution to this topic will be
made. The proposed method will learn a distance function to reconstruct white matter or
pial surface and its corresponding spherical representation in the registered atlas space. The
continuous representation of the spherical coordinates will extract an implicit iso-level brain
surface and propagate the parcel labels from the parcellation atlas. The reconstruction and
segmentation results on multiple datasets will highlight the robustness of the method with a

drastic speed-up from hours to seconds of computation compared to FreeSurfer.
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0.5 Thesis Outline

The organization of the work reported in the thesis is described in this section. This introductory
chapter provided an overview and the context, motivation, and contribution of this thesis.
Chapter 1 presents the literature on the current state-of-the-art methods for parcellation,
followed by introducing deep learning based method for surfaces (graphs) analysis and other
useful topics relevant to this thesis. Chapter 2 introduces the learning framework via spectral
graph convolution for cortical surface parcellation. The work in this chapter is published in
the Journal of Medical Image Analysis, titled "Graph convolutions on spectral embeddings for
cortical surface parcellation”. Chapter 3 discusses the adaptive pooling strategy proposed for
surface classification tasks. This chapter corresponds to the paper entitled "Learnable Pooling
in Graph Convolution Networks for Brain Surface Analysis" published in the IEEE Transactions
on Pattern Analysis and Machine Intelligence. Chapter 4 proposes a domain adaptation strategy
for surface parcellation without any explicit alignment of graph eigenbases. This method allows
spectral graph convolution network to work independent of the mapping function. The work
presented in this chapter corresponds to the runner-up paper published in Graphs in Biomedical
Image Analysis Second International MICCAI Workshop titled "Graph Domain Adaptation for
Alignment-Invariant Brain Surface Segmentation”. Chapter 5 presents the final contribution of
the thesis describing the joint reconstruction and segmentation of brain surface directly from
input MRI volume. The content of this chapter corresponds to the paper "SEGREcon: Learning
Joint Brain Surface Reconstruction and Segmentation from Images" submitted to the Journal
of Medical Image Analysis. The Conclusion Chapter summarizes the contributions of this
thesis and discusses its limitations and possible future extensions. Finally, Appendix I provides
a novel approach for learning the transformation matrix required for aligning brain meshes in a

direct data-driven way and Appendix II provides link to the codes.
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0.6 Guidelines for reading the thesis

This section presents suggestions for the readers studying this thesis to find essential information.
As described before, the overall goal of this thesis is to develop novel geometry-aware approaches
for brain surface analysis. This thesis may, therefore, be read in multiple ways to obtain specific

information.

Cortical surface parcellation — The reader interested in surface parcellation method may
focus in Chapter 2, 4 and 5. Specifically, Sec. 2.2 performs parcellation using spectral graph
convolution in the first approach, given the cortical mesh. Secondly, given the cortical mesh, the
readers can look to Sec. 4.2.2 to perform domain invariant surface analysis with application
to cortical parcellation. Finally, the readers may focus particularly on Sec. 5.2 for cortical
parcellation directly from the MRI volume space and extract cortical surfaces. Sec. A.1.3.2
provides a data-driven methodology to learn the alignment matrix for multiple brain surfaces,

with application to cortical parcellation.

Surface classification or regression — The reader interested in performing surface based
classification or regression tasks across the population may focus on Sec. 3.2.3. Here, a learning
pooling strategy to down sample the original surface is used for disease classification or age
regression. The readers can use this framework to obtain a lower-dimensional representation of

the brain surface for other downstream tasks.

Cortical surface reconstruction — The reader interested in tools for cortical surface reconstruc-
tion and obtaining atlas labels on the surface may focus on Sec. 5.2. The first part predicts a
signed distance function for the reconstructing surface, and the second part uses the implicit

surface representation to reconstruct a cortical mesh.

General surface analysis — The reader interested in the general applicability of the developed

surface analysis may focus on Sec. 2.2 and Sec. 3.2.3. The first performs geometry-aware
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node classification of graphs with the potential to regressing features on the surface. Sec 3.2.3
provides an adaptive graph pooling technique useful for lower dimensional representation or
encoder-decoder networks. The last Sec. 5.2 may be applicable for extracting surfaces or point

cloud data from volumetric space by labeling the surfaces.
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CHAPTER 1

BACKGROUND

1.1 Overview

The human cerebral cortex is a complex structure, the understanding of which requires a division
into anatomically-relevant cortical areas. As a case study, we did a literature survey of review
papers focusing on parcellation of the cortical surface. In the field of neuroscience, obtaining
an accurate marking is a problem that has been studied for a few decades. Fig. 1.1 shows
the representation of the brain and its primary cortical areas. There are roughly around 30
(Van Essen, Glasser, Dierker, Harwell & Coalson, 2011) to 200 regions (Nieuwenhuys, 2013) per
hemisphere. Few works (Fischl & Dale, 2000; Nieuwenhuys, 2013) attempt to estimate surface
statistics such as the volume of a region or the thickness of the brain surface with fully automatic
or semi-automatic methods. We provide a brief overview of standard structural parcellation

methods below.

Motor areas:
Primary motor cortex
Motor association area
Frontal eye field

Sensory areas and related
association areas:

Primary somatosensory cortex
Sensory association area
Wernicke’s area

Prefrontal cortex:
Broca’s area

General interpretation area
Primary visual cortex

Visual association area
Primary auditory cortex

Auditory association area

Figure 1.1 Primal regions of brain — A human brain divided into
primal regions. Taken from Anatomy and Physiology (2013)
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1.2 Surface Analysis Methods

Human brain parcellation is one of the necessary steps to obtain quantitative measurements of
anatomical regions. The most expensive way is to manually map the regions by delineating
the region boundary for numerous subjects. Fig. 1.2 illustrates parcellation of the brain into
cortical segments. Many researchers have proposed algorithms to automate this process. Manual
segmentation is necessary for any supervised algorithm to learn the region boundary. Previous
parcellation techniques (Fischl ef al., 2004b) use a blurry average template to obtain brain areas

across subjects.

isthmus
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:‘a'relrelgl cingulate
cuneus
reularis
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occipital cingulate
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Figure 1.2 Cortical parcellation of a brain. Taken from Klein & Tourville
(2012, p. 3)

1.2.1 FreeSurfer

FreeSurfer is an open-source software for neuroimage processing, which includes a compre-
hensive set of tools for cortical surface analysis. This software suite is widely used withing the
neuroimaging community to study the human brain. The standard processing pipeline for MRI

consists of various steps (Dale er al., 1999; Fischl et al., 1999), presented next.

The initial step is to align each volume to an atlas with affine registration. Next, the FreeSurfer
performs intensity standardization for every subject by measuring the bias field in the white

matter intensity. The skull region is not necessary for processing, and hence the skull is stripped
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Figure 1.3  FreeSurfer stages — MRI scans with skull stripped brain. Taken
from Dale et al. (1999, p. 184)

b T A e el ]

Skull stripped image White matter segmentation  Surface between white and

gray (yellow) and between
gray and pia (red)

Figure 1.4 FreeSurfer surface extraction — FreeSurfer stages for obtaining
cortical surface. Adapted from Dale et al. (1999, p. 186)

using a deformable template model (S€gonne, Dale, Busa, Glessner, Salat, Hahn & Fischl, 2004).
Fig. 1.3 shows the original MRI scan (left) and the skull stripped brain (right). Each voxel is
then classified as background or white matter based on intensity and neighborhood information.
Next, a cutting plane separates the brain into two hemispheres, then the cerebellum and the brain
stem connecting the two hemispheres are removed. The intensity gradient between the gray
matter and CSF results in a surface called the pial surface. Fig. 1.4 shows these initial steps

of the FreeSurfer pipeline. Cortical thickness is measured at each location by considering the
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distance between the white and the pial surface (Fischl & Dale, 2000). Fig. 1.5 shows a 3D view

of the pial surface along with its inflated version.

Figure 1.5 Visualization of surfaces — 3D FreeSurfer pial (left) and inflated
(right) surface. Taken from Fischl ez al. (1999, p. 202)

Figure 1.6 Cortical regions — Surface-based labeling from FreeSurfer. Taken
from Fischl et al. (2004b, p. 12)

Once the surface is obtained, it is mapped to a standard MNI305 spherical space. FreeSurfer has
an atlas produced from the training set with manual labels, which are also propagated onto the
spherical space. A pointwise correspondence for a subject is achieved to match with the atlas.
For each brain, the vertex on the surface or voxels of the volumes is a point. The curvature in
each of the principal directions at a vertex forms the information for surfaced-based labeling.
The segmentation maximizes the probability of the input point belonging to the particular labeled

class. The class which has the highest probability gets the label assigned, thus creating an
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initial segmentation. Fig. 1.6 shows parcellation on a 3D surface obtained from the FreeSurfer

pipeline.

1.3 Convolutional Neural Network based Methods

Deep learning is a class of machine learning methods that uses neural network architecture
for learning a hierchical feature representation is a data-driven manner. Convolutional neural
networks (CNNs) are a widely-used method for solving various computer vision tasks. Develop-
ments in semantic segmentation have allowed their use to medical image segmentation. CNN's
typically use two-dimensional filters for computer vision applications. However, for medical
images segmentation, recent publications have shown the advantage of considering volumetric

context with three-dimensional kernels.

In neuroimaging, CNNs are commonly used for the segmentation of cortical surfaces, subcortical
structures, or lesions, as well as for disease prediction (Havaei, Davy, Warde-Farley, Biard,
Courville, Bengio, Pal, Jodoin & Larochelle, 2017; Shen, Wu & Suk, 2017) (Valverde, Cabezas,
Roura, Gonzalez-Villa, Pareto, Vilanova, Ramié-Torrenta, Rovira, Oliver & Lladé, 2017). A
widely used method for image segmentation is to classify individual pixels based on small image
patches (both 2-dimensional and 3-dimensional) extracted around these pixels. This technique
has been used for segmentation tasks in MRI images, for example in brain tumor segmentation
(Havaei et al., 2017), white matter segmentation in multiple sclerosis patients (Valverde et al.,

2017) and segmentation of subcortical structures (Wachinger, Reuter & Klein, 2017).

The first application of CNNs to medical image segmentation was on electron microscopy
images (Ciresan, Giusti, Gambardella & Schmidhuber, 2012). In that study, segmentation was
performed by using 2D convolution stacks. The approach aimed at classifying individual pixel
of a slice by extracting a neighborhood patch. However, applying a sliding window to obtain
patched is time-consuming and results in the redundant computation for overlapping regions.

The other issue was with the inability of the network to learn global features. To overcome
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Figure 1.7 Overview of U-net architecture for medical image segmentation. Taken from
Ronneberger et al. (2015, p. 235)

these limitations, Ronneberger et al. proposed a fully-convolutional approach (Ronneberger
et al., 2015). The fully-convolutional network (FCN) produces output the same size of the
input making it independent of the image size. Fig. 1.7 show an example of such architecture.
The design is similar to that of convolutional encoder-decoders consisting of contracting and
expanding stage. During the contraction step, the size of the input gets reduced while the
number of feature maps increases. The reverse happens in the expanding phase. The final
stage uses a convolution filter of size 1 X 1 producing the segmentation map. The ‘U’ shaped
appearance of the architecture results in the name U-net. A slice by slice extension of this work
with 3D convolutional kernels for 3D application also exists (Cicek, Abdulkadir, Lienkamp,
Brox & Ronneberger, 2016; Milletari, Navab & Ahmadi, 2016). The varying size of structures

and organs makes slice-by-slice implementations of a 2D network inefficient. The incomplete
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labeled data in these cases were handled by applying transformations like shifting, rotating and
scaling images, as well as augmenting grey values. However, this random deformation of the
original image at the beginning of the training may result in training on a different version of the

original dataset.
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Figure 1.8 Overview of DeepMedic architecture for MRI image segmentation. Taken from
Kamnitsas et al. (2017b, p. 66)

Other FCN-based medical image segmentation methods have been reported in the literature
(Chen, Qi, Yu & Heng, 2016; Chen, Dou, Yu, Qin & Heng, 2018a; Dou, Chen, Jin, Yu,
Qin & Heng, 2016). These methods are extended versions of U-net, which omit the expanding
path in this architecture, in combination with the low-resolution segmentation map deconvolved
to the original resolution. These low-resolution outputs are combined with a fully convolutional
network to produce the final segmentation. Another characteristic of these works is the use
of deep supervision. Here, feature maps from earlier points in the network are used to create
secondary segmentation maps. DeepMedic (Kamnitsas er al., 2017b) is another popular 3D
CNN architecture, which has been used for various segmentation tasks involving brain MR
images. Fig. 1.8 depicts this architecture. One of the main contributions of this architecture is
that it consists of two paths, the first one receiving the subregion of the original image that is
to be segmented, and the second receiving a larger region downsampled to a lower resolution

before being fed to the network. This architecture enables the network to learn global image



22

features. Likewise, (Witten, Frank, Hall & Pal, 2016) followed a similar approach, using 2D
convolution on 2D slices instead of 3D convolutions. As postprocessing step, a conditional

random field (CRF) is applied to the output to get smoother regions.

1.3.1 FastSurfer

1. FastSurferCNN

Figure 1.9 Overview of FastSurfer pipeline for cortical surface extraction. Taken from
Henschel et al. (2020, p. 3)

Fastsurfer (Henschel ef al., 2020) similar to FreeSurfer is a neuroimaging tool for cortical
surface analysis. This software used deep learning based tools to speed up the FreeSurfer based
pipeline. FastSurfer uses deep learning architecture called fastsurfer CNN to create a whole
brain segmentation into 95 classes in less than a minute. The CNN architecture used in this
pipeline is composed of three fully convolutional neural networks operating on coronal, axial
and sagittal 2D slices with a final aggregation stage. Each F-CNN incorporates both local and
global competitive dense blocks and competitive skip pathways to accurately segment cortical

and subcortical structures. In addition to performance and computation gains, the use of CNN
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for FastSurfer avoids using traditional FreeSurfer steps such as skull tripping and nonlinear

registration. Fig. 1.9 shows the overall pipeline of the FastSurfer algorithm.

For surface extraction and analysis, FastSurfer introduces alternatives to FreeSurfer’s traditional
iterative spherical inflation process. The surface is first mapped to the spectral embedding using
the first three non constant eigenfunctions of the Laplace-Beltrami operator and then the 3D
spectral embedding vector is scaled to unit length to obtain the final spherical map. This process
of spherical mapping is slightly faster computationally compared to FreeSurfer. The FastSurfer
pipeline is validated on multiple unseen datasets with varying age ranges, diseases states and

acquisition protocols to ensure generalizability and robustness.

1.3.2 Cortical Surface Extraction - DeepCSR

(= |

DeepCSR

Figure 1.10  Overview of DeepCSR algorithm for surface extraction. Taken from Cruz
(2021)

Reconstructing the cortical surfaces from brain MRI is essential to a wide range of brain
analyses (Fischl er al., 1999; Tosun, Rettmann, Naiman, Resnick, Kraut & Prince, 2006).

However, most approaches follows a multi-step slow process. For instance, FreeSurfer (Fischl
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etal., 1999) follows a sequence of costly operations that often include: white matter segmentation,
surface mesh generation from the segmentation masks, mesh smoothing and projection to a
sphere, topological correction of the projected mesh, and fine-tuning of re-projected mesh on the
segmented volume. With advancements in deep learning, a faster algorithm for automatically
extracting the brain surface was proposed, namely FastSurfer (Henschel et al., 2020). This
proposed method performs deep learning based tissue segmentation and follows sequential steps

similar to FreeSurfer (Fischl er al., 1999) for surface extraction.

In computer vision, several deep learning based methods (Guo, Wang, Hu, Liu, Liu & Bennamoun,
2020; Park, Florence, Straub, Newcombe & Lovegrove, 2019; Qi, Yi, Su & Guibas, 2017b) have
been proposed to extract point clouds, graphs, or surfaces from images and volumes. Park et al.
(2019) proposed a deep learning based model called DeepSDF that learns a continuous Signed
Distance Function (SDF) from 3D volume to represent the shape. This continuous volumetric
representation implicitly encodes the boundary of the shape as a zero-level-set function without
the need for an explicit segmentation step. Inspired by this, Cruz ef al. (2021) proposed a model,
called DeepCSR, for the reconstruction of cortical surfaces. The advantages of having multiple
points for sampling from a reference grid allow DeepCSR to reconstruct cortical surfaces at
a different resolution. Fig. 1.10 shows the architecture of the DeepCSR network for cortical
surface reconstruction. However, these processes are costly in both computation and memory for
detailed surfaces with hundreds of thousands of points. Compared to the traditional FreeSurfer,

these surface reconstruction methods are also limited only to surface extraction.

To conclude, the variety of CNN-based medical image segmentation methods is mainly due
to different attempts at addressing difficulties specific to medical images. For our work, we
aim to develop a learning algorithm that works directly on the surface of the brain, and not in
image space. The surface of the brain is geometry-driven and contains many folds. The distance
between two points on the surface is geodesic, and Euclidean distance may not be suitable to

model surface proximity. These limitations impede the use of standard CNN techniques for
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learning on directly surfaces. However, recent advancements in geometric deep learning provide

an powerful way to overcome these limitations.

1.4 Geometric Deep Learning

Methods trying to generalize deep neural networks to non-Euclidean domains such as graphs
and manifolds fall under the term geometric deep learning. Neural network approaches are
popular and widely used for data represented in the Euclidean space. Attempts have previously
been made to develop algorithms to work on data lying on non-Euclidean space. Geometric
data, such as social networks in computational social sciences and surfaces meshes in brain

imaging, are complex for standard machine learning techniques.

Bronstein et al. (2017) review various deep neural methods to learn on graphs and manifold. The
survey (Bronstein er al., 2017) provides an overview of conventional deep learning techniques
explaining the crucial assumptions of convolutional network architectures and the underlying
data. The notion of graph theory with the differences and similarities between Euclidean and
non-Euclidean learning methods are explained in this work. This work (Bronstein et al., 2017)
provides fundamentals to several medical applications where data inherently lie on surfaces or
graphs. Fig. 1.11 shows an example of the different type of graphs in neuroimaging. Next, we
explain the basics of graphs and the graph theory behind the geometric deep learning methods.

A graph is a mathematical object mostly used to model the relation between two set of points.

A graph is defined mathematically as G = {V, &, W}, with V being the set of nodes or vertices
|V| = n. & represents set of edges with e;; € & and ‘W is the corresponding adjacency matrix.
The principles from spectral graph theory are used to analyze the data lying on the graph. The
Laplacian matrix L, defined as the difference between the degree matrix D and adjacency matrix
W, 1ie., L = D — W, is a powerful operator often used to process the graph networks. The
decomposition of the graph Laplacian L = UAU” produces the standard Fourier bases of the

signal that can be used for graph Fourier transforms.
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Figure 1.11 Different graph structures — Left: indicates the brain structural connectivity
network. Adapted from Chu ez al. (2018, p. 2). Right: indicates the constructed 3D brain
mesh. Adapted from Javan ef al. (2020, p. 327)

Deriving the analogies from the conventional CNNs, there are two popular (spectral or spatial)

approaches for graph convolution network.

1.4.1 Spectral Methods

Spectral methods focuses on mapping data such as graphs or manifolds into the spectral domain
using the spectrum (eigenvalues and/or eigenfunctions). We first explain spectral shape analysis

in neuroimaging followed by convolution networks in spectral domain.

1.4.1.1 Spectral Shape Analysis

Statistical analysis of geometric shapes involves studying varying properties of shapes such
as curvature, geodesic distance and angles. In particular, the spectrum based methods are
inspired from signal processing, where, the input signal is mapped to the Fourier bases using
the Fourier transform. The eigenvalues of the Laplace-Beltrami operator on a manifold defines
the shape spectrum (Reuter, Wolter & Peinecke, 2006). For discrete meshes or graphs, the
spectral decomposition of the graph Laplacian matrix defined on vertices and edge connections

provides a spectrum descriptor (Lombaert, Grady, Polimeni & Cheriet, 2012). Fig. 1.12 shows
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the spectrum for two brain surfaces. This shape descriptor is widely used in literature for shape

recognition, matching, and registration.
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Figure 1.12 Eigen decomposition of graph Laplacian — The first six eigenvectors of two
brain surfaces. Taken from Lombaert ez al. (2011, p. 661)

Reuter et al. (2006) proposed ShapeDNA, the first global spectral shape descriptors using the
eigenvalues of the Laplace—Beltrami operator for retrieval of shapes. The Laplace-Beltrami
operator has also been used for medical shape analysis with no to minimal shape pre-processing
(Niethammer, Reuter, Wolter, Bouix, Peinecke, Koo & Shenton, 2007). In neuroimaging,
Wachinger, Golland, Kremen, Fischl, Reuter, Initiative et al. (2015) proposed BrainPrint
using the same Laplace-Beltrami operator to produce discriminative representation of brain
morphology. This descriptor allows effective comparison of brains and proved efficient for
multiple tasks including subject identification, age and sex prediction and brain asymmetry
analysis. Reuter (2010) used the spectrum of Laplace-Beltrami to find geometric patterns of the

cortical folding.

Finding correspondence between shapes and objects has also been a challenging and important

task for shape analysis. Shapiro & Brady (1992); Spielman (2012) were the first to propose
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a spectral method to find feature based correspondence. Depending on the proximity matrix,
different shape correspondence methods were proposed using the spectrum. Specifically,
Bronstein, Bronstein & Kimmel (2006,0) proposed the use of Multi-Dimensional Scaling matrix
for correspondence problem. For images, Lombaert, Grady, Pennec, Ayache & Cheriet (2014)
proposed Spectral Log-Demons for image registration using spectral eigenvalues that captures
global shape characteristics. Eigendecomposition of heat kernels called heat signature kernels is
used as local descriptors by Sun, Ovsjanikov & Guibas (2009) to perform for detecting shape
symmetry or partial matching. Similarly, Laplacian eigenfunctions are used in medical image
analysis problems such as point registration (Mateus, Horaud, Knossow, Cuzzolin & Boyer,
2008), diffeomorphic matching of cortical surfaces (Lombaert, Sporring & Siddiqi, 2013), and
shape registration (Sharma, Horaud & Mateus, 2021).

1.4.1.2 Spectral Graph Convolutions

The convolution theorem on a graph is similar to defining the convolution operation in the spectral
domain. Recently, graph convolutions based on spectral graph theory have been proposed to work
on graphs and manifolds (Bruna, Zaremba, Szlam & Lecun, 2014b; Henaff, Bruna & LeCun,
2015). An approximate version of smooth filters was designed in the spectral domain using
Chebyshev polynomials and trained as a neural network model (Shuman, Vandergheynst,
Kressner & Frossard, 2011). In (Kipf & Welling, 2017), Kipf & Welling (2017) proposed a
similar spectral graph convolution approach, which was shown to have a faster training and

higher accuracy on many benchmark graph datasets. This approach is illustrated in Fig. 1.13.

The work in (Chen, Zhu & Song, 2018b) overcomes the memory issues faced by (Kipf & Welling,
2017) for large graphs by proposing a sampling-based stochastic algorithm. Yet, a common
limitation of these spectral methods is that the Fourier bases vary across different graphs. Thus,

these methods are not directly applicable to multiple graph learning.
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Figure 1.13 Overview of graph convolution network — An example of Spectral graph
convolution network for node classification. Taken from Kipf (2016)

1.4.2 Spatial Methods

Spatial approaches define convolution as standard template matching following conventional
spatial domain techniques. The fundamental challenge with these methods is identifying the
ordering of graphs and its neighborhood. A spatial graph convolution approach proposed by
(Atwood & Towsley, 2016) considers a random walk diffusion process on graph. The relation
between any two nodes is captured by a weight function by w; (x,x") = e‘(d(x’xl)'p" )2/ 20°
(Kokkinos et al., 2012), CNNs are adapted to geodesic polar coordinates by constructing a
patch operator. The weighting function of the patch operator localized around p, 6 is given by
wij (x,x") = e_(p("')_p")z/z‘fg -e_(g(xl)_gf)z/zgg. Fig. 1.14 shows the spatial convolution method,

based on the diffusion of the geodesic polar coordinates filters, on a toy example.

Monti et al. (2017) proposed a generic graph convolution based on learnable patch operators in
the spatial domain. This work aims at constructing a patch operator that maps the node i and its

neighboring node j € N (is) a to a D-dimensional pseudo-coordinates u(i, j) and feeding it a
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Diffusion distance Geodesic polar
coordinates

Figure 1.14 Illustration of Spatial graph convolution networks —
Diffusion based filtering (Atwood & Towsley, 2016) and geodesic polar
coordinate (Kokkinos er al., 2012) based spatial graph
convolution (Bronstein et al., 2017). Adapted from Bronstein et al.
(2017, p. 34)

learnable Gaussian kernel functions. The graph convolution in the spatial domain is then based
on this patch operator. Fey et al. (Fey, Lenssen, Weichert & Miiller, 2018b) follows the work in
(Monti et al., 2017), but instead use B-spline kernels for the graph convolution. As an alternative
to the simple mean aggregator function to combine the signals from graph nodes, Hamilton et al.

(Hamilton, Ying & Leskovec, 2017) propose to use LSTM aggregators and pooling aggregators.

In (Velickovi¢, Cucurull, Casanova, Romero, Lid & Bengio, 2018), Velivckovic et al. present
an attention-based model to weight the neighboring nodes by some learnable importance.
The attention layer contains a shared learnable weight matrix with the attention coefficients
between node i and its neighbor node j € N (i) encoding the importance of feature vector of the

neighboring node j for node i.
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Spatial approaches overcome the limitations of spectral methods. However, these methods do

not fully exploit the geometric information.

1.4.3 Geometric Deep Learning: Application to Neuroimaging

N subjects Population graph Graph convolutions

S feature vector
S,

—

hn
z

M labelled samples
N-M samples to classify

L layers One feature per label

Figure 1.15 Overview of Spectral graph convolution for disease prediction. Taken from
Parisot et al. (2017, p. 179)

Neuroimaging is an area where signals are naturally measured on a non-Euclidean domain.
Geometric deep learning would thus be useful for developing tools to analyze these data.
Recently, Parisot ef al. (2017) used a graph CNN to detect autism from the functional brain
networks. Fig. 1.15 shows the overview of their method. The goal of this work was to assign
to each subject a label (e.g., control or diseased) describing the subject’s disease. Toward this
goal, the method constructs a population graph with each vertex represented by a patient with a
feature vector. The graph edge weights are from phenotype data. The adjacency matrix of the
graph defines the similarity between the imaging features across subjects. The experiment was
carried out to perform diagnosis of autism across subjects. Another application of geometric
deep learning to neuroimaging, closely related to the current research proposal, is the recent
work of Cucurull, Wagstyl, Casanova, Velickovi¢, Jakobsen, Drozdzal, Romero, Evans & Bengio
(2018) on cortical mesh parcellation. This work used the attention-based model of (Velickovi¢

et al., 2018) to segmentation two regions inside Broca’s area.
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Figure 1.16 Overview of Spherical UNet proposed for cortical parcellation. Taken from
Zhao et al. (2021, p. 1223)

Graph neural networks or graph convolution networks have also been applied to solve multiple
other neuroimaging problems (Ahmedt-Aristizabal, Armin, Denman, Fookes & Petersson, 2021)
and identifying diseases (Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker & Rueckert, 2018). For
instance, Rakhimberdina & Murata (2019) proposed analysis of functional connectivity fMRI
data for disease classification. Methods such as (Kazi, Shekarforoush, Krishna, Burwinkel,
Vivar, Kortiim, Ahmadi, Albarqouni & Navab, 2019; Kazi, Cosmo, Navab & Bronstein, 2020)
perform node-level classification for population graphs to predict the disease class. Similarly
to classification, GCNs have also been used for the segmentation of anatomical shapes from
images (Selvan, Kipf, Welling, Juarez, Pedersen, Petersen & de Bruijne, 2020; Yan, Youyong,
Jiasong, Coatrieux & Huazhong, 2019). A Spherical U-Net architecture was proposed (Zhao
et al., 2021) for cortical parcellation of the brain surface in the spherical space. Fig. 1.16 shows
the architecture of the spherical UNet network for cortical parcellation. At volume level, Yan
et al. (2019) proposed a GCN based segmentation model to classify supervoxels into different

brain tissue types.
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1.5 Domain Adaptation for Medical Image Analysis

One of the objective of this thesis is to learn alignment invariant brain surface parcellation with
domain adaptation. In this section, we give a review of important and recent literature on this

domain adaptation topic.

Convolutional neural networks provide state-of-the-art performance for most image analysis
tasks, including image classification, registration, and segmentation(Arbabshirani ez al., 2017).
However, to learn the data distribution, these models typically require large annotated datasets
for training, which are often expensive to obtain in medical applications. Additionally, these
deep learning models lack robustness to the distribution difference between the training and test
data. To overcome these limitations, there are techniques in machine learning known as domain
adaptation that allow model trained on source domain samples to generalize on samples from
target domain. Fig. 1.17 shows an overview of an adversarial domain adaptation network for

segmentation.

Normal resolution pathway Segmenter
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Lesion?

(%,y)~(Xs,Ys| Ys=“Lesion”)

(xy)~(Xs,Ys | Ys="Healthy") ‘
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Figure 1.17 Overview of adversarial domain adaptation network for segmentation. Taken
from Kamnitsas et al. (2017a, p. 600)

In computer vision, Generative adversarial networks (GANs) use adversarial training to produce
realistic images (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville & Ben-
gio, 2014). In medical imaging, GANs have been used in particular to explore the structures
intrinsic to data (Yi, Walia & Babyn, 2019). Specifically, GANs have been explored for

super-resolution image synthesis (Chen et al., 2018a; Sdnchez & Vilaplana, 2018), image seg-
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mentation (Delisle, Anctil-Robitaille, Desrosiers & Lombaert, 2021; Kamnitsas, Bai, Ferrante,
McDonagh, Sinclair, Pawlowski, Rajchl, Lee, Kainz, Rueckert & Glocker, 2018; Yang, Xu,
Zhou, Georgescu, Chen, Grbic, Metaxas & Comaniciu, 2017), classification (Madani, Moradi,
Karargyris & Syeda-Mahmood, 2018), and image registration (Fan, Cao, Xue, Yap & Shen, 2018).
The underlying adversarial strategy has proven powerful in making models trained on source
data generalize to examples from a target domain, without having explicit target domain labels.
In adversarial training, there are two networks, a generator and discriminator. A discriminator
network classifies images produced by a generator network as real or fake, and the generator
improves by learning to fool the discriminator. The application of this adversarial training can
be seen for both natural (Chen, Li & Van Gool, 2018c; Hong, Wang, Yang & Yuan, 2018)
images and medical images (Bateson, Kervadec, Dolz, Lombaert & Ayed, 2019; Kamnitsas ez al.,
2017a). This technique is adapted to segmentation applications (Ghafoorian, Mehrtash, Kapur,
Karssemeijer, Marchiori, Pesteie, Guttmann, de Leeuw, Tempany, van Ginneken et al., 2017;
Javanmardi & Tasdizen, 2018; Vu, Jain, Bucher, Cord & Pérez, 2019; Zhang, David & Gong,
2017; Zhang, Miao, Mansi & Liao, 2018; Zou, Yu, Vijaya Kumar & Wang, 2018), where
a segmentator network learns to produce accurate segmentation outputs for labeled source
examples, and a discriminator which forces the segmentator to have a similar prediction for
examples of both source and target domains. The segmentator and discriminator network are
trained concurrently, while the segmentator aims to generalize in the feature space or in the output
space. For classification tasks, Ganin & Lempitsky (2015); Long, Cao, Wang & Jordan (2015)
proposed to reduce the distance between the source and target domain feature space. However
for semantic segmentation, Tsai, Hung, Schulter, Sohn, Yang & Chandraker (2018) found
robust performance when the output space is optimized. In addition to the above applications,
adversarial training is shown to improve performance on source domain when there are few
labels or no labels in the target domain (Bateson et al., 2019; Dong, Cong, Sun, Yang, Xu & Ding,

2020; Dou, Ouyang, Chen, Chen & Heng, 2018; Kamnitsas et al., 2017a).
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The limited availability of manual annotated data is especially true for cortical surface analysis,
where labelling thousands of nodes on a highly complex brain is very expensive. This also
explains why the largest manually labelled brain surface dataset Mindboggle (Klein et al., 2017),
contains only 101 subjects. Moreover, another common problem of spectral graph convolution
networks is that the models trained on the surfaces aligned to source domain usually fails to
perform for samples aligned to other reference domain, i.e., the target domain. In this thesis, we
address this limitation for brain surface analysis by adapting an adversarial domain adaptation

method on surface graphs.
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Presentation

This chapter presents the article “Graph Convolutions on Spectral Embeddings for Cortical
Surface Parcellation” Gopinath, Desrosiers & Lombaert (2018) submitted to the journal MedIA
(Medical Image Analysis), sent on 31 July 2018, revised on 31 December 2018, and accepted for
publication on 27 March 2019. The initial results were presented as a poster in MISS (Medical
Imaging Summer School), 2018. Later, the work was published as an oral talk at Med-NeurIPS
2018 conference held in Montreal, QC. Additionally, the journal article was presented as a short
paper poster at the MIDL conference (Medical Imaging with Deep Learning) held in London,
UK. The objective of this article is to develop a learning and exploiting surface data directly

across multiple surface domains with applications to cortical parcellation.

2.1 Introduction

Neuroimage analysis consists of studying functional and anatomical information over the brain
geometry. Various aspects of the brain are investigated using different imaging modalities, such
as magnetic resonance imaging (MRI) data. Structural MRI provides notably the geometry of
the cortex. The thin outer layer of the brain cerebrum is of particular interest due to its vital role

in cognition, vision, and perception. Statistical frameworks on surfaces are, therefore, highly
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sought for studying various aspects of the brain. For instance, variations in surface data can
reveal new biomarkers as well as possible relations with disease processes (Arbabshirani et al.,
2017). The challenge consists of learning surface data over highly complex and convoluted

surfaces and across different subjects.

The goal of separating the cerebral cortex into distinct regions based on structure or function
is known as parcellation. Initially, automated parcellation techniques used clustering based
on local regional statistics (Craddock, James, Holtzheimer III, Hu & Mayberg, 2012). For
instance, a semi-supervised technique (Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub,
Ugurbil, Andersson, Beckmann, Jenkinson et al., 2016) delineated the cortical boundary from
sharp changes in multimodal MRI data. Most research works use a cortical surface based
feature to find surface correspondence. BrainVisa (Auzias, Lefevre, Le Troter, Fischer, Perrot,
Régis & Coulon, 2013; Cointepas, Geftroy, Souedet, Denghien & Riviere, 2010; Riviere, Régis,
Cointepas, Papadopoulos-Orfanos, Cachia & Mangin, 2003) uses sulcal features defined by the
cortical folding patterns to find correspondence between brain surfaces. Features like sulcal pits
or sulcal lines (Auzias, Brun, Deruelle & Coulon, 2015; Lohmann, Von Cramon & Colchester,
2007) are other existing features used for estimating surface correspondences. Conventional
approaches typically rely on geometrical simplifications, such as spherical inflation and slow
mesh deformations (Styner, Oguz, Xu, Brechbiihler, Pantazis, Levitt, Shenton & Gerig, 2006;
Tustison, Cook, Klein, Song, Das, Duda, Kandel, van Strien, Stone, Gee & Avants, 2014; Yeo,
Sabuncu, Vercauteren, Ayache, Fischl & Golland, 2010), a popular but costly process. For
instance, the widely used FreeSurfer (Fischl er al., 2004a) takes around 3 hours to parcellate

brain surfaces by slowly deforming brain models towards labeled atlases.

Convolutional Neural Networks (CNNs) (Lecun, Bottou, Bengio & Haffner, 1998) have the
potential to offer a drastic speed advantage over traditional surface-based methods. CNNs
are mostly used in neuroimage analysis for segmentation (Wachinger et al., 2017) or finding

structural abnormalities (Valverde er al., 2017). The network architecture is either fixed
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Figure 2.1 Overview of our spectral graph convolution algorithm — Graph convolutions of
spectral filters are applied sequentially to process cortical surface data. On the left are
inputs: Surface data, such as sulcal depth, s, and aligned spectral coordinates, u. In the
middle are the learned spectral features, y, found in each layer. On the right are: Predicted
parcel probabilities, p, given by the softmax and the final surface parcellation. Coloring
represents the pointwise value of respective maps from low (blue) to high (red) values.

for various segmentation applications (Ronneberger et al., 2015) or tailored to particular
problems (Kamnitsas et al., 2017b). Fundamentally, current statistical frameworks exploit
spatial information mostly derived from the Euclidean domain, for instance, based on vector
fields, image or volumetric coordinates (Dolz, Desrosiers & Ben Ayed, 2017; Hua, Hibar, Ching,
Boyle, Rajagopalan, Gutman, Leow, Toga, Jack, Harvey, Weiner, Thompson & Alzheimer’s
Disease Neuroimaging Initiative, 2013; Kamnitsas et al., 2017b; Zhang & Davatzikos, 2011).
Such information is highly variable across brain geometries and severally hinders the training of

modern machine learning algorithms.

Geometric deep learning (Bronstein er al., 2017) recently proposed to use convolutional
filters on irregular graphs. To handle the neural network on a graph, Scarselli, Gori, Tsot,
Hagenbuchner & Monfardini (2009) proposes to map and learn graph data in a high-dimensional

Euclidean space. Lately, (Bruna et al., 2014b) formulates the convolution theorem from Fourier
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space to spectral domains over graphs. Chebyshev polynomials are also used to avoid the
explicit computation of graph Laplacian eigenvectors (Defferrard, Bresson & Vandergheynst,
2016). The main concern of these methods is their inability to compare surface data across
different surface domains (Bronstein, Glashoff & Loring, 2013; Eynard, Kovnatsky, Bronstein,
Glashoff & Bronstein, 2015; Kovnatsky, Bronstein, Bronstein, Glashoff & Kimmel, 2013;
Ovsjanikov, Ben-Chen, Solomon, Butscher & Guibas, 2012). Laplacian eigenbases are indeed
incompatible across multiple geometries. Alternatively, Boscaini, Masci, Rodola & Bronstein
(2016); Masci, Boscaini, Bronstein & Vandergheynst (2015) proposed a graph convolution
approach in the spatial domain. These approaches map local graph information onto geodesic
patches and use conventional spatial convolution as template matching. For instance, Monti
et al. (2017) obtains geodesic patches with local parametric constructions of tangent planes to
the surface. Another prominent spatial approach Velickovic er al. (2018) proposes to include
self-attentional layers in which neighborhoods are used to avoid an explicit computation of a
graph Laplacian. This attentional approach reduces to a particular formulation of Monti et al.
(2017). A related work (Simonovsky & Komodakis, 2017) also conditions convolutional filter
weights on specific edge labels over neighborhoods rather than on graph nodes. Applications of
graph convolution networks in neuroimaging remain yet limited. Existing work includes the use
of graph convolutions over population graphs for predicting brain disorders and learning distance
metrics in functional brain networks (Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker & Rueckert,
2017; Parisot, Ktena, Ferrante, Lee, Guerrero, Glocker & Rueckert, 2018). A recent work
(Cucurull et al., 2018) proposes to parcellate the cerebral cortex into three parcels using an
attention-based method (Velickovi¢ ef al., 2018). Brain meshes are, however, constrained within
a unique graph structure, limiting all meshes to use the same mesh geometry. Fundamentally,
these methods either lack the capability to process multiple surface domains (Bronstein et al.,
2013; Eynard et al., 2015; Kovnatsky et al., 2013; Ovsjanikov et al., 2012) or have spatial

representations of surface data defined in a Euclidean space, which ignore the complex geometry
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of the surface. They rely, for instance, on polar representations of mesh vertices (Boscaini ef al.,

2016; Masci et al., 2015; Monti et al., 2017; Velickovi¢ et al., 2018).

This paper leverages recent advances in spectral graph matching to transfer surface data across
aligned spectral domains (Lombaert, Arcaro & Ayache, 2015a). The transfer of spectral
coordinates across domains provides a robust formulation for spectral methods that naturally
handles differences across Laplacian eigenvectors, including sign flips, ordering, and mixing
of eigenvectors in higher frequencies. This spectral alignment strategy was exploited to learn
surface data (Lombaert et al., 2015b) within the random forest framework. Spectral Forests are
operating in a spectral domain and use the first spectral coordinates as well as sulcal depth of
each cortical point. This approach is, however, limited to only pointwise information, ignoring
local patterns within surface neighborhoods. Our approach consists of leveraging spectral
coordinates within graph convolutional networks to bridge a gap between learning algorithms
and geometrical representations. To the best of our knowledge, this is the first attempt at
intrinsically learning surface data via spectral graph convolutions in neuroimaging. This novel
approach enables a direct learning of surface data across compatible surface bases by exploiting

spectral filters over intrinsic representations of surface neighborhoods.

The main contributions of our work are:

- A novel spectral graph convolutional approach for cortical parcellation;

- A direct learning of surface data using trainable spectral filters over surface embeddings;

- The training of spectral filters across multiple mesh geometries of various graph structures;
- The leverage of spectral filters to exploit local patterns of data within surface neighborhoods;

- An evaluation on the largest publicly available dataset of manually labeled brain surfaces

(Klein et al., 2017);
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- An improved state-of-the-art performance for cortical surface parcellation with graph

convolutions;

In this work, we propose a surface learning algorithm. We illustrate the learning capabilities
of this approach with an application to brain parcellation. We choose cortical parcellation
since it provides established benchmarks with publicly available datasets of manual labelings.
The validation over the largest publicly available dataset of manually labeled brain surfaces
(Klein et al., 2017), with 101 subjects, demonstrates a significant improvement in using spectral
graph convolutions over Euclidean approaches. This change of paradigm indeed improves the
parcellation accuracy when using graph convolutions, from a Dice score of 53% to 85%. Our
approach is at least at par with the well established FreeSurfer algorithm (Fischl ef al., 2004a)
when benchmarking over a large dataset (Klein er al., 2017), while gaining a drastic speed
improvement in the order of seconds. The next section details the fundamentals of our spectral
approach, followed by experiments evaluating the impact of our spectral strategy over standard

Euclidean approaches for graph convolutions.

2.2 Method

An overview of the proposed method is shown in Fig. 2.1. In a first step, each cortical surface
is modeled as a graph. Spectral decomposition is then applied on these graphs to capture
the intrinsic geometry of brain surfaces and embed this information in a low-dimensional
feature space (Lefevre, Pepe, Muscato, De Guio, Girard, Auzias & Germanaud, 2018; Lombaert
et al., 2015a). Subsequently, the transfer of surface data between spectral embeddings enables
graph convolution networks to process cortical data across multiple mesh domains. This
is implemented with a realignment of spectral embeddings. Finally, cortical parcellation is
performed by learning spectral filters over realigned spectral coordinates and cortical features
like the sulcal depth. Dense connections (Huang, Liu, van der Maaten & Weinberger, 2017)

improve convergence by propagating information from the initial layers to output layers. We
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Figure 2.2 Overview of the network architecture — Dense connections are used among
successive layers constituted with graph convolutions of learned spectral filters and leaky
ReLU activations. Weights (w), biases (), and parameters of our spectral filters (u, o) are
learned via back-propagation. A final softmax function produces parcel probabilities (p) on
the brain surface.

therefore use dense connections among successive graph convolution layers. The overview of

the network architecture is shown in Fig. 2.2.

2.2.1 Spectral embedding of brain graphs

Let G = {V, &} be a brain graph defined with node set V, such that N = |V|, and edge set
&. Each node i has a feature vector v; = (x;,s;) composed of 3D spatial coordinates x; and
surface data features s;. Various features could be considered to model the local geometry of
the cortical surface, including mean curvature, average convexity, and cortical thickness (Fischl
et al., 2004a; Li, Wang, Shi, Gilmore, Lin & Shen, 2015). In this work, we use sulcal depth
since the boundaries of several regions in anatomical parcellation protocols typically follow

such sulcal features (Destrieux, Fischl, Dale & Halgren, 2009).

We map G to a low-dimensional subspace using the eigencomponents of the normalized graph
Laplacian operator L = I — D‘%AD‘%, where A is the weighted adjacency matrix and D is

the diagonal degree matrix (Chung, 1997). Here, we define the weight between two adjacent
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nodes in terms of node affinity (Grady & Polimeni, 2010), such as the inverse of their Euclidean
distance: a;; = (||x; — x| + 6)_1 where € is a small constant to avoid a zero-division. Let
UAUT be the eigendecomposition of the normalized Laplacian matrix L. Since the most relevant
characteristics of the embedded surface are captured by the principal spectral components of
L, following Lombaert ef al. (2015b), we limit the decomposition to the d = 3 first smallest
non-zero eigenvalues of L. We then obtain the normalized spectral coordinates of nodes as the

. = 1
rows of matrix U = A2U.

Because the spectral embedding of L is only defined up to an orthogonal transformation, we
need to align spectral representations of different brain graphs to an arbitrary reference. Denote
as U(© the normalized spectral embedding of this reference, we align an embedding Uto U©
with an iterative method based on the ICP algorithm (Lombaert ez al., 2015a). In this method,
each node i € V is mapped to its nearest reference node 7(i) € V® in the embedding space
via a nearest neighbor search. The optimal transformation R between matched nodes is then
obtained by solving a Procrustes analysis problem. Let u; be the normalized spectral coordinates

of node i, the overall alignment process can thus be formulated as:

N
arg min Z”Rﬁ,- - ﬁ%)”i 2.1
T i=1

We solve this problem by updating the node correspondence mapping 7 and the transformation

R as described above, until convergence.

2.2.2 Graph convolution on surfaces

We start by presenting the standard CNN model for rigid grids and then explain how this

model can be extended to an arbitrary geometry. Let Y() € RV be the input feature map at

()

convolution layer / of the network, such that Yig is the g-th feature of the i-th input node. The

network input thus corresponds to Y(!). Assuming a 1D grid, the output feature map of layer / is
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given by y( ) = =f (zf}?) with:

I
(l) () () @
E E Woak Vivkg T by, (2.2)
qg=1 k=—K;

()

Here, Wk

are the convolution kernel weights, b;,l) the bias weights of the layer, and f is a

non-linear activation function, for instance, the sigmoid or rectified linear unit (ReL.U) functions.

To extend this fixed-grid formulation to a graph G = {V, &}, we denote as N; = {j | (i, j) € E}

the neighbors of node i € V. A generalized convolution operation can then be defined as:

K
0 W 0 0y , 0
Zzzpwm%WU+b’ 23

JEN; g=1 k=

where ¢;;(0y) is a symmetric kernel with parameters ;. In Monti ez al. (2017), this kernel is
defined on a tangent plane of a mesh at node i and is parameterized using polar coordinates.
Learning is however constrained to a single graph structure, which hinders the application of

convolutions across multiple graphs.

2.2.3 Learning across multiple mesh geometries

To learn surface data across multiple graphs, we leverage the spectral transfer of information
across spectral embeddings. The transformation R of Eq. (2.1) is first used to obtain the aligned
spectral coordinates with U = RU. Convolution kernels ¢ 1s then defined in the common

spectral domain:

l l

D) (! (! = =~ . (1

= 2y 20 e Vg ¢ O) + by 24)
JEN; g=1 k=
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Figure 2.3 Illustration of the convolution operation — (a) Standard convolution on grids.
(b) Geometric convolutions using three Gaussian kernels on a spectral embedding.
Operations on grids can be shown to be a special case of operations on surfaces.

While any symmetric kernel can be used, in this work, we set ¢ as the Gaussian kernel with

mean (or offset) uy and variance (or bandwidth) o7:

@ (U, ;5 pe, o) = exp (= 10 — W) — pell3 /20%). (2.5

In an image domain, the neighborhood structure is regular, often organized in a lattice with
fixed edge lengths between neighboring pixels. However, in a graph embedding, neighborhoods
can have arbitrary structures with different edge lengths across the embedding. The continuous
spectral domain embeds the geometric information of the graph. We define learnable kernels
in a spectral domain relative to node i in order to capture the neighborhood information. This
is thus the reason for subtracting u; in Eq. (2.5). Keeping kernels relative to node i allows the
application of convolutions over a continuous space and reusing the same kernel parameters
across different nodes. This fundamental change from Euclidean space to the spectral domain

enforces the learning process to be geometry-aware.

The difference between the proposed graph convolution and standard convolutions over a fixed
grid is illustrated in Fig. 2.3. Grid-based convolutions can be seen as a special case of our

graph convolutions, for which the kernel offsets uy are positioned regularly on the grid and
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the bandwidth o — 0. In addition to extending standard convolutions to irregular grids in
continuous space, the proposed formulation can also model filter responses at different scales by
varying 0. Moreover, since kernel parameters u; and o are learned directly from training data,
instead of being defined during architecture design, our formulation can better adapt to the task
at hand. For instance, kernels with small bandwidth can be learned to recognize thinner cortical
structures, while large bandwidth kernels can be learned to model broader regions. Finally, the
proposed strategy avoids the use of tangent planes, polar pseudo-coordinates (Monti et al., 2017)

or the costly computation of geodesic distances (Boscaini ef al., 2016; Masci et al., 2015).

Using the formulation of Eq. (2.4), we define a fully-convolutional network whose input at node

i is given by yfo) = (u;, s;), where u; is the aligned spectral coordinates of i and s; is the sulcal

depth at this node. The output layer of the network has a size corresponding to the number of

parcels to be segmented, 32 in our case. Leaky ReLU is applied after each layer to obtain filter

()

responses: y; - = max(0.0lzfQ, zf[l,)). Since the parcels to segment are mutually exclusive, we

use a softmax operation after the last graph convolution layer to obtain the parcel probabilities
0
exp(y;,)

of each node. The softmax function is given by T oo ®) Finally, the weighted cross-entropy
a ey,
is employed as output loss function:
N C
E©) = =Y > w.-siclogpic(©), (2.6)

i=1 c=1

where @ = {w;l; . b},l), @;{l)} are the trainable network parameters, p;.(®) is the output
probability for node i and parcel label ¢, and s;. is a one-hot encoding of the reference
segmentation. The weights w,. compensate for the size difference of parcels, and are set
inversely proportional to their surface areas such that the larger and smaller parcels have similar

importance. This loss is minimized by back-propagating the error using standard gradient

descent optimization.
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2.3 Results

We now validate our spectral learning approach. To do so, we benchmark our performance
using the largest publicly available dataset of manually labeled brain surfaces, Mindboggle
(Klein et al., 2017). It contains 101 subjects collected from different sites, with cortical meshes
varying from 102K to 185K vertices. Each brain surface includes 32 manually labeled parcels.
The experiments are carried out on an i7 desktop computer with 16GB of RAM and a Nvidia
Titan X GPU. First, we evaluate the influence of different parameters in our learning framework.
Second, we highlight the effect and advantages of spectral alignment in this framework. Finally,
we assess the improvement in accuracy of learning frameworks when directly operating in a

spectral domain rather than a conventional Euclidean domain.

2.3.1 Model selection

The hyper-parameters in our formulation are the number of graph convolution layers, L, in the
fully-convolutional network and the number of Gaussian kernels, K, in each layer. To evaluate
the effect of these parameters, we first set the size of the output layer to be equal to the number
of parcels, 32 in our case. We measure the change in performance when increasing the number
of layers from 1 to 4. Dense connections are removed in order to benchmark performance in a
same controlled experimental setting. Along the layers of our architecture, the size of feature
maps is reduced by two between two consecutive layers. This is to focus information towards the
final parcellation and to limit memory usage. We also evaluate the performance when changing
the number of kernels from 1 to 7. Our goal is to study how performance improves with an
increasing number of layers and kernels. The total number of trainable parameters in a layer /
that has a feature map of size M; and K kernels is given by K(Ml_l + M;_; X Ml) + M;. This
indicates that the number of trainable parameters grows with the size of our network architecture.
The model becomes computationally expensive in terms of memory usage for architecture

beyond 4 layers and 7 kernels. Using relatively large sized brain meshes of the Mindboggle
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Figure 2.4 Experiments for model selection — Each line indicates the segmentation
accuracy in terms of Dice scores on the test split for different architectural models. It is
observed that performance improves when the number of layers, L, increases, but quickly
reaches a plateau. Performance also increases with the number of kernels, K. A peak is
observed with 6 kernels and 4 layers. This configuration requires about 10GB of RAM.
Increasing the model complexity would unnecessarily burden memory usage.

dataset, we use random splits for training, validation, and testing in a 70-10-20% ratio. Each
evaluated architecture is trained for 250 epochs on the train split. We observe an increase
in segmentation accuracy in terms of Dice score when the number of kernels, K, increases.
However, for the same number of kernels, adding more layers burdens the model complexity,

while accuracy increases but stagnates from 2 to 4 layers. This is shown in Fig. 2.4.
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Figure 2.5 Evolution of learning algorithm — The prediction of a particular parcel over
multiple epochs is shown. A coarse to fine refinement of the parcel region is observed.
After training, the predicted parcel probability corresponds to the ground truth parcel,

shown on the right.

Table 2.1 Robustness to reference across all parcels — The average dice percentage
obtained after separate training and testing with 5 references. The last column provides the
mean and standard deviation of the results across all 35 parcels tested with all 5 references.

| Ref) Ref, Ref3 Ref, Refs Mean |
\ 86.62+1.72 8620+1.56 8642+1.73 8626+1.67 86.52+1.75 86.40+0.17 \

This experiment indicates that L = 4 with K = 6 would be the optimal hyper-parameter values.
The model has a total number of 264, 768 trainable parameters and takes up to 10GB of GPU
memory. The trainable parameters for our dense version doubles and takes up to 11GB of
shared GPU memory. We similarly train our dense model for 250 epochs. The best performing
model on the validation set is used for testing. Fig. 2.5 illustrates the evolution of the learning
algorithm over iterations when classifying one parcel. We use this dense model for the rest of

our experiments.

2.3.2 Spectral alignment

Our contribution is to operate in a geometry-aware spectral domain. This is enabled by aligning
spectral embeddings across various mesh domains. We now evaluate the effect of a spectral
alignment when learning graph convolution kernels. We align the spectral representations of

different brain graphs to an arbitrary reference from the dataset.
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First, we verify independence of our method with respect to the choice of a reference for
alignment. To do so, we train and test our algorithm with 5 different reference brains, where the
whole dataset is aligned to a reference. The evaluation of our algorithm on these 5 different
references shows a performance having an average dice score of 86.4% and a standard deviation
of 0.17% (Table 2.1). This indicates that our learning algorithm is robust to the choice of

reference.

Second, we evaluate the impact of aligning spectral embeddings in learning graph convolution
kernels. When both training and testing sets are aligned towards one same reference, the trained
model yields an accuracy of 86.62% in terms of Dice overlap. However, when training and testing
sets are both aligned towards differing references, Refaining and Refiegiing, the performance
drops to 79.73%. This may be expected since both training and testing sets are expressed using
differing spectral domains. To solve this discrepancy, our methodology consists of realigning
the testing set towards one unique spectral domain, for instance, using Refining. In such case,
the performance on realigned embeddings is improved to 84.7%. To evaluate the effect of
varying references between training and testing sets, we iterate over all possible combinations,
summarized in Fig. 2.6. It is observed that if spectral alignment is not present between the
training and testing set, the classification accuracy degrades, while a spectral realignment of the

testing set brings back the accuracy to initial scores.

2.3.3 Comparison with the state-of-the-art

We now compare our method with state-of-the-art approaches in learning graph-structured
methods. First, we show the limitations of working in the Euclidean domain with the Random
Forest method (Lombaert er al., 2015b) as well as the latest approaches of graph convolution
networks (Monti e al., 2017). Second, we show the advantage of changing the paradigm
in graph learning frameworks from operating in a conventional Euclidean domain towards a

spectral domain. This is enabled by our transfer of spectral embeddings across brain surface
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Figure 2.6 Robustness to the choice of reference — (Left) Dice score performance of two
spectral models trained and tested using different aligned references. Row-column (i, j)
provides the score of a using model trained via reference i, and tested via reference j. If
references differ, scores degrade. This illustrates the current limitation of current graph

convolutional approaches. (Right) Dice score performance of models when references are

aligned. Row-column (i, j) indicates that difference references are used during trained and
testing. The higher scores in off-diagonal experiments indicates that a realignment of
spectral embeddings is essential to exploit multiple mesh domains.

Table 2.2 Comparisons with graph learning approaches — Average dice overlaps (in %)
over 32 parcels of 101 subjects are shown along classification accuracy (in %), and average
Hausdorff distances (in millimeters).

Method Dice overlap (%) Accuracy (%) Avg. Hausdorff (mm) |
Euclidean Forest 45.87 +£8.74 49.26 +8.32 497+1.11
GC on Euclidean 50.78 +£10.78 54.24 +10.33 5.82 +1.66
Spectral Alignment 77.67 £3.65 81.87+3.39 2.87+0.47
Spectral Forest 79.89 £2.62 81.94 +2.54 1.97 £0.40
FreeSurfer 84.39+191 85.19 +1.98 2.11+0.29
Ours 85.37+2.36 86.97 +2.43 1.75+0.35
Ours + MRF 86.61 +2.45 88.08 +2.47 1.66 = 0.44

domains. Finally, we assess the improvement of exploiting neighborhoods of surface data versus
the pointwise Spectral Forest method (Lombaert ez al., 2015b), as well as a comparison with the

established FreeSurfer algorithm (Fischl ef al., 2004a).
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Euclidean Forest Spectral Forest : Spectral Alignment

Reference (Ground Truth)

Dice overlap : 458% : Dice overlap : 79.8% Dice overlap : 77.6%
Avg. Hausdorffdist: ~ 4.9 mm : Avg. Hausdorff dist: 1.9mm : Avg. Hausdorffdist: ~ 2.8 mm

Ours + MRF

Dice overlap : 50.78% : Dice overlap : 85.3% : Dice overlap : 86.6%
Avg. Hausdorff dist: 58mm : Avg Hausdorff dist: 1.7mm : Avg. Hausdorff dist: 1.6 mm :

Figure 2.7 Cortical parcellation comparison — (First column, Left) Learning with
Euclidean coordinates: yields low Dice score (45.8% with Random Forests, 50.8% with
graph convolutions) and inconsistent boundaries (Hausdorff distance of 4.9-5.8mm).
(Second column, Middle) Learning with Spectral coordinates: improves Dice score (79.8%
with Spectral Forests, 85.3% with our Spectral convolutions) and boundary regularity
(1.9-1.7mm). (Third column, Top) A pure spectral alignment without learning yields a Dice
score of 77.6%. This is used as a benchmark to assess improvement in learning strategies.
(Third column, Bottom) The parcel probability maps generated with our spectral filters
could be further refined with an MRF regularization, leading to an improvement in
boundary regularity (1.6mm) and Dice score (86.6%). (Right) Reference ground truth for
comparison purposes. Brain surfaces are inflated for visualization.

We train and test all methods on the entire dataset with a 5-fold cross-validation. We train a
random forest with 50 trees on 3D spatial location and sulcal depth, which we name Euclidean
Forest, as in Lombaert et al. (2015b). For comparison, we also train a graph convolution network
similarly to Monti ef al. (2017) in the Euclidean domain, with 3D spatial location and sulcal
depth. The architecture remains the same as described earlier, as in Fig. 2.2. The average Dice
overlap across all parcels in our dataset is 45.87% with Euclidean Forests. Graph convolution

networks in the Euclidean space has an average Dice overlap of 50.78%, which is an increase of

4.9%.

To put in perspective, a pure spectral alignment of brain surfaces yields aligned parcellations that

have an average Dice overlap of 77.67% over all pairs of possible brains. This pure alignment
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Figure 2.8 Performance evolution of different methods for each individual parcels — Dice
scores for all 32 cortical parcels across the dataset when learning with: (Blue) Euclidean
Forest, (Orange) Graph convolutions in the Euclidean domain, (Green) Spectral Forest with
pointwise information, (Red/Ours) Graph convolutions in a spectral domain, exploiting
neighborhood information, (Purple/Ours+MRF) Final MRF refinement of our spectral
maps, and (Brown) FreeSurfer provided for comparison. Improvements are consistent
across all 32 parcels. The first leap in accuracy (Orange area, +11%) corresponds to an
improvement from using convolutional networks over random forests. The second leap
(Green area, +58%%0) corresponds to an improvement from learning in a spectral domain
rather than Euclidean. The third leap (Red area, +7%) corresponds to the extra
improvement of exploiting spectral neighborhoods when learning spectral convolutional
filters. The fourth leap (Purple area, +1%) indicates the effect of regularizing final parcel

probability maps with MRFs.

process does not involve learning of surface data while producing scores 16.9% superior to the

previous Euclidean learning approaches. This indicates the benefits of operating in a spectral

domain instead of the conventional Euclidean domain.

The effect of learning over spectral domains is assessed using, first, pointwise information in the
Random Forest framework and in graph convolutional networks. Input for all random forests
consists of sulcal depth and the first three spectral coordinates. This is referred to the Spectral

Forest, similarly to Lombaert ef al. (2015b), and yields an average Dice overlap of 79.89%. It
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1s important to note that Spectral Forests learn over pointwise information only. Our graph
convolutional network benefits from exploiting neighborhood information of surface data. The
trained kernels on spectral embeddings yield an average Dice overlap of 85.37%. These results
are summarized in Table 2.2. Fig. 2.7 shows that indeed learning using spectral method produces
an improved parcellation quantitatively. The qualitative results from our algorithm look similar

to the manual parcellation.

As an illustration of further refinement, we use a Markov Random Field (MRF) regularization
for our method. We apply a standard graph cut algorithm (Boykov & Kolmogorov, 2004)
with minus-log parcel probabilities as unary potentials and the Potts model for defining binary
potentials. MRF regularization further improves the overall classification accuracy from 85.37%
to 86.62.1%. The Spectral Forest parcellates the brain with an average Dice overlap of 79.8%.
With an MRF as post-processing over the prediction of Spectral Forest, the Dice overlap improves
to 83.7%, still lower than our approach without MRFs. The improvement of 3.9% in Dice
overlap is seen with the use of neighborhood information from MRF. We see an increase of
1.3% in terms of Dice overlap when we use MRF with our approach. We can observe a similar
improvement regarding average Hausdorff distances, with a reduction of distance error from
2.1 mm to 1.75 mm (Table 2.2). However, our graph convolution based approach has higher
performance of 2.7% average Dice overlap over the Spectral Forest + MRF. A closer look at
the performance scores for each parcel (Fig. 2.8) also reveals a general improvement when
exploiting neighborhoods (Our method) over pointwise surface data (Spectral Forest). This is a

34.59% improvement (Table 2.2) over learning in the standard Euclidean domain.

2.4 Discussion and Conclusion

This paper presented a novel framework for learning surface data via graph convolutions of
spectral filters. The algorithm leverages recent advances in spectral matching to enable the

comparison of surface data across multiple surface domains. Our experiments illustrated the
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benefits of our approach with an application to cortical surface parcellation. This is a particularly
challenging problem where current graph convolutional approaches remain limited by the
inability to compare surface data across brain geometries. This typically results in spatial

irregularities of parcel boundaries as illustrated in Fig. 2.7.

Shifting graph convolutions into a spectral domain endows the learning process with a geometry-
aware representation of surface data. This strategy reveals that the use of spectral features
improves a classification from a 50% Dice score in a conventional Euclidean domain to an
85% Dice score in a spectral domain. A performance gain is also noted when using a graph
convolutional network instead of a standard random forest, from 45% to 50% when learning
from a conventional representation of spatial information. Our experiments further indicate
that an extra improvement is also gained by exploiting spectral neighborhoods. Fig. 2.8 indeed
exhibits a major performance leap when leveraging spectral features over Euclidean features.
This corresponds to the green area in Fig. 2.8, from 50% to 79% — a 29% improvement. The next
leap in the graphic indicates an improvement due to exploiting spectral neighborhoods, from
pointwise Spectral Forests (Lombaert et al., 2015b), where no neighborhood can be exploited
with random forests, to our graph convolutional approach exploiting spectral neighborhoods. It
is also worth noting that our graph convolutional approach uses only the first three principal
components whereas the Spectral Forests (Lombaert et al., 2015b) considers five principal
components to perform the same task. This is the red area in Fig. 2.8, from 79% to 85%, across
all parcels in our dataset — an extra 7% improvement. These results confirm that exploiting a
spectral domain provides a significant gain in performance, 29%, and exploiting convolutions

over spectral neighborhoods provide an additional 7% improvement.

The experiments used the largest publicly available dataset of manually labeled brain surfaces
(Klein et al., 2017). The performance of our spectral strategy is comparable to the state-of-the-art
approaches for cortical parcellation. It reduces, however, the computation time by an order

of magnitude. The Spectral Forest approach requires 23 seconds to run one pass over all 50



57

trees, yielding an accuracy of 79.89% + 2.62%. Our method requires 3 seconds to run one
forward-pass on a trained network, yielding an accuracy of 85.37% + 2.36%. Both models
roughly take 15 seconds to obtain the spectral coordinates and align to a reference brain. This is
an 83% improvement in computation time. Using an additional MRF regularizer, as is often
used in network approaches, brings up accuracy to 86.61% =+ 2.45%. The parcellation process
of FreeSurfer, starting from a brain surface, requires 3 hours of computation and yields an
accuracy of 84.39% + 1.91%. Itis to be also noted that in the protocol of the Mindboggle dataset,
annotations by experts are, in effect, manual corrections from FreeSurfer parcellations (Klein
et al., 2017). This creates a positive bias for FreeSurfer results. Our claim in our experiments is
not necessarily a superiority of our approach, but to rather provide a parcellation accuracy that

is at least equivalent to FreeSurfer.

The advantage of using a spectral method is, on one hand, computational, by providing
parcellation in seconds rather than hours, and on the other, methodological, by opening up a
new learning strategy for processing cortical surface data. The technical contribution leveraged
recent work on transfer of spectral bases across brain surface domains (Lombaert et al., 2015a,1).
This enables the learning of spectral convolution filters across multiple brain geometries. This
overcomes a major limitation in current graph convolutional approaches (Boscaini et al., 2016;
Masci et al., 2015; Monti et al., 2017; Velickovic et al., 2018), which are restrained to a unique
fixed graph structure. Our method ameliorates graph spectral approaches by exploiting transfers
of spectral bases. Furthermore, our experiments also used a multi-centric, multi-data and
publicly available dataset. This provides an exhaustive, reproducible, evaluation for directly

exploiting spectral features.

While the potential of our method is demonstrated on cortical parcellation, it can be applied to
other analyses of surface data. For instance, our framework has a direct impact on regression
problems that involve predictions of cortical thickness over time, potentially leading to new

families of geometry-based biomarkers for neurological disorders.
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Presentation

This chapter presents the article “Learnable Pooling in Graph Convolutional Networks for Brain
Surface Analysis” (Gopinath, Desrosiers & Lombaert, 2020b) submitted to TPAMI (IEEE
Transactions on Pattern Analysis and Machine Intelligence), published on 02 October 2020. An
initial article was published in the IPMI conference (International Conference on Information
Processing in Medical Imaging), 2019, presented as an oral talk in Hong Kong. The objective of
this article is to develop an adaptive pooling technique for intrinsic aggregation of graph nodes

based on graph spectral embedding.

3.1 Introduction

Brain surface analysis plays a crucial role in understanding the mechanisms of perception and
cognition in humans (Arbabshirani et al., 2017). However, the complex geometry of the brain
surface, comprised of intricate folding patterns, poses considerable challenges in neuroscience.
Notably, brain imaging data, for instance acquired by magnetic resonance imaging, typically
comes in 3D, a Euclidean space, while its analysis often focuses on the thin surface of the
brain, a non-Euclidean space. This fundamental difference between the domains of acquisition

and analysis, coupled with the geometrical complexity of brain surfaces, severely hinders



60

computational approaches for brain surface analysis. As an illustration, neighboring 3D voxels
in a neuroimage may in fact represent points that are far apart on the brain surface, as shown on
Fig. 3.1. To alleviate this problem, popular surface-based methods (Fischl ez al., 2004b; Yeo
et al., 2010) often simplify the geometry of the brain, for instance, by mapping the surface to a
sphere. This process is, however, computationally expensive. For example, the widely-used
surface analysis pipeline of FreeSurfer (Fischl ez al., 2004b) requires several hours to inflate
the cortical surface to a sphere, match it to an atlas and finally perform a cortical analysis.
The geometry of brain surfaces similarly complicates other conventional approaches for brain
analysis, such as those based on diffeomorphic transformations (Glaunes, Trouve & Younes,

2004) or on spherical harmonics (Styner et al., 2006).

A key application of brain surface analysis is detecting and tracking the progress of neurodegen-
erative disorders, such as Alzheimer’s disease, which often result in a severe atrophy of brain
tissues. Analyzing the geometrical changes of the brain can thus aid in the early diagnosis of
such conditions. Initial work has focused on Euclidean 3D data based for instance on the texture
of magnetic resonance images (Freeborough & Fox, 1998; Vemuri, Gunter, Senjem, Whitwell,
Kantarci, Knopman, Boeve, Petersen & Jack Jr, 2008), in order to differentiate Alzheimer’s
disease from normal aging. While volumetric approaches have shown usefulness in detecting
global changes in a Euclidean space (Arbabshirani ef al., 2017), surface-based methods (Fischl
et al., 2004b; Glaunes et al., 2004; Styner et al., 2006; Yeo et al., 2010) are more adequate for
analyzing data on brain surfaces. For example, the analysis of shape abnormalities on brain
surfaces has improved the prediction of Alzheimer’s disease (Tang, Holland, Dale, Younes,
Miller & Initiative, 2014) or the identification of stages in this progressive disorder (Oliveira Jr,
Nitrini, Busatto, Buchpiguel, Sato & Amaro Jr, 2010). Nevertheless, all these studies has
focused on pre-established measurements of brain surface information. In this paper, we propose
to learn and exploit the organizational structure of surface data in order to improve prediction

tasks that use data on highly-complex surfaces.
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Figure 3.1 Complex geometry of the cerebral cortex — As illustrated, two nearby points in
the volume may in fact be far apart on the cortical surface.

3.1.1 Related work

Current machine learning approaches have achieved state-of-the-art performance in a broad range
of computer vision and medical imaging applications. In particular, deep learning architectures
such as convolutional neural networks (CNNs) (Lecun et al., 1998) offer higher accuracy and
speed over traditional approaches for image analysis. In neuroimaging, CNNs are now widely
used for various segmentation (Ronneberger et al., 2015) and classification (Wachinger et al.,
2017) problems, with architectures tailored for the target task and the available imaging data.
For example, various architectures have been proposed to exploit volumetric data (Dolz ez al.,
2017; Hua et al., 2013; Kamnitsas et al., 2017b; Zhang & Davatzikos, 2011). A fundamental
limitation of these models, however, is their restriction to data lying on a fixed Euclidean grid
representing pixels or voxels. This restricted representation induces ambiguity when exploiting
complex geometries such as in brain surfaces, impeding the application of these Euclidean

models for brain surface analysis.
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Geometric deep learning (Bronstein ez al., 2017) generalizes deep learning models to operate on
non-Euclidean domains such as graphs and manifolds. Recent advances in this field, particularly
in graph convolutional networks (GCNs), have enabled convolution operations over graphs
by exploiting spectral analysis, where convolutions translate into multiplications in a Fourier
space (Bruna, Zaremba, Szlam & LeCun, 2014a; Defferrard et al., 2016; Kipf & Welling, 2017;
Monti et al., 2017). In such models, convolutions are manipulated with eigenfunctions of
graph Laplacian operators (Xu, Fan, Xu, Zeng & Qia, 2018), which can be approximated with
Chebyshev (Defferrard et al., 2016) or Cayley polynomials (Levie, Monti, Bresson & Bronstein,
2018). These learned convolution filters can be expressed in terms of mixtures of Gaussians
(Monti et al., 2017) or splines (Fey, Lenssen, Weichert & Miiller, 2018a). Despite their
advantages over standard CNNs, these models are, however, limited to a fixed graph structure
and thereby not suitable for brain imaging applications involving a population of subjects.
Indeed, brain surfaces have varying geometries with a different number of nodes and a distinct
connectivity across meshes. This variability poses computational challenges, for example,
arising from the fact that the values of a Laplacian eigenfunction can drastically differ between
brains with distinct surface geometries (Ovsjanikov et al., 2012). To this effect, a learned
synchronization can correct for differences in eigenfunctions (Yi, Su, Guo & Guibas, 2017). An
alignment of eigenbases (Lombaert ef al., 2015a) similarly provides a common parameterization
of brain surfaces. Such aligned eigenbases enabled the direct learning of surface data across
multiple brain geometries (Gopinath, Desrosiers & Lombaert, 2019b). Nevertheless, these types

of GCNss are limited to a fixed graph structure, for instance, with the same number of nodes.

Standard pooling strategies rely in fact on such consistency of graph structures. Currently,
heuristics are often used to mimic a max-pooling strategy in GCNs (Bruna er al., 2014a;
Defferrard et al., 2016; Dhillon, Guan & Kulis, 2007). They include varying the number of
feature dimensions across layers (Bruna ef al., 2014a) while retaining fixed layer sizes, or
relying on partition methods, for instance, based binary trees (Defferrard et al., 2016) or Graclus

clustering (Dhillon er al., 2007) to coarsen the initial graph. However, these strategies are
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mainly used for point-wise operations in fixed-size graphs (Monti et al., 2017), such as node
classification (Parisot ef al., 2017), and do not apply to the task of subject classification when
the geometry varies across subjects. A few recent studies (Wang, Samari & Siddiqi, 2018; Ying,
You, Morris, Ren, Hamilton & Leskovec, 2018) have attempted to tackle the problem of graph
classification in GCNs by incorporating adaptive pooling modules in the network. For instance,
(Wang et al., 2018) performs a hierarchical clustering of nodes using their spectral coordinates,
with a subsequent pooling of node features within each cluster. While this approach handles
varying graph structures, clusters are defined based only on node proximity in the embedding
space, without considering node features. Consequently, this unsupervised pooling strategy may
not be optimal for the classification or regression task at hand. More recently, a differential
pooling technique (Ying et al., 2018) splits the network in two separate paths, one for computing
latent features for each node of the input graph and another for predicting the node clusters
by which features are aggregated. Similarly, (Gao & Ji, 2019) proposes to use a top-k graph
pooling layer in order to down-sample the input graph. This method selects the top-k nodes for
the downsampled graph based on a learned projection vector. However, these approaches ignore
the intrinsic localization of nodes within the graph, which is sought when the geometry is highly

curved such as in brain surfaces.

3.1.2 Contributions

This paper proposes a novel method based on GCNss for classification and regression of surface
graphs. Our method includes a learnable pooling strategy which predicts optimal node clusters
for each input graph, and thus can handle graphs with varying number of nodes or connectivity.
This adaptive pooling technique is applied recursively to obtain a fixed-size representation,
which is then used for predicting a target classification or regression value. Our method also
leverages spectral embedding techniques for surface graphs (Lombaert ef al., 2015a), offering a

more powerful representation of complex surfaces like the brain cortex. This contrasts with
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Figure 3.2 An overview of the proposed graph convolutional network — The brain surface
graph are mapped to a low-dimensional subspace using spectral decomposition. The
spectral bases of the input brain are then aligned to a common reference. Aligned spectral
coordinates and cortical surface features are fed as input to the network, composed of
sequential Graph Convolution + Pooling (GC+P) blocks and two fully-connected (FC)
layers. Each GC+P block processes input node features Y¥) in two separate paths based on
geometric convolutions, one (bottom) deriving a new set of features for each graph node
F() and the other (top) computing a soft assignment SV of nodes to clusters representing
nodes of the reduced output graph. A pooling layer then obtains reduced graph features
Y+ by aggregating FV in each predicted cluster of S©).

the differential pooling approach in (Ying et al., 2018) or (Gao & Ji, 2019), where nodes lack

intrinsic localization within the graph.

We illustrate our approach on the challenging tasks of brain surface classification and regression
using the well-known Mindboggle (Klein ez al., 2017) and ADNI datasets (Jack et al., 2008).
We first consider the problem of subject-sex” classification and evaluate the impact of our
learnable pooling method’s hyper-parameters, including the type of pseudo-coordinates, number
of clusters, number of eigenvectors, number of neighbors, graph convolution kernel, and input
graph size. In an ablation study, we also assess the importance of alignment and regularization
for this prediction task. To evaluate the usefulness of our learnable pooling strategy, we compare

it against recently-proposed pooling techniques for GCNis.

2 As in most studies, we use the term sex instead of gender to designate biological differences between male
and female subjects.
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We show the ability of our pooling strategy to learn important node clusters in a supervised
manner by comparing the relationship between these clusters and prominent anatomical regions.
To further validate the regions learned by our network, we use it to predict the size of cortical
regions as defined by a standard parcellation atlas. Our model is also tested on cortical surface
data from the ADNI dataset to (i) discriminate between control subjects and subjects suffering
from different stages of Alzheimer’s, and (i7) regress the brain age of subjects. We choose the
ADNI dataset (Jack et al., 2008) as it provides manual labels of the subject age and three stages
of Alzheimer’s disease. Our method achieves a similar performance to the state-of-the-art on
the ADNI dataset (Jack er al., 2008), while using only simple cortical measurements such as

thickness and sulcal depth.

In summary, the major contributions of our work are as follows:

- A general model for classifying and regressing graphs with varying geometry, which combines
a learnable, supervised pooling strategy with the intrinsic (non-Euclidean) localization of

nodes via graph spectral embedding.

- A first fully-learned model for brain surface analysis contrasting with previous approaches

based on predefined cortical features;

- Anin-depth experimental evaluation on two large-scale benchmark datasets (i.e., Mindboggle
and ADNI) and four different prediction tasks (i.e., subject-sex classification, cortical region
size regression, Alzheimer’s disease classification, and brain age regression). Our extensive
experiments evaluate the impact of the main components and hyper-parameters of our
learnable pooling method, and compares our method against four recently-proposed pooling

strategies for GCN;

- State-of-the-art performance for ADNI stages classification and brain age prediction using

cortical surface data.
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This paper represents a significant extension of our previous work in (Gopinath, Desrosiers & Lom-
baert, 2019a). Beyond giving a deeper motivation of our work and a more detailed description
of the methodology, we thoroughly evaluate our method on a large multi-site dataset, i.e.
Mindboggle, as well as on two additional prediction tasks, i.e. subject-sex classification and
cortical region-size regression. Added experiments also provide a more comprehensive study of
the main hyper-parameters and components of our pooling method and demonstrate its advantage
over state-of-art graph pooling techniques relying on unsupervised spectral clustering (Wang
et al., 2018), differentiable pooling approaches in Euclidean space (Ying ef al., 2018) and a
recent top-k pooling method (Gao & Ji, 2019). Moreover, results of new experiments highlight
the relationship between the learned clusters for these tasks and known cortical regions, and
show the robustness of our method to surface mesh variability in terms of number of nodes and

connectivity.

3.2 Method

We first describe a general formulation that extends standard convolutions to non-rigid geometries,
such as surfaces. We then detail our strategy based on graph spectral embedding to model the
intrinsic localization of mesh nodes and align them across multiple surfaces. Subsequently,
we present our end-to-end learnable pooling strategy for the adaptive clustering of graph
nodes. Finally, we provide detailed information on the overall network architecture and training

procedure.

3.2.1 Convolutions on non-rigid geometries

In a standard CNN, the input is typically provided as a set of features observed over a regular grid
of points like 2D pixels or 3D voxels. This information is then processed using a sequence of
layers composed of a convolution operation followed by a non-linear activation function like the

ReLU. Let YV € RV>Mi be the input feature map at convolution layer /, such that yl%) is the g-th
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Figure 3.3 Convolutions on grids vs. graphs — Illustration of standard grid-based 2D

convolutions (left) and geometric graph convolution (right). The challenge is to exploit

kernels on arbitrary graph structures, and to add pooling operations over convolutional
layers of graph nodes.

feature of the i-th input node. The feature map consists of N; input nodes with M; dimensions
each. Assuming a 1D grid for simplicity, the output of layer / obtained by a convolution kernel

of size K; is given by yg”) = f(zl-(;)), where

ip
M, K
a0 _ () () )
) = >y Wl G, + by 3.1)
g=1 k=1
Here, ws[)[ ;. are the convolution kernel weights, b;,l) the weights of the layer, and f the activation
function.

For a general surface, points are not necessarily defined on a regular grid and can lie anywhere
in a 3D Euclidean space. Such surface can conveniently be represented as a mesh graph
G = {V,&E} where V is the set of nodes corresponding to points and & is the set of edges
between the graph nodes. Given a node i € V, we denote as N; = {j | (i, j) € E} the set of
nodes connected to i, called neighbors. We extend the concept of convolution to arbitrary graphs

using the more general definition of geometric convolution (Fey et al., 2018a; Gopinath et al.,
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2019b; Monti et al., 2017):

M; K;
l 1 1 l !
Gy = D0 D000 Woa Vig €ir(O) + by, (3.2)
‘]'EM q:] k=1

In this extended formulation, ¢;; is a symmetric kernel parameterized by @, which encodes
the relative position of neighbor nodes j to a node i when computing the convolution at node i.
The pseudo-coordinates u;; of i relative to j are usually defined based on Cartesian or polar
coordinates. In this work, we explore two types of kernels for geometric convolutions: the
Gaussian kernel (Monti ef al., 2017) and B-spline kernel (Fey ef al., 2018a). The Gaussian
kernel, which has learnable parameters @; = {uy, X} corresponding to a mean vector and

covariance matrix, computes the response as

¢ij(O) = exp (- $(w; — ) TE ! (wij — ). (3.3)

As shown in Fig. 3.3, standard convolutions (left) can be seen as a special case of geometric
convolutions with Gaussian kernels (right) where nodes are placed on a regular grid and kernels
are unit impulses (i.e., spherical Gaussian kernels with zero variance) placed at the grid position
of neighbor nodes. On the other hand, B-spline kernels obtain the response as the product of M;
B-spline basis functions of degree m based on uniform knot vectors. Compared to Gaussian
kernels, this kernel has the advantage of making computation time independent from the kernel

size, thereby improving computational efficiency and scalability.

3.2.2 Spectral embedding of multiple surface graphs

A significant limitation of the above geometric convolutional model is its inability to process
differently-aligned surfaces. Thus, since local coordinates u;; are determined using a fixed

coordinate system, any rotation or scaling of the surface mesh will produce a different response
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for a given set of kernels. Moreover, as shown in Fig. 3.1, geometric convolutions in Euclidean

space are poorly-suited for complex surfaces like the highly-convoluted brain cortex.

We address these issues using a graph spectral embedding approach. Specifically, we map a
surface graph G to a low-dimensional subspace using the eigencomponents of its normalized
Laplacian L =1 - D :AD: , where A is the weighted adjacency matrix and D is the diagonal
degree matrix with d;; = }; a;;. Although binary adjacency values could be used in A, we
instead define the weight between two adjacent nodes as the inverse of their Euclidean distance:
aij = (IIx; — x|l + e)_l where € is a small constant to avoid a zero-division. Denoting as UAU"
the eigendecomposition of L., where A is the diagonal matrix of real, non-negative eigenvalues,
we then compute the normalized spectral coordinates of nodes as the rows of matrix U=UA".
Here, normalized components are scaled proportionally to the inverse of their eigenvalues since
components with smaller eigenvalues encode more relevant characteristics of the embedded
graph (Chung, 1997). Based on the same principle and as in (Lombaert ef al., 2015b), we limit
the decomposition to the d = 3 first smallest non-zero eigenvalues of L. This allows capturing

the important variability of surfaces, while also limiting computational complexity.

We must align the spectral projection of different surface graphs to a common reference U
because the spectral embedding of L is only defined up to an orthogonal transformation (i.e.,
rotation or flip). The spectral embedding of a random brain surface in the dataset is chosen as
the common reference U®). To perform alignment, we find a node correspondence by using
an iterative closest point (ICP) approach (Lombaert et al., 2015a), where each node i € V is
mapped to its nearest reference node 77(i) € V© in the embedding space. Denoting as 0, the

normalized spectral coordinates of node 7, the alignment task can be expressed as

N
arg min Z ||ii,-R - ii](:z)”i (3.4)
R
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(0)

Let ﬁfro) be the matrix whose i-th row is ﬁﬂ 0

. The transformation between corresponding nodes
is approximated as

R = (UT0)'070Y = ArUTOW. (3.5)

We use the aligned spectral embedding U = UR to define the local coordinates corresponding
to an edge (i, j) € &: w;; = u; —u;. As illustrated in Fig. 3.3 (right), and based on Eq. (3.2),
the convolution at node i therefore considers kernel responses ¢;; (@,((l)) for neighbor nodes j,

relative to the spectral coordinates of i.

3.2.3 Learnable pooling for graph convolutional networks

Pooling in standard CNN:ss is typically carried out by aggregating values inside non-overlapping
regions of features maps. In graph convolutional networks (Bruna et al., 2014a; Defferrard et al.,
2016; Kipf & Welling, 2017; Monti et al., 2017), however, this approach is not applicable for the
following reasons. First, nodes are not laid out on a regular grid, which prevents aggregation of
features in predefined regions. Second, the density of points may spatially vary in the embedding
space; hence regions of fixed size or shape are not suitable for graphs with different geometries.
Last, and more importantly, input surface graphs may have a different number of nodes, while
the output may have a fixed size. This is the case when predicting a fixed number of class

probabilities from different brain geometries.

We propose an end-to-end learnable pooling strategy for the subject-specific aggregation of
cortical features, inspired by the differential pooling technique of Ying et al. (Ying ef al.,
2018). Our strategy, shown in Fig. 3.2, produces a sequence of convolutional feature
maps {Y), ..., YD ... YD}, with YO € RVMi | by the repeated application of a Graph
Convolution + Pooling (GC+P) block. Each GC+P block takes as input a feature map Y) on a
N; node graph, and processes it in two separate paths: the first one computing latent features
for each node of the input graph and the second predicting the node clusters by which the

features are aggregated. The feature encoding path applies a sequence of geometric convolutions
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as in Eq. (3.2) to generate a new feature map F() € RN*Mr1 on the block’s input graph.
The clustering path also consists of sequential geometric convolutions, however the activation
function of the last convolution is replaced by a node-wise softmax. The output of this last
convolution, 8% e [0, 1]V>*Ni1 | gives for each node i the probability s;. that i belongs to cluster

[6S] {1,...,N1+1}.

Pooled features Y+ e RN#*Mi gre computed as the expected sum of convolutional features in

each cluster c, i.e.
N;

(+1) _ (ORI
Yep =~ = Zsic i
e (3.6)

v+ — S(l)TF(l)_
The processing of aggregated node features, downstream the pooling operation, requires
computing a new adjacency matrix A/*!) and spectral coordinates U*D for the node clusters
which become the nodes of the block’s reduced-size output graph. Here, we define the adjacency

weights between pooling clusters ¢ and d as

N N

(+1) _ o 0 WO
Aeg Z Sic " Sia i
i=1 j=1 3.7

Al+D — S(l)TA(l)S(l).

(1+1)

Intuitively, a_,

is the expected number of connected nodes between clusters ¢ and d. Likewise,
the spectral coordinates of cluster ¢ is computed as the mean coordinates (i.e., centroid) of all
nodes assigned to c:

N;

~(I+1) (), =)
Uep = = s U
izzl ic ip (38)

u+h — O Tgv .
The bilinear formulation of Eq. (3.6) faces a challenging optimization problem with several local
minima. For instance, the same output Y+ in Eq (3.6) can be obtained by modifying either

SU or F). To alleviate this problem and obtain spatially-smooth clusters, we add a Laplacian
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regularization term to the loss function:

N N

Lig8") = 37> all s =[5
=1 j=1 (3.9

= tr(SVLOSDT),

where sl@ denotes the cluster probability vector of node i (i.e., the i-th row of S()). This
well-known regularization approach (Belkin, Niyogi & Sindhwani, 2006) penalizes connected

nodes to be mapped to different clusters, with a penalty proportional to the connection strength.

3.2.4 Architecture details

Figure 3.2 presents the overall architecture of our graph convolutional network. As input, we
give to the network the cortical surface features x; and aligned spectral coordinates u; of each
node i. For computing graph convolutions as in Eq. (3.2), we define the neighbors N; of node i
as the k =5 nodes nearest to i in the spectral embedding (i.e., the distance between node i and j
corresponds to [[u; — u;]|2) plus node i itself. While various features could be considered to
model the local geometry of the cortical surface (Fischl ez al., 2004b), we considered sulcal
depth and cortical thickness in this work, since the first one helps delineate anatomical brain
regions (Destrieux ef al., 2009) and the latter is related to ageing (Sowell et al., 2004) and

neurodegenerative diseases such as Alzheimer’s (Lerch et al., 2004).

The network comprises two cascaded GC+P blocks, followed by two fully-connected (FC) layers.
The first block generates an N X8 feature map and an Nx16 cluster assignment matrix, in two
separate paths, and combines them using the pooling formulation of Eq. (3.6) to obtain a pooled
feature map of 16x8. In the second block, pooled features are used to produce a 16x16 map of
features, pooled in a single cluster. Hence, the second pooling step acts as an attention module

selecting the features of most relevant clusters. The resulting 1x16 representation is converted
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to a 1x8 vector using the first FC layer, and then to a 1xX NumOQutputs vector with the second FC

layer, where the number of outputs NumOQutputs depends on the prediction task.

Except for the cluster probabilities and network output, all layers employ the Leaky ReLLU
(Nair & Hinton, 2010) as activation function: ylg? = maX(O.()lzs)), zfll))). In the default setting
of our pooling method, for the graph convolution kernel ¢;; of Eq. (3.2), we used the B-spline
kernel proposed by Fey et al. (Fey er al., 2018a). However, we also test the Gaussian kernel

(Monti et al., 2017) in our experiments.

For training, the loss function combines the output prediction loss and cluster regularization loss
on the first GC+P block:
L(0) = Low(0©) +aLrg(S'V), (3.10)

where « is a parameter controlling the amount of regularization. For classification tasks (i.e.,
disease prediction), Ly is set as the cross-entropy between one-hot encoded ground-truth labels
and output class probabilities. In the case of regression (i.e., brain age prediction), we use mean
squared error (MSE) for this loss. Network parameters are optimized with stochastic gradient
descent (SGD) using the Adam optimizer. Experiments were carried out on an 17 desktop
computer with 16GB of RAM and an Nvidia Titan X GPU. The model takes less than a second

for disease classification or age regression.

3.3 Experiments and results

We validate our method on two large-scale, publicly-available datasets: Mindboggle-101 (Klein
et al.,2017) and ADNII1 (Jack et al., 2008). The first one contains T1-weighted MRI from 101
healthy subjects (males: n=57, females: n=44, age: 20-61 years) collected from 9 different sites.
We use this dataset for the tasks of subject-sex classification and cortical region size regression
since both subject-sex labels and manual annotations for 32 cortical parcels are provided with

imaging data. The ADNII1 dataset (Jack et al., 2008) is comprised of multi-sequence MRI data
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Table 3.1 Impact of our hyper-parameters on our learnable pooling method

— Mean and standard deviation were computed on 5 separate runs using a
different random 50K node sub-sampling of each graph. For every

hyper-parameter, the default setting of our method is highlighted in bold font.

Experiments Parameters Mean =+ Std.
Cartesian 80.40 + 4.21
Pseudo-coordinates Polar 83.15 +2.10
Ours - Spectral 84.21 + 3.72
4 73.68 £ 5.76
Number of clusters 8 7684 £ 7.87
16 84.21 + 3.72
32 77.89 £2.10
Only cortical features 70.52 + 5.36
1 75.78 £7.13
Number of eigenvectors 3 84.21 + 3.72
5 77.89 +2.10
10 74.73 + 8.40
2 81.05 + 2.57
Number of neighbors 3 82.10 £2.57
5 84.21 + 3.72
10 84.21 £3.93
) Gaussian (Monti et al., 2017) 83.15 +2.15

Graph convolution kernel
B-Spline (Fey et al., 2018a)  84.21 + 3.72
Ablation study W/o Alignm(?nt . 69.47 + 8.42
W/o Regularization 74.73 £ 5.15

from 400 subjects diagnosed with mild cognitive impairment (MCI), 200 subjects with early
Alzheimer’s disease (AD) and 200 elderly control subjects (NC), obtained from 55 participating
sites. Both datasets contain brain surface meshes with pointwise cortical thickness and sulcal
depth measurements, generated by FreeSurfer (Fischl ef al., 1999). Cortical meshes in these
datasets vary from 102K to 185K nodes. The code for our work is available at the following

URL: https://github.com/kharitz/learnpool.git.
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In the first series of experiments, we evaluate the effects of hyper-parameters influencing the
performance of our pooling method. Next, an ablation study is presented to assess the effect of
our spectral alignment and our Laplacian regularization. Different pooling strategies for our
graph convolutional network are thereafter compared on the subject-sex classification problem,
while also evaluating the impact of input graph size on prediction accuracy. We then illustrate
our network’s ability to learn meaningful node clusters by predicting the size of cortical parcels
from an anatomical atlas. Finally, we highlight the advantages of working in the spectral domain
on the problems of disease classification (NC vs AD, MCI vs AD, and NC vs MCI) and brain

age regression.

3.3.1 Impact of hyper-parameters

Our learnable pooling method requires the selection of several hyper-parameters: the type of
pseudo-coordinates, the number of clusters, the number of eigenvectors, the number of neighbors,
and the type of graph convolutions. In the next series of experiments, we assess the impact of
each of these hyper-parameters on the task of subject-sex classification with the MindBoggle
dataset, using a 70-10-20 split for training, validation, and testing. To have a measure of variance,
keeping the same split, we generated 5 different subsets by randomly sub-sampling 50K nodes
in each training, validation and testing graph, and used the sub-sampled graphs as input to our
model. Performance (mean and standard deviation) is measured across 5 runs, each one carried
out on a different subset. The same architecture, shown in Fig. 3.2, is used across the following

experiments.

3.3.1.1 Pseudo-coordinates

We first evaluate the benefit of using spectral information when computing the pseudo-coordinates
of nodes in the graph convolution kernel, by comparing it against conventional Cartesian and

polar coordinates. The same architecture of Fig. 3.2, based on B-spline kernels, is used for
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all three settings. As reported in Table 3.1 accuracy improvements of 3.81% and 1.06% are
obtained over Cartesian and polar coordinates, respectively, showing the ability of spectral
pseudo-coordinates to better capture the local geometry of a complex surface. Note that, to
have a fair comparison, spectral node coordinates were used as input to the network in all three
settings, hence the models using Cartesian and polar pseudo-coordinate also leverage spectral
information. Comparing Cartesian and polar pseudo-coordinates together, we find that polar
ones provide a higher accuracy. While both encode similar information, polar coordinates offer
a more direct description of distance and direction between two points, which could help to
learn their relation. This may explain why polar pseudo-coordinates were preferred in earlier

work (Monti et al., 2017).

3.3.1.2 Number of clusters

Next, we train our GCN network using different numbers of clusters for the pooling operation of
the network’s first GC+P block. As presented in Table 3.1, four settings are tested: 4, 8, 16 and
32 clusters. We see a regular increase in accuracy from 73.64% to 84.21% when going from 4
to 16 clusters. This reflects the fact that sex-related differences are present in various cortical
regions, which can be learned by the network. However, the accuracy drops significantly when
further increasing the number of clusters to 32. This could be due to the creation of near-empty
clusters that add no useful information to the training while increasing the number of parameters

to learn.

3.3.1.3 Number of eigenvectors

The inputs of our GCN are the aligned spectral components (the Laplacian matrix eigenvectors)
and two cortical features, i.e., sulcal depth and cortical thickness, corresponding to each mesh
node. In the next experiment, we vary the number of spectral components given as input,

testing five different settings: O (only cortical features), 1, 3, 5, and 10. For all settings,
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three eigenvectors are used to compute pseudo-coordinates in the graph convolutions, and
the same 70-10-20 split as the previous experiments is employed. Results presented in Table
3.1 demonstrate the importance of including spectral information as input, with an accuracy
improvement of 5.26% when adding the first component (i.e., eigenvector with smallest non-zero
eigenvalue) to cortical features. The best performance of 84.21% is achieved when considering
the first three eigenvectors in addition to cortical features. A possible explanation for this result
is that three is the minimal number of eigenvectors required to uniquely locate a point on a 3D
surface (Lombaert et al., 2015a). As suggested by the decreasing accuracy for 5 and 10 spectral
components, higher-order eigenvectors may capture highly-varying and subject-specific patterns

of sulcal and gyral geometry, which is not predictive of subject sex.

3.3.1.4 Number of neighbors

The number of neighbors k directly impacts the computation of convolutions in Eq. (3.2).
To better assess the effect of this hyper-parameter, the performance of a classification task is
evaluated while increasing the number of neighbors within randomly sub-sampled graphs of
50K nodes. More precisely, for every node i in the graph, the k nearest neighbors are defined in
the spectral embedding space. The smoothness of the Laplacian matrix eigenvectors ensures
that neighbors are locally close to each other on the brain surface. Performance is then evaluated
using a classification model that is trained on sub-sampled graphs with k=2, 3, 5, and 10

neighbors.

Table 3.1 shows a higher classification accuracy when the number of neighbors increases. From
a classification accuracy of 81.05% for k =2 neighbors, the performance improves gradually to
84.21% with k=5 and k = 10 neighbors. However, the computational overhead of employing
larger neighborhoods must also be taken into account. For instance, runtime increases by a
factor of 1.7, from 93.6 ms to 158.5 ms, when going from k=5 to k =10. For this reason, a

neighborhood size of k =5 is used in the default setting of our method.
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3.3.1.5 Graph convolution kernel

Last, we compare the B-spline convolution of our default architecture with the Gaussian kernel
of (Monti et al., 2017) with diagonal covariance matrix. As reported in Table 3.1, we observe
a small improvement of 1.06% when employing B-spline kernels. Interestingly, the number
of parameters is almost the same for both kernel types (2,257 for Gaussian compared to 2,233
for B-spline) and, thus, performance differences are not due to overfitting. Note that similar
improvements of B-spline kernels compared to Gaussian kernels were also observed in (Fey

et al., 2018a) for various analysis tasks.

3.3.2 Ablation study on alignment and regularization

In this section, we perform an ablation study to evaluate the contribution of spectral alignment
and Laplacian regularization on our method’s performance for the task of predicting the sex
of Mindboggle subjects. To assess the usefulness of spectral alignment, we first train a model
with unaligned spectral coordinates and with cortical features. The results in Table 3.1 show the
unaligned components to yield a low accuracy of 69.47%, demonstrating the importance of this
alignment for learning across different surfaces. Results also highlight the role of Laplacian
regularization in learning, with a 9.48% drop in accuracy when removing the corresponding
term in the loss of Eq. (3.10), i.e. using @ =0 in the loss. As explained before, this regularization
term is necessary to avoid getting stuck in a local minimum caused by the bi-linear formulation
of the pooling operation. Laplacian regularization also provides spatially-smoother clusters that

better reflect the underlying anatomy of the brain.

3.3.3 Comparison of different pooling methods

We compared our learnable pooling strategy against four other pooling techniques applicable to
graph convolutional networks: 1) taking the global average of feature maps, 2) pooling feature

maps in fixed regions computed from a cortical parcel atlas, 3) pooling the same features in
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Figure 3.4 Clusters of different pooling methods — (a) Clusters obtained by spectral
k-means clustering. (b) Fixed clusters computed from a cortical parcel atlas. (c) Clusters
learned by our learnable pooling method. Colors on the brain surface represent different

regions.

regions obtained by applying k-means clustering on the spectral embedding, 4) the top-k pooling

approach proposed in (Gao & Ji, 2019) for downsampling.

For all tested methods, we used a network composed of two graph convolution layers followed by
two fully-connected layers, as described in Section 3.2.4. In the case of global average pooling
and fixed parcellation pooling, a single pooling operation is applied after the second graph
convolution. For spectral clustering pooling, nodes are grouped after each of the two convolution
layers as in our learnable pooling. However, the pooling path of the network is replaced by a
static node clustering. Likewise, for top-k pooling, we employ the same architecture as presented
in Section 3.2.4, but replace our pooling path with the top-k pooling after the graph convolution
operation. We train and test all methods on subject-sex classification using the MindBoggle
dataset with a 70-10-20 split for training, validation, and testing. Once again, we perform 5

separate runs with a different random sub-sampling of 50K nodes for each graph.

Table 3.2 summarizes the results of this experiment. We see that global average pooling yields
the poorest performance with a mean accuracy of 60.76%. Using atlas-defined cortical parcels
to aggregate features improves accuracy slightly to 64.59%, suggesting that these parcels are
informative for identifying subject sex. Moreover, applying unsupervised clustering on the
spectral embedding further increases mean accuracy to 67.94%, which indicates the benefits of

having a hierarchy of non-fixed clusters. The advantage of a learnable top-k pooling over fixed
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pooling methods can be seen with a classification accuracy of 78.92%. However, by learning
clusters in a supervised manner from spectral embeddings, our method achieves the highest
accuracy of 81.33%, an improvement of 13.39% over spectral clustering and a 5.3% gain over

top-k pooling.

Figure 3.4 gives examples of clusters for the different pooling strategies (except global average
pooling, which considers all nodes as part of a single cluster and top-k pooling as it selects
nodes to drop for downsampling). While spectral clustering yields spatially-regular clusters, the
distribution of these clusters is arbitrary and does not seem to match known parcels of the cortex
(shown in Fig. 3.4b). In contrast, the clusters predicted by our pooling strategy are larger and

better aligned with these known parcels.

Table 3.2 Baseline graph pooling methods comparison — Mean
and standard deviation were computed on 5 separate runs using a
different random 50K node sub-sampling of each graph

Pooling method Mean + Std.
Global Average Pooling 60.76 + 3.62
Fixed Parcellation Pooling 64.59 + 7.84
Spectral Clustering Pooling (Wang et al., 2018)  67.94 +4.97
Top-k pooling (Gao & Ji, 2019) 78.94 +3.32
Learnable Pooling (ours) 84.21 + 3.72

3.3.4 Impact of input graph size

In the next experiment, we investigate whether our method is robust to variability in the size
of the surface mesh. Toward this goal, we use the same split of the MindBoggle dataset as in
the first experiment, and randomly sub-sample the original mesh to 100, 1K, 5K, 10K, 25K,
50K and 75K nodes. Because convolutions at each node use information from its k =5 nearest
neighbors, as described in Eq. (3.2), testing multiple sub-sampling with the same number of
nodes also assesses the robustness of our model to variations in graph connectivity. We train our

model on each of these reduced graph datasets to predict the sex of MindBoggle subjects.
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Table 3.3 gives the classification accuracy for different sizes of training graphs when testing on
sub-sampled graphs of the same size, or on the original full-sized graph. The first case evaluates
whether the same accuracy can be achieved with less information at the input of the network,
whereas the second case tests if the convolution parameters learned by the network generalize
to larger graphs. As expected, classification performance decreases when reducing the size of
input graphs, both when testing on sub-sampled graphs and full-sized graphs. When testing on
sub-sampled graphs, accuracy drops from 94.73% while training with full graphs to 55.02%
for graphs with only 100 nodes. However, high accuracy values of 84.21% and 85.26% can be
achieved when training graphs of 50K and 75K nodes, respectively, about half the size of the
original graphs. Furthermore, we see that our model trained with moderately-reduced graphs
can still perform well on full-sized ones. For instance, the model trained with graphs of 50K
nodes and 75K nodes achieves an accuracy of 78.94% and 84.21% respectively, when tested on

original graphs with twice the number of nodes.

Table 3.3  Subject-sex classification performance of our
pooling approach on different sub-graphs — Mean
classification accuracy (%) with standard deviation over
test set from the Mindboggle dataset

Num. of nodes Testing on Testing on
Sub-sampled graphs Full graphs

100 55.02 + 13.18 52.63 + —

1k 5598 + 4.25 52.63 + —

S5k 64.11 + 1.58 47.36 + —

10k 67.94 + 598 52.63 + —

25k 71.77 + 4.86 73.68 = —

50k 84.21 = 3.72 78.94 + —

75k 85.26 + 3.93 84.21 = -

Full graph 94.73 + — 94.73 + —
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Female Male

Figure 3.5 Feature maps and predicted clusters for the task of subject-sex classification —
The first column shows examples of activation maps computed by the embedding path of
our network for a female subject. The second column gives the average activation in each
predicted cluster for the same subject and feature maps. Coloring indicates output of the
ReLU activation with minimum value indicated by blue and maximum value indicated by
red. Third and fourth columns depict the same information for a male subject.

3.3.5 Task-specific pooling regions

In this section, we qualitatively and quantitatively evaluate the predicted clusters and feature
maps learned by our network. Once more, we consider the task of classifying males vs. females

subjects from the Mindboggle dataset with the architecture depicted in Fig. 3.2.

Figure 3.5 shows examples of features and clusters learned by our graph pooling model for a
male and a female subject. The first and third columns give the distribution of four different

activation maps learned by the network for the two subjects. The mean activation in each
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predicted cluster for the same subjects is illustrated in the second and fourth columns of the
figure. We observe the diversity of depicted clusters, spawning different regions of the brain
both on the cortex and around regions of the basal ganglia. Interestingly, several of the learned
clusters focus on sub-cortical regions like the hippocampus (first row) and amygdala (last row),
which have been linked to sex-related differences in the literature (Murphy, DeCarli, Mclntosh,
Daly, Mentis, Pietrini, Szczepanik, Schapiro, Grady, Horwitz et al., 1996). This illustrates
the benefit of learning task-specific clusters in a supervised manner. Additionally, we see that
predicted feature maps and clusters in both subjects are similar, demonstrating that the model

can adapt to the specific brain geometry of individual subjects.

We further evaluate the relevance of learned clusters by training the same model to predict the
size of 32 anatomical parcels of each brain surface, using labeled data from Mindboggle. For
this experiment, we hypothesize that the network should learn clusters that are related to the
predefined parcels. To do so, we modify the last layer of the architecture in Fig. 3.2 to have
32 outputs, one for the size of each parcel, and change the loss function to mean square error.
Adjusted mutual information (AMI) is used to measure the similarity between learned clusters
and ground-truth parcels. AMI values range from O to 1, a score of 0 corresponding to random

clusters and a score of 1 for clusters identical to ground-truth.

Figure 3.7 gives the mean AMI obtained at each training epoch, and examples of predicted
clusters at four different epochs are shown in Fig. 3.6. In the initial stages of training, the model
predicts a small number of clusters corresponding mainly to the components of the spectral
embedding (see the network input in Fig. 3.2). In the first 500 epochs, the AMI score between
predicted clusters and ground-truth parcels drops. Then, as training progresses, we observe
increasing AMI values and progressively more defined clusters. At the end of training (2500
epochs), the model achieves an AMI score of 0.39. Obtained clusters appear to be a combination
of different ground-truth parcels, suggesting that fully-connected layers further help regressing

parcel sizes.
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Figure 3.6 Pooling regions learned during training — The pooling regions are learned for
the model training to regress the size of cortical regions. During initial epochs, random
regions are clustered together to aggregate feature maps. A low AMI score indicates this
random clustering compared to the ground-truth. After training, the model finally learns to
group multiple parcels (cyan) into on cluster pooling region. AMI score increases over
epochs, indicating task-dependent learning by our model. The last figure shows manual
parcels with AMI score of 1 for reference.
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Figure 3.7 Evolution of AMI score — The adjusted mutual information score between the
pooling regions and the manual parcels over multiple epochs is shown. A random overlap
between learned pooling regions and parcels is observed at initial epochs. After training,
the AMI score increases with the pooling regions corresponding to ground-truth parcels.

3.3.6 Disease classification

In the following experiment, we evaluate our method on the task of classifying subjects from

the ADNI dataset as normal control (NC), mild cognitive impairment (MCI) or Alzheimer’s
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disease (AD). Specifically, we consider three different binary classification problems: NC vs
AD, MCI vs AD and NC vs MCI. We compare our method against the random forest approach
in (Ledig et al., 2014), which also considers surface-based information from the ADNI dataset.
To measure the contribution of the spectral embedding in our method, we also evaluate our
model trained with only cortical thickness and sulcal depth as input. The same random split of

70-10-20 is employed for all three models.

The classification performance of tested models is reported in Table 3.4. We see that our
method outperforms the random forest approach of (Ledig ef al., 2014) on all three classification
problems. Relative to this approach, the proposed method yields mean accuracy improvements
between 7.79% and 11.92%. A significant gain in performance is also observed when comparing
the same method trained without spectral node coordinates. This is particularly notable for NC
vs MCI, where adding spectral coordinates increases the mean accuracy by 13.33%. Note that
we have also tried giving the network original (x, y, z) coordinates of mesh nodes. However,
this led to worse results. This illustrates the advantage of using intrinsic node localization when

processing surface data.

Table 3.4 Evaluation of the proposed work — Average accuracy of
disease classification (%), with standard deviation over the
complete ADNI dataset. First row is a random forest (RF) with
multiple cortical-based features (Ledig et al., 2014). Second row is
our graph convolutional model without geometrical information
(spectral node coordinates U). Last row is with this information.

] Input NCvs AD MCIvs AD NCvs MCI ‘
RF (Ledig ef al., 2014) 805 65+6 63+4
Ours w/o U 76.00 £ 6.06 74.03 £8.63 63.71 +£5.72
Ours with U 89.33 £4.30 7692 +4.78 70.79 £ 6.40

3.3.7 Brain age prediction

The last experiment demonstrates our method in a regression problem where the age of NC

subjects of the ADNI dataset is predicted using pointwise surface-based measurements. In this
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Figure 3.8 Evaluation of brain age prediction — Distribution of absolute prediction error
(left) and predicted minus real age (right), for NC and AD test subjects. Our learnable
pooling strategy yielded graph models that could correctly capture age discrepancies
between real and geometry-based ages, as expected between subjects with NC and AD.

case, the network outputs a single value, and MSE is used as loss function. Once more, we test
our method trained with or without spectral node coordinates as input. Moreover, to evaluate
brain age prediction as a potential imaging biomarker for Alzheimer’s, we also measure the

prediction accuracy of our model on AD test subjects.

The results of this experiment are summarized in Fig. 3.8, which gives the distribution of mean
absolute error (MAE) and prediction bias (predicted age minus real age) for NC subjects and
AD subjects. When testing on NC subjects, our method achieves an MAE of 4.35 + 3.19
years, which is comparable with results in the literature. As expected, a higher MAE of 6.80
+ 6 years is obtained for AD subjects, since the symptoms of early Alzheimer’s are similar to
premature brain aging. The brain age, calculated as the predicted age minus the real age, shows
a statistically significant difference with a p-value of 0.0032. This value suggests the potential

application of brain age prediction as a biomarker for AD.
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3.4 Conclusion

We presented a novel strategy that enables pooling operations on arbitrary graph structures. The

performance of our learnable pooling scheme was evaluated in seven experiments.

The first series of experiments evaluated the impact of hyper-parameters: the type of pseudo-
coordinates of nodes in graph convolution kernels, showing improvement when employing our
spectral-based coordinates instead of Cartesian or polar-based ones; the number of clusters in
pooling operations, with a regular increase of performance up to 16 clusters; the number of
eigenvectors, suggesting that a minimal number of three Laplacian eigenvectors is necessary
for optimal accuracy; the number of neighbors, revealing a compromise between accuracy and
computation time; the type of graph convolution kernel, showing an improvement of accuracy

when using B-spline convolution kernels in our default architecture instead of Gaussian kernels.

A second experiment provided an ablation study validating the positive effects of spectral
alignment and Laplacian regularization in our method. Results showed a significant performance

gain when using both techniques, compared to employing only one of them.

A third experiment compared different pooling techniques for graph convolutional networks on
the subject-sex classification task. A simple global average pooling failed to capture geometric
information from consecutive layers, yielding a low performance of 60%. In comparison
to employing fixed pooling regions, learning these regions with unsupervised clustering, or
applying the top-k pooling strategy to select nodes from a learned projection vector, our learnable

pooling strategy offers significantly higher accuracy.

A fourth experiment evaluated the effect of the graph size on the performance of subject-sex
classification. The results showed that small graphs lack information to capture the complete
geometry of surfaces. However, reducing the size of the graph by 25% up to 75K still yields a

high accuracy, while improving memory and computational requirements.
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The fifth experiment explored the relationship between learned features and anatomy. The
visualization of activation maps and clusters in the network revealed diversity in terms of brain
regions. Several learned clusters highlighted essential regions of the basal ganglia, such as the
hippocampus and amygdala, which are associated with sex-related differences in the literature.
We further evaluated this result with an experiment to regress the size of cortical parcels. As

expected, the trained model learns pooling regions similar to the manually-annotated parcels.

The sixth experiment focused on predicted stages of Alzheimer’s disease from surface data,
including cortical thickness and sulcal depth. Our results showed that pointwise surface values
could be efficiently aggregated into a fixed number of class probabilities using the proposed
network architecture. Compared to another approach exploiting surface-based features (Ledig
et al., 2014), our method achieved significant improvements ranging from 7% to 11%. This
performance gain is mainly due to including spectral coordinates of graph nodes as input to the

network, demonstrating the importance of intrinsic node localization.

In a final experiment, the age of ADNI subjects was predicted using pointwise surface data.
Results showed that our method provides an accuracy comparable to previous approaches in the
literature, while using only surface-based information. As expected, subjects with Alzheimer’s
have higher discrepancies than subjects with normal cognition (Fig. 3.8). The potential of the

proposed method as an imaging biomarker for AD could be evaluated in a future study.

To summarize, the proposed pooling strategy enables the exploration of a new family of
architectures for graph convolutional networks. Our method exploits the spectral embeddings
of graph nodes in order to learn spatially-representative pooling patterns across different
layers. However, this requires having datasets of comparable brain geometry, since the eigen-
decomposition of the graph Laplacian matrix assumes that shapes are topologically equivalent.
Differences in the meshing procedure as well as the presence of holes or cuts in the mesh, for
instance caused by ablated tumors, might therefore impact the performance of our method.

In future work, we plan to investigate domain adaptation techniques, for example based on
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adversarial learning, to learn an internal representation which is robust to such differences.
Moreover, by incorporating unpooling operations in the proposed model, we could also explore

applications requiring node-level outputs like regressing cortical thickness over time.
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Presentation

This chapter presents the article “Graph Domain Adaptation for Alignment-Invariant Brain
Surface Segmentation” (Gopinath, Desrosiers & Lombaert, 2020a) submitted to GRAIL-
MICCAI conference (Medical Image Computing and Computer Assisted Intervention), published
on October 2020. The article was presented as an oral talk, held virtually at this conference and
won honorable mention for the best paper award. The objective of this article is to develop a

domain independent surface analysis model.

4.1 Introduction

The cerebral cortex is essential to a wide range of cognitive functions. Automated algorithms
for brain surface analysis thus play an important role in understanding the structure and working
of this complex organ. Nowadays, deep learning models such as convolutional neural networks
(CNNs) provide state-of-the-art performance for most image analysis tasks, including image
classification, registration, and segmentation (Arbabshirani et al., 2017). However, these models
typically require large annotated datasets for training, which are often expensive to obtain in
medical applications. This limitation is especially true for the task of cortical segmentation,

also known as parcellation, where generating ground truth data requires labeling possibly
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thousands of nodes on a highly-convoluted surface. This burden also explains why datasets for
such tasks are relatively small. For instance, the largest publicly-available dataset for cortical
parcellation, MindBoggle (Klein et al., 2017), contains only 101 manually-annotated brain
surfaces. Moreover, another common problem of deep learning models is their lack of robustness
to differences in the distribution of training and test data. Hence, a CNN model trained on the
data from a source domain usually fails to generalize to samples from other domains, i.e., the

target domains.

Unsupervised domain adaptation (UDA) (Tajbakhsh, Jeyaseelan, Li, Chiang, Wu & Ding, 2020)
has proven to be a powerful approach for making algorithms trained on source data generalize to
examples from a target domain, without having explicit labels for these examples. Generative
adversarial networks (GANs) (Goodfellow et al., 2014) leverage adversarial training to produce
realistic images. In this type of approach, a discriminator network classifies images produced
by a generator network as real or fake, and the generator improves by learning to fool the
discriminator. Following the success of GANs, adversarial techniques have later been proposed
to improve the learning capability of CNNs across different domains. Adversarial domain
adaptation methods for segmentation (Ghafoorian et al., 2017; Javanmardi & Tasdizen, 2018;
Vu et al., 2019; Zhang et al., 2017,1; Zou et al., 2018) involve the concurrent training of two
networks: a segmentator that learns to produce accurate segmentation outputs for labeled source
examples, and a discriminator which forces the segmentator to have a similar prediction for
examples of both source and target domains. These adversarial techniques usually rely on either
feature space adaptation or output space adaptation. Initial works (Ganin & Lempitsky, 2015;
Long et al., 2015) focused on matching the distributions of features from source and target
domain examples for classification tasks. As the output of CNNs for segmentation contains rich
semantic information, (Tsai et al., 2018) proposed a method that instead leverages output space
adaptation. Various pixel-wise domain adaptation approaches have been developed for natural
color images (Ganin & Lempitsky, 2015; Hoffman, Wang, Yu & Darrell, 2016). In medical

image analysis, (Kamnitsas et al., 2017a) proposed an adversarial neural network for MRI image
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Figure 4.1 Overview of our architecture — The input brain graph is mapped to a spectral
domain by decomposition of the graph Laplacian. The source and target domain are
obtained by aligning the eigenbases to source reference and targets reference respectively. A
segmentator GCN learns to predict a generic cortical parcel label for each domain. The
discriminator aims at classifying the segmentator predictions, thereby assisting the
segmentator GCN in adapting to both source and target domains.

segmentation which does not require additional labels on test examples from the target domain.
Likewise, (Javanmardi & Tasdizen, 2018) presented a vessel segmentation approach for fundus
images, which uses a gradient reversal layer for adversarial training. Recent work (Bateson
et al., 2019) also addressed the problem of domain adaptation by adding a differentiable penalty
on the target domain. However, these domain adaptation techniques focus on data lying in the
Euclidean space (natural or medical images) and, therefore, are not suitable for graph structures

such as surface meshes.

The image space is inadequate to capture the varying geometry of the cerebral cortex. Differences
in brain surface geometry hinder statistical frameworks from exploiting spatial information in
Euclidean space. The extension of standard convolutions to non-Euclidean spaces like manifolds
and graphs has led to the development of various geometric deep learning frameworks (Bronstein
etal.,2017; Monti et al., 2017). A recent work (Cucurull et al., 2018) proposed to use geometric
deep learning for segmenting three cortical regions by relying on the spatial representation of the
brain surface mesh. Later, based on the spectral representation of such meshes, (Gopinath ez al.,
2019b) developed a graph convolution network (GCN) to parcellate the cerebral cortex. Despite
offering more flexibility than Euclidean-based approaches, these methods are domain-dependent

and would fail to generalize to new datasets (domains) without explicit re-training. Moreover,
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obtaining annotations for these new datasets is also challenging and time-consuming, due to the

complexity of visualizing and labeling intricate surfaces.

In this paper, we address the limitations of existing techniques for cortical parcellation by
proposing an adversarial domain adaptation method on surface graphs. Specifically, we focus
on a problem shared by most GCN-based approaches, which is the need for a common basis
to represent and operate on graphs. For approaches operating in Euclidean space, bringing
surface graphs to this common basis usually involves transforming and possibly sub-sampling
meshes to match a given reference, which is particularly difficult for convoluted surfaces like
the cortex. As described in (Gopinath er al., 2019b), this process can be greatly simplified by
instead operating in the spectral domain, for instance using spectral GCNs (Bruna et al., 2014b;
Defferrard et al., 2016). Nevertheless, spectral GNCs also need to perform some alignment to
work. Hence, these models require computing the eigendecomposition of the graph Laplacian
matrix to embed graphs in a space defined by a fixed eigenbasis. However, separate graphs
may have different eigenbases, and the eigenvectors obtained for a given graph are only defined
up to a sign and a rotation (if different eigenvectors share close eigenvalues). Due to these
ambiguities, spectral GCNs cannot be used to compare multiple graphs directly and need an
explicit alignment of graph eigenbases as an additional pre-processing step. Here, we focus on
generalizing parcellation across multiple brain surface domains by removing the dependency on

these domain-specific alignments.

The contributions of our work are multifold:

- We present, to the best of our knowledge, the first adversarial graph domain adaptation
method for surface segmentation. Our novel method trains two networks in an adversarial
manner, a fully-convolutional GCN segmentator and a GCN domain discriminator, both of

which operate on the spectral components of surface graphs.
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- Compared to existing approaches, our surface segmentation method offers greater robustness
to differences in domain-specific alignment. Hence, our method yields a higher accuracy for
non-aligned brain surfaces compared to a strategy without adversarial learning. Moreover, it
also provides a better generalization for surfaces aligned to a different reference, without

requiring an explicit re-alignment or manual annotations of these surfaces.

- We demonstrate the potential of our method for alignment-invariant parcellation of brain
surfaces, using data from MindBoggle, the largest publicly-available manually-labeled
surface dataset. Our results show significant mean Dice improvements compared to the same
segmentation network without adversarial training and over a strong baseline approach based

on Spectral Random Forest.

In the next section, we detail the fundamentals of our graph domain adaptation method for
surface segmentation, followed by experiments validating the advantages of our method and a

discussion of results.

4.2 Method

An overview of our proposed method is shown in Fig. 4.1. In the initial step, the cortical brain
graph is embedded into the spectral domain using the graph Laplacian operator. Next, samples
from the source domain only are aligned to a reference template using the Iterative Closest Point
(ICP) algorithm. This algorithm works by repeating the following two steps until convergence:
1) mapping each node of the graph to align to its nearest reference node in the embedding space;
2) computing the orthogonal transformation (i.e., rotation and flip) which brings nodes nearest
to their corresponding reference node. Since this process is iterative and external to the network
architecture, it can be computationally expensive to run. However, we only need to apply it during
training and, as shown in experiments, the proposed method can achieve good performance
on non-aligned test examples by learning an alignment-invariant representation. Finally, a

graph domain adaptation network is trained to perform alignment-independent parcellation. The
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segmentator network learns a generic mapping from input surface features, e.g. the spectral

coordinates and sulcal depth of cortical points, to cortical parcel labels.

4.2.1 Spectral embedding of brain graphs

We start by describing the spectral graph convolution model used in this work. Denote as
G = {V, &} abrain surface graph with node set V, such that |'V| = N, and edge set &. Each
node 7 has a feature vector x; € R? representing its 3D coordinates. We map G to a low-dimension
manifold using the normalized graph Laplacian operator L = I — D‘%AD‘%, where A is the
weighted adjacency matrix and D the diagonal degree matrix. Here, we consider weighted edges
and measure the weight between two adjacent nodes as the inverse of their Euclidean distance,
ie. a;; = (||x; — x| + €)~! where € is a small positive constant. Letting L = UAUT be the
eigendecomposition of L, the normalized spectral coordinates of nodes are given by U=A"2U.
The normalization with A~2 is used so that coordinates corresponding to smaller eigenvalues

are given more importance in the embedding.

Denote the neighbors of node i € V as N; = {j | (i, j) € &}. The convolution operation used in

our spectral GCN is defined as

M K
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where yyq) is the feature of node j in the g-th feature map of layer /, w;lq) . 1s the weight in

the k-th convolution filter between feature maps ¢ and p of subsequent layers, bg) is the bias
of feature map p at layer /, and o is a non-linear activation function. The information of the
spectral embedding relating nodes i and j is included via a symmetric kernel ¢(u;,u;; Q)

parameterized by ;. In this work, we follow (Gopinath ef al., 2019b) and use a Gaussian

kernel: ¢(W;,U;; g, o) = exp (— o [|(0; — W) — pel?).
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4.2.2 Graph domain adaptation

Our graph domain adaptation architecture contains two blocks: a segmentator GCN S performing
cortical parcellation and a discriminator GCN D, which predicts if a given parcellation comes
from a source or target graph. Let X be the set of source graphs and X the set of unlabeled
domain graphs, with X' = X U Xig the entire set of graphs available in training. In the first
step, we optimize the segmentator GCN using labeled source graphs G € Xi.. We feed the
segmentation network’s prediction S(G) to the discriminator D whose role is to identify the
input’s domain (i.e., source or target). The gradients computed from an adversarial loss on target
domain graphs are back-propagated from D to S, forcing the segmentation to be similar for both

the source and target domain graphs.

As in other adversarial approaches, we define the learning task as a minimax problem between

the segmentator and discriminator networks,

1
|XSI'C |

A
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where L, is the supervised segmentation loss on labeled source graphs, and Lg;s is the
discriminator loss on both source and target graphs, which is optimized in an adversarial manner

for S and D.

Segmentator loss For each input graph, the segmentator network outputs a parcellation
prediction y where y;. is the probability that node i belongs to parcel c¢. In this work, we
define the supervised segmentation loss as a combination of weighted Dice loss and weighted

cross-entropy (CE),

_ €+ 23N, N, @e Vie Ji c _
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with y;. being a one-hot encoding of the reference segmentation and € a small constant to avoid
zero-division. The weights w. balances the loss for parcels by increasing the importance given
to smaller-sized regions. We follow (Gopinath et al., 2019b) and set class weights w, as the
total number of nodes divided by the number of nodes with label c. In the loss of Eq. (4.3), CE
improves overall accuracy of node classification while Dice helps to have structured output for

each parcel.

Discriminator loss Since the discriminator D is a domain classifier, we define its loss as the

binary cross-entropy between its domain prediction (i.e., 7 = 1 for source or Z = 0 for target):

Liis(z,2) = = (1 —2)log(1-2) — zlogZ. (4.4)

As mentioned before, this loss is maximized while updating the segmentator’s parameters and
minimized when updating the discriminator. Thus, the segmentator learns to produce surface

parcellations that are alignment-invariant.

4.2.3 Network architecture

Segmentator: The segmentator is a fully-convolutional GCN comprised of 3 graph convolution
layers with respective feature map sizes of 256, 128, and 32. At the input of the network, each
node has 4 features: 3D spectral coordinates and an additional scalar measuring sulcal depth.
All layers have K; = 6 Gaussian kernels, similar to (Gopinath ef al., 2019b). Since the output
has 32 parcels, our last layer size is set to 32. In the last layer, softmax operation is applied for
parcellation prediction, and the remaining layers employ Leaky ReLLU as an activation function

to obtain filter responses in Eq. (4.1).

Discriminator: Similar to the segmentator network, we use 2 graph convolution layers, an
average pooling layer, and 3 fully connected (linear) layers for classifying the segmentation

domain. The first graph convolution layer takes segmentation predictions with 32 feature maps
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Figure 4.2  Effect of hyper-parameter A — Segmentation performance in mean Dice (left)
and Discriminator classification accuracy (right) on test examples, obtained for
A1€{0.1,1,10}.

as input. Moreover, the output sizes of the first two layers output are 128 and 64, respectively.
Average pooling is used to reduce the input graph to a 1-D vector for the classification task.
Three fully-connected layers are placed at the end of the network, with respective sizes of 32, 16,
and 1. Each graph convolution layer has K; = 6 Gaussian kernels. Sigmoid activation is applied
to the last linear layer to predict the input domain of the graph sample and the remaining layers

use Leaky ReL.U.

4.3 Results

We evaluate the performance of our method using MindBoggle (Klein ez al., 2017), the largest
manually-labeled brain surface dataset. This dataset contains the cortical mesh data of 101
subjects aggregated from multiple sites. Each brain surface includes 32 manually labeled parcels.
We split this dataset into 70-10-20 training, validation and test sets. The training set has only 35
samples for the source and target domains each. To have more training samples and thus reduce
overfitting, we sub-sample the node embeddings of each mesh to generate 25 examples of 10K
nodes. This data augmentation technique, which is not possible in regular CNNss, is enabled by

the spectral embedding of our approach.
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Let P, be the nodes predicted as having label ¢ € {1,...,32}, and G, be the actual set of nodes
with this label in the ground-truth parcellation. We evaluate performance using the mean Dice

overlap:

. 2P NG,
MeanDice(P,G) = %) Z |1|D +1G || 4.5)

All experiments were carried out on an 17 desktop computer with 16GB of RAM and an

Nvidia Titan X 12 GB GPU. The code for our work is available at the following URL:

https://tinyurl.com/yawdw7hh.

4.3.1 Effect of A on parcellation

The loss function for adversarial training involves hyper-parameter A, which controls the trade-
off between parcellation accuracy on labeled source data and fooling the discriminator (i.e.,
alignment invariance). To assess the impact of this important hyper-parameter on performance,
we show in Fig. 4.2 the segmentator mean Dice and discriminator classification accuracy on
test examples at different training epochs, for 4 € {0.1,1,10}. As expected, when using a
large 4 = 10, the model focuses mostly on fooling the discriminator. This results in a low
segmentation Dice, and a discriminator accuracy near 50% since the discriminator cannot
distinguish between source and target parcellation outputs. Conversely, for a small A = 0.1, the
adversarial training gives less importance to fooling the discriminator, which translates in a
high discriminator accuracy. However, this also leads to a poor performance on target examples,
since the parcellation output for these examples differs greatly from those of source examples.
This illustrates that a stronger adversarial learning is required to align the source and target
domains. For the rest of our experiments, we selected 4 = 1 based on the parcellation accuracy

for validation examples.
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Table 4.1 Comparison with surface segmentation approaches — Mean Dice and standard
deviation on test data. The first result column corresponds to the default setting where test
(i.e., target domain) graphs are not aligned. For the second column, test graphs were aligned
on the same reference as training (i.e., source domain) graphs. Result columns 3-7
correspond to the setting where all test graphs are aligned to four randomly-selected target
graphs (a different graph for each column). Bold font highlights a performance statistically
higher than all other methods (t-test p < 0.01).

‘ ‘ Alignment to reference graph ‘

Method No Source Rand-  Rand.  Rand.  Rand.
alignment target1 target2 target3 targetd

Spectral RF (Lombaert ef al., 2015b) | 65.4+9.0 |81.9+3.4 60.0+1.8 553+2.1 60.2+4.0 552+3.0
Seg-GCN (Gopinath et al., 2019b) 71.4+79(865+2.8 67.8+2.0 58.8+2.8 63.5+3.2 60.1+3.6
Adv-GCN (ours) 73.8+6.0 |85.7+3.5 73.5+2.0 72.5+2.6 72.4+2.4 71.7+3.3

4.3.2 Comparison with the state-of-the-art

We next compare our method, called Adv-GCN in the following results, against two other
graph-based approaches for surface parcellation. This first one is the Spectral Random Forest
(RF) algorithm proposed in (Lombaert et al., 2015b), which performs the same spectral graph
embedding as our method, and then uses the spectral coordinates and sulcal depth at individual
nodes to train a RF classifier. As done in (Lombaert ez al., 2015b), we employed 50 trees to build
the RF model. This comparison baseline was included to show the limitation of point-based
approaches which ignore the relationship between nodes when predicting labels. The second
approach, called Seg-GCN, is the same segmentation GCN as in our method, but trained without
the adversarial loss. For this baseline, which is similar to the method presented in (Gopinath
et al., 2019b), our goal is to show the benefit of learning an alignment-invariant representation

with adversarial domain adaptation.

The surface parcellation approaches are compared in three different test settings. In the first
one, the approaches are applied on target examples without any alignment. This corresponds
to the normal application setting of our alignment-invariant method. For the second one, we

align all target examples on the same reference surface as the one used for source examples.
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This setting requires to retain the reference surface and apply ICP alignment in pre-processing
for each test surface. Finally, in the third setting, target examples are aligned to a reference
surface chosen randomly in the test set. This last setting corresponds to the case where we want

to parcel surfaces from a dataset which was processed differently than the source dataset.

Results of this experiment are summarized in Table 4.1. When test examples are aligned to
the same source reference (i.e., no domain shift), our segmentation GCN architecture, with
or without adversarial learning, outperforms Spectral RF by a large margin. This illustrates
the importance of considering the relationship between different nodes in the graph, as in our
graph convolution model. However, when applied to non-aligned test surface, our Adv-GCN
method achieves a 2.4% improvement in mean Dice over Seg-GCN, and 8.4% over Spectral RF.
This demonstrates the benefit of learning an alignment-invariant representation via adversarial
domain adaptation. Furthermore, the improvement provided by our Adv-GCN method is even
more significant for surfaces aligned to a random target reference (last four columns of Table 4.1).
Thus, across the four random target references, Adv-GCN yields an average improvement of
14.9% compared to Spectral RF and 10.0% compared to Seg-GCN. This shows the strength of

adversarial learning to match the output distribution for two fixed domains.

The average Dice overlap for individual parcels is shown in Fig. 4.3. As can be seen, Adv-GCN
provides a higher mean and smaller variance for most of the 32 parcels. By inspecting results, we
find that accuracy is correlated with parcel size, with larger parcels generally better segmented
than smaller ones. Figure 4.4 shows qualitative results for different graph segmentation methods.
As highlighted by the red circle, our Adv-CGN gives a more accurate segmentation compared to

Seg-GCN and Spectral RF, with an improvement over 13% in parcel-averaged Dice.

4.4 Discussion and Conclusion

In this paper, we presented a novel adversarial domain adaptation framework for brain surface

parcellation. The proposed algorithm leverages an adversarial training mechanism to obtain
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Figure 4.3 Segmentation Dice for individual parcels — Box-plot of mean Dice overlap
achieved by three different methods for all 32 cortical parcels when test subjects are not
aligned.

an alignment-invariant surface segmentation, and overcomes the limitations of spectral GCNs
(Bruna et al., 2014b; Defferrard et al., 2016) that require finding an explicit alignment of
graph eigenbases. Table 4.1 shows a clear improvement in performance over the same spectral
GCN without adversarial training (Seg-GCN) and the Spectral Random Forest (RF) algorithm
(Lombaert et al., 2015b). Specifically, our method yields a 2.4% mean Dice improvement over
Seg-GCN and 8.4% over Spectral RF, for non-aligned test surfaces. This improvement reaches
over 10% for test surface aligned to a random target reference. Qualitative results in Fig. 4.4

illustrate the better parcellation of our method for non-aligned surfaces.

In some experiments, we observed a tendency of the discriminator to overfit the training set,
which impeded domain adaptation in the learning process. In a future study, two strategies
could be explored to overcome this problem: using other types of discriminator, for instance

the Least Squares GAN (Mao, Li, Xie, Lau, Wang & Paul Smolley, 2017) or Wasserstein GAN
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Reference (Ground Truth)

Spectral RF

Dice overlap : 55.3% + 2.1 Dice overlap : 58.8% + 2.8 Dice overlap : 71.8% + 2.6

Figure 4.4 Qualitative comparison of parcellation — Parcellation outputs of the three
surface segmentation approaches for a single non-aligned test surface. For better
visualization, segmented parcels are drawn on an inflated surface. For each approach, we
report the average Dice and standard deviation computed over the 32 parcels. As
highlighted by the red circle, our adversarial GCN (Adv-CGN) gives a more accurate
segmentation compared to the same model without adversarial training (Seg-GCN) and
Spectral Random Forest (RF).

(Arjovsky, Chintala & Bottou, 2017), and applying data augmentation on labeled brain surface
meshes. While our adversarial graph domain adaptation technique was demonstrated on cortical
parcellation, it also has potential for other surface segmentation problems where a domain shift
is present. Likewise, our method could be useful for semi-supervised surface segmentation,
thereby mitigating the need for large amounts of labeled surfaces. In this setting, the same
architecture could be used, however the discriminator would predict if the segmentation output
is for a labeled or unlabeled example from the same domain. We plan to evaluate the impact of
higher frequency input representations with performance measures such as Hausdorff distance

in future work.
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Presentation

This chapter presents the article “Learning Joint Surface Reconstruction and Segmentation,
from Brain Images to Cortical Surface Parcellation” submitted to theMedIA journal (Medical
Image Analysis). The article was initially accepted for publication at MICCAI (Medical Image
Computing and Computer Assisted Intervention) 2021, held virtually. The objective of this

article is to jointly reconstruct and segment cortical surface from input MRI volume.

5.1 Introduction

Brain surface analysis requires the accurate reconstruction and segmentation of cortical surfaces
from MRI volumes (Glasser et al., 2016; Querbes, Aubry, Pariente, Lotterie, Démonet, Duret,
Puel, Berry, Fort, Celsis et al., 2009). Standard surface processing pipelines for reconstructing
cortical surfaces (Dahnke, Yotter & Gaser, 2013; Fischl et al., 2004b; Kim, Singh, Lee,
Lerch, Ad-Dab’bagh, MacDonald, Lee, Kim & Evans, 2005; Kriegeskorte & Goebel, 2001;
Shattuck & Leahy, 2002; Styner et al., 2006) follow a sequence of costly operations that often
include: white matter segmentation, surface mesh generation from the segmentation masks,
mesh smoothing and projection to a sphere, topological correction of the projected mesh, and
fine-tuning of re-projected mesh on the segmented volume. The cortical surfaces are segmented

into neuroanatomical parcels in a subsequent and highly-expensive step. Such segmentation
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can take several hours to finish, which involves the re-projection of each surface to a sphere
via a metric-preserving inflation process, registration to a spherical atlas (Fischl ef al., 1999;
Klein & Tourville, 2012) and cortical parcellation using atlas labels (Desikan, S€gonne, Fischl,

Quinn, Dickerson, Blacker, Buckner, Dale, Maguire, Hyman et al., 2006).

Recently, Henschel er al. (2020) developed a framework called FastSurfer using deep learning that
accelerates the processing times for brain segmentation and spectral embedding for registration
to a spherical atlas. Despite reducing computation times considerably, this pipeline still performs
reconstruction and segmentation in two consecutive steps. To overcome this limitation, Cruz
et al. (2021) proposed a deep learning model called DeepCSR for cortical surface reconstruction.
This method draws inspiration from (Park ez al., 2019), and samples points on a reference grid
of arbitrary resolution to reconstruct a surface without the need for an explicit segmentation
step. However, this process is highly expensive in terms of both computation and memory for
detailed surfaces with hundreds of thousands of points. Additionally, DeepCSR only performs
surface reconstruction, and cannot be used for parcellation which is one of the most time-costly
operations in conventional neuroimaging pipelines (Fischl er al., 2004b). Approaches that
directly operate (Lopez-Lopez, Vazquez, Poupon, Mangin, Ladra & Guevara, 2020; Wu, Zhao,
Xia, Wang, Lin, Gilmore, Li & Shen, 2019) or learn on surface data (Gopinath ef al., 2019b,2;
Lombaert et al., 2015b) have been used for cortical parcellation, but are designed to process
single surfaces separately for each subjects. Spectral embeddings of surface meshes in a
low-dimensional space can be exploited to predict cortical parcellation labels Germanaud,
Lefevre, Toro, Fischer, Dubois, Hertz-Pannier & Mangin (2012); Lombaert et al. (2015b).
However, a major limitation of these early learning approaches is that mesh nodes are considered
separately instead of jointly. Recent work has proposed using graph convolutional networks
(GCN) (Gopinath et al., 2019b,2; He, Gopinath, Desrosiers & Lombaert, 2020; Wu et al.,
2019) to exploit the connectivity information of a mesh graph. While such strategy provides an

accurate and faster parcellation of the cortical surface, it is highly sensitive to the quality of the
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surface reconstruction step. Hence, small errors or holes in the reconstructed cortical mesh may

cause to parcellation to fail.

We propose SEGREcoN, a novel deep learning model for the joint reconstruction and parcellation
of cortical surfaces. Our end-to-end model works directly on MRI volumes and predicts a
dense set of surface points along with their corresponding parcellation labels. A CNN based on
3D-UNet (Cicek et al., 2016) is used to predict, for each voxel of an input volume, the brain
hemisphere containing the voxel, its signed distance to the nested surfaces (white matter and
pial surfaces) of that hemisphere, used for surface reconstruction, and the spherical coordinates
in the registered atlas space, used for surface parcellation. By learning to solve this multi-task
problem, the network can be used to reconstruct and segment brain surfaces efficiently and in a

topologically-accurate manner (Bazin & Pham, 2007).

The main contributions of our work are the following:

- To our knowledge, we propose the first deep learning model for the joint reconstruction
of multiple nested surfaces and their segmentation, with an application on brain surfaces.
This contrasts with existing approaches, which either perform surface reconstruction and
segmentation in separate steps (Henschel ef al., 2020), are limited to reconstruction (Cruz
et al., 2021), or require a pre-generated mesh as input (Gopinath ez al., 2019b; Lombaert

et al., 2015b; Wu et al., 2019);

- Compared to the current surface reconstruction learning approaches (such as DeepCSR),
the proposed method implements a fully-convolutional architecture that densely predicts the
location of all input voxels relative to cortical surfaces, in a single feed-forward pass. Our
method also leverages a novel surface reconstruction loss that controls the minimum and
maximum distance between white matter and pial surfaces (i.e., cortical thickness), thereby

ensuring that these surfaces never cross;
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Figure 5.1 Overview of surface reconstruction segmentation algorithm — Our proposed
method for joint brain surface reconstruction and segmentation from images. On the left is
input: MRI volume X. In the middle are the intermediate learned voxel level predictions
from the 3D CNN model. These include for each voxel v: hemisphere label 4, (X),
azimuthal angle y, (X) and polar angle ¢, (X) in the spherical atlas space, signed distance
to white matter surface d (X), and signed distance to pial surface d% (X). On the right are
the reconstructed white and pial surface along with cortical parcels for each hemisphere of
the brain.

- We present a comprehensive set of experiments involving three publicly-available datasets,
i.e., MindBoggle (Klein et al., 2017), OASIS (Marcus, Wang, Parker, Csernansky, Mor-
ris & Buckner, 2007) and ABIDE-I (Di Martino, Yan, Li, Denio, Castellanos, Alaerts,
Anderson, Assaf, Bookheimer, Dapretto et al., 2014), that compare the surface reconstruction
and segmentation accuracy of our method against several baselines. Our results demonstrate
the major advantages of our method over standard brain surface analysis pipelines are recent

approaches for cortical parcellation. With respect to the widely-used FreeSurfer software,
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our method generates surfaces with an average HausdorfI distance less than 0.52 mm, while

boosting the parcellation Dice by 4.3% and being several orders of magnitude faster.

In the next section, we present our proposed joint reconstruction and segmentation approach,
describing in detail the network architecture, training losses and inference steps. The performance
of our method is then evaluated on the MindBoggle (Klein ez al., 2017), OASIS (Marcus et al.,
2007) and ABIDE-I (Di Martino et al., 2014) datasets. The ablation study and comparison to

the state-of-art in our experiments demonstrate the important benefits of our method.

3D conv stride 1 3D transposed conv Atlas
3D conv stride 2 Dropout

Instance normalization Skip connections

Joint surface reconstruction & segmentation

Gaussian
smoothing
+

Topo. correction

Figure 5.2 Overview of SEGREcoN architecture — The 3D-CNN model takes as input MRI
volume X for joint learning of the signed distance to white-to-grey matter interface,
grey-matter-to-CSF interface and its corresponding spherical coordinates in the registered
atlas space. (Red) The cortical white matter or pial surface is reconstructed by applying
Gaussian smoothing and topological correction on the predicted signed distance map
prediction d! (X) or d” (X), followed by iso-surface reconstruction via the Marching Cubes
algorithm. (Blue) In parallel, the predicted spherical atlas coordinates (y,(X), ¢, (X)) and
hemisphere label (4, (X)) are used to propagate atlas parcellation labels to near-surface
voxels v. An illustration of the left hemisphere white matter surface is shown here.

5.2 Method

An overview of SEGREcon is shown in Fig. 5.2 with the end-to-end surface construction and

segmentation steps illustrated. Let D = {(X;, Sl.W, Sf ,Yi)}?, be a training set where each
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example is composed of: a 3D volume X; €/ with voxel set Q ¢ Z>, a white matter surface
SlW €3 defined by m points, a pial surface Sf €3 defined by n points, and a one-hot encoded
segmentation Y; € [0, 1]™*¢ of the white matter surface, where c is the number of segmentation
classes. The goal is to learn a model f parameterized by © which maps an input 3D volume X

to a white matter surface S" with corresponding parcel labels Y, and a pial surface S

One of the main challenges in this task comes from the disparity between the well-defined grid
space of images X and the domain of surfaces S and S”, where the number of points can vary
from one surface to another and points can lie anywhere in 3D space. In (Cruz et al., 2021), this
problem is solved by giving as input to model f both the image X and a query point p €3 in the
template space. The model then predicts if p belongs to the surface in X or, alternatively, its
distance to this surface. To reconstruct a surface at inference time, the model is queried over a
fixed reference grid. While this strategy allows reconstructing a surface at arbitrary resolution,
it suffers from two important drawbacks. First, since the template points which can be in the
hundreds of thousands are queried independently, reconstructing a surface requires significant
time and computation. Moreover, unlike dense prediction approaches, this strategy does not
exploit the spatial relationship between points. Last, because feature maps need to be computed

for the whole 3D volume X, it also needs a large amount of memory.

To overcome these drawbacks, we instead learn a model that densely projects voxels of the input

volume X to a spherical atlas space. Specifically, f maps each voxel v € () to a vector
F(X) = [ddl, ¢uuye, B BT RS, (5.1)

where d} is the signed distance from v to its nearest surface point, such that d;y <0 if v is
inside the surface else d? > 0. Similarly, d” is the signed distance from v to its nearest pial
surface. ¢,, v, are the polar angle and azimuthal angle of v € Q) defining its position in the
spherical atlas, and h[vh, hch, hlv’g € [0, 1] are the probabilities that v is in the left hemisphere,

right hemisphere and background, respectively. Here, polar and azimuthal angles are normalized
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so to lie in the [—1, 1] range. A further topological correction step (Bazin & Pham, 2007) over
the predicted surface points prevents the extraction of critical points yielding topological defects.
The resulting white and pial surfaces are defined implicitly as the O-levelset of their respective
distance map and can be efficiently reconstructed using an iso-surface extraction algorithm such

as the Marching Cubes (Lorensen & Cline, 1987).

5.2.1 Training the model

Denote E = f(X;) as the predicted vector for an image X; and let f; be the corresponding

ground-truth. To train the model, we use the following loss function

n
£(9§D) = Z[wsurf(fia fz) + fpsurf(fi’ fz) + 4 ghemi(fia fz) + A2 fthick(fi)a (52)
i=1

The first loss term, €ysurf, €nsures that the signed distance of voxels to the white matter surface,
as well as their position in the spherical atlas space, are well predicted. Dropping index i for

simplicity, it is defined as

fwsurf(/f: f) = Z ﬂ|d“,”|$6 ’ [(&?}V - dr})z + min {((;5\‘, - ¢v)2’ (1 + q/;v - ¢V)2}

veQ
+ min {3, - 7)% (1+7, - n))}|- (5:3)

where 1p is the indicator function, equal to 1 if predicate P is true else, O otherwise. We only
consider voxels within a distance of € to the nearest white matter surface point in order to
focus learning on relevant points close to our surface. This is achieved with function 14v|<¢ in
Eq. (5.3). Additionally, we consider the non-uniqueness of spherical coordinates (e.g., —m = )
by computing, for each angle, the minimum L, distance from the predicted angle or this angle
plus 1 to the ground-truth. The distance d)) is, therefore, defined between the center of the voxel
v in image space and the nearest point on white matter surface SV. In this work, we use the white

matter surface mesh generated by FreeSurfer for training. The sign of d))" is determined using the
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white-matter segmentation mask, with voxels inside the white matter having a negative distance.
Likewise, the ground-truth spherical coordinates ¢, and vy, are obtained using FreeSurfer (Fischl

et al., 2004b) with the Desikan-Killiany-Tourville (DKT) atlas (Klein & Tourville, 2012).

The second loss term, {5y, €nsures that the signed distance of voxels to the nearest pial surface

is predicted accurately. We define it as

bosurt (00) = > e - (@ = d), (5.4)

veQ)
where d? is the distance defined between the center of the voxel v and its closest point on pial
surface S” obtained by FreeSurfer pial meshes. The sign of the distance d is estimated using
the brain segmentation mask with voxels inside the brain mask having negative distance. Similar
to Cywsurf in Eq. (5.3), 1p is the indicator function used to restrict the training to the useful voxels

within a distance of € to the closest pial surface.

The third term, ¢hemi €nables the network to predict if a voxel v lies in the left hemisphere (//), in
the right hemisphere (rh) or is outside both (bg). This prediction is necessary since the surface

atlas is defined separately for each hemisphere. Here, we use cross-entropy as loss function:

bremi(F,6) = = > > kS log . (5.5)
veQ ce{lh,rh,bg}

The ground-truth hemisphere masks are once again obtained from FreeSurfer.

Since the white matter and pial surfaces are reconstructed from two separate predictions, it
may happen that predicted surfaces are near to the ground-truth while still violating anatomical
constraints. For example, in very thin regions of the cortex, the reconstructed surfaces may

overlap or even cross each other. To avoid this problem, we add a last term to the loss function,
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Chick, Which controls the minimum and maximum distance between the surfaces:

ok () = > Tgpag - [max(d = Y + tpin,0) + max(d) = dl = tyar,0)]  (5.6)

veQ
where t,,;, and t,,,, are the minimum and maximum allowed inter-surface distances (cortical
thickness). These hyperparameters can be set based on the dataset ground-truth or some clinical
reference. For instance, a cortical thickness range from 1 to 4.5 mm is reported in (Fischl & Dale,
2000). We use similar values in this work: t,,;, = 0 and 1,,,, = 5. Effectively, this prevents
surfaces from crossing each other or separating beyond 5 mm. As defined in Eq. (5.6), this

penalty is only calculated for voxels inside the pial surface, i.e., voxels v such that 1,r_.

5.2.2 Surface reconstruction and segmentation

Once the network is trained, it can be used to reconstruct and segment surfaces directly from
a test volume X. First, we feed the volume to the network to obtain a prediction vector for
all voxels. Since the network is fully-convolutional, this can be done efficiently in a single
feed-forward pass. Next, we apply a small-width Gaussian filter on the predicted 3D white
matter surface distance map d" using a single convolution operation and employ a topological
correction step (Bazin & Pham, 2007) to overcome any defects in the surface. The same steps

are followed to extract the 3D pial surface using distance map dar.

To segment the surface, we first compute the near-surface voxels in each hemisphere as follows:
¢ ={veQ|ld|<enc=argmax i}, ce {lh,rh}. (5.7)
C/

We then find the nearest-neighbor to a given reference atlas R¢ for all the near-surface voxels
v € S¢ using their predicted angles $V and ¥,. The segmentation labels from this reference atlas

R¢ are then projected back to the near-surface voxels S¢.
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5.2.3 Implementation details

The overall architecture of SEGREcon is shown in Fig. 5.2. As an input, we provide the
skull-stripped, intensity normalized 3D T1-MRI volume. We use a 3D-UNet architecture similar
to (Cicek et al., 2016) in order to map the input voxel to a point in the spherical atlas space.
We apply a softmax activation in the first three output channels to predict the probability of
a voxel belonging to the background, left hemisphere, or right hemisphere. The polar and
azimuthal angles, av and ¥,, are predicted with a tanh activation. The last two output channels
produce the signed distance map c’l\;” and c;’f for each voxel v. The network parameters, 6, are
optimized using a stochastic gradient descent with the Adam optimizer (Kingma & Ba, 2014).
During training, we pick the maximum distance of surface voxels in Eq. (5.3) to be € = 2.5,
which corresponds to the overall average thickness reported in (Fischl & Dale, 2000). The
surface is reconstructed using the Marching Cubes algorithm (Lorensen & Cline, 1987) on the
O-levelset of its predicted signed distance map, smoothed with a Gaussian kernel of sigma=0.5

and topologically corrected with the method of (Bazin & Pham, 2007). We use an 17 desktop
machine with 16Gb RAM and Nvidia RTX 2080 GPU for our work.

5.3 Experiments and results

To benchmark the performance of our method, we use one of the largest publicly-available
dataset containing manual surface parcellation, MindBoggle (Klein er al., 2017). This dataset
contains 101 subjects with MRI volumes, FreeSurfer processed meshes, and 32 manually-labeled
cortical parcels. We split the dataset randomly into training, validation, and testing using a
ratio of 70-10-20%. We also use the ABIDE-I (Di Martino et al., 2014) and OASIS (Marcus
et al., 2007) databases as independent test sets to measure the surface reconstruction error of
our method with FreeSurfer-generated cortical and pial surfaces. The ABIDE dataset contains
brain surfaces for 1035 subjects with 530 healthy and 505 autism spectrum disorder (ASD)

subjects. Likewise, the OASIS dataset comprises a total of 226 brain surfaces from 93 healthy
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subjects and 133 subjects with Alzheimer’s disease (AD). These two datasets are used to validate
the robustness of the method to various factors, including image acquisition and processing
parameters, age (the majority of ABIDE subjects are children or adolescents, while most OASIS
subjects are elders) and cortical surface alterations (AD subjects in OASIS have a thinner cortex,

on average, resulting from the neurodegenerative disease).

In a first experiment, we validate the benefit of predicting a signed distance map for surface
reconstruction compared to predicting a binary mask. For this experiment, we train the model
using only data from MindBoggle, and measure the reconstruction error on subjects from the
ABIDE and OASIS datasets. The qualitative results of the reconstructed surface are shown in
Fig. 5.3 and 5.4. In the next experiment, we evaluate the impact of varying the reference atlas
template for predicting parcellation labels, and show that a robust parcellation can be achieved
by combining the predictions from multiple atlases. Finally, we highlight the advantages of our

joint reconstruction and parcellation model against state-of-the-art methods.

Table 5.1 Performance of surface reconstruction for white surface — The reconstruction

error (mm) measured between white surface meshes generated by our SEGREcoN method

and FreeSurfer generated meshes. The chamfer distance (CD), absolute average distance

(AAD) and Hausdorff distance (HD) are reported for white surface meshes of both left and
right hemisphere. The first row highlights the performance of our method with surface
reconstruction from signed distance (SD) map, where as, the second column shows the

limitation of using binary (BW) segmentation map for surface reconstruction. The third and

fourth rows report the reconstruction error on OASIS dataset. Likewise, the last two rows

shows the results on ABIDE dataset. Reconstruction metrics are reported on unseen OASIS

and ABIDE dataset containing both healthy and AD/ASD subjects.

‘ B . ‘ Left White Matter ‘ Right White Matter ‘
Xperiment
CD AAD HD CD AAD HD
SD map 1.909+0.25 0.449+0.04 0.895 +£0.08|1.944+0.26 0.465+0.05 0.936+0.11
BW map 5.019+0.35 0.630+0.04 3.104+0.60 |4.954+0.27 0.632+0.04 3.032+0.47
OASISCN  |2.229+1.13 0.515+0.06 0.967+0.16 |2.083 +0.74 0.503+0.06 0.957 +0.14
OASIS AD [2.074+0.81 0.488+0.09 0.921+0.20 |2.039+0.76 0.483+£0.07 0.913+0.15
ABIDE CN |2.020+0.77 0.437+0.06 0.900+0.15 [2.011+0.76 0.442+0.05 0.912+0.15
ABIDE ASD | 2.081 £0.92 0.448 +0.09 0.927 +0.29 |2.055+0.88 0.452+0.08 0.937 +0.31
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Table 5.2 Performance of surface reconstruction for pial surface — The reconstruction
error (mm) measured between pial surface meshes generated by our SEGREcon method and
FreeSurfer generated meshes. Reconstruction metrics are reported on unseen OASIS and
ABIDE dataset containing both healthy and AD/ASD subjects. The chamfer distance (CD),
absolute average distance (AAD) and Hausdorft distance (HD) are reported for pial surface

meshes of both left and right hemisphere.

| Experi \ Left Pial | Right Pial
xperlment
CD AAD HD CD AAD HD
SD map 1.908 £0.25 0.435+0.04 0.875+0.08 | 1.944 +0.26 0.453+0.03 0.942 +0.09
BW map 5.034+0.34 0.806+0.04 2.730+0.60 |4.970+0.27 0.829+0.04 2.509 +0.47
OASISCN [2.226+1.13 0.422+0.07 1.037+0.30[2.080+0.74 0.429+0.05 1.032+0.16
OASIS AD |2.076+0.82 0.429+0.06 1.042+0.21|2.037+0.75 0.443+0.05 1.058+0.14
ABIDECN [2.022+0.78 0.568+0.09 1.183+0.30|2.011+0.75 0.574+0.08 1.215+0.30
ABIDE ASD |2.079+0.91 0.572+0.10 1.216+0.42|2.055+0.88 0.580+0.11 1.263 +0.46

5.3.1 Surface Reconstruction

To assess the quality of reconstructed surfaces, we use the Chamfer distance (CD) (Park et al.,
2019), absolute average distance (AAD) (Cruz et al., 2021) and Hausdorff distance (HD) (Cruz
et al., 2021). Chamfer distance is a widely-used evaluation metric defined as the sum between
the average squared-distance from predicted surface points to their nearest point on the ground
truth surface and the average squared-distance from ground truth surface points to their nearest
point on the predicted surface. Similarly, AAD measures the mean absolute nearest-neighbor
distance between the predicted and ground-truth surface points, averaging values computed
in both directions (predicted to ground-truth and the opposite). Finally, HD computes the
maximum distance between a point on a surface and its nearest point on the other surface. As
in (Cruz et al., 2021), to minimize the impact of outliers, we consider the 90h percentile of
nearest-neighbor distances, and keep the maximum between values computed for one direction

and the other. For all metrics, a lower value in mm indicates a better surface reconstruction.

We first evaluate the benefit of using a signed distance (SD) map, when reconstructing the white
and pial cortical surfaces, by comparing it against using a binary mask (BW). To predict the

binary mask, we use an architecture similar to the one in Fig. 5.2 where the last two output maps
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(corresponding to white matter and pial surfaces) are generated with sigmoid activations. As
reported in Table 5.1, an improvement in CD from 5.0 mm to 1.9 mm is obtained when signed
distance map is used for white matter surface reconstruction. A similar improvement over the
binary mask approach is also observed in terms of AAD and HD. Qualitative results, presented
in Fig. 5.3, show that the meshes reconstructed using signed distance maps are more regular and

closer to FreeSurfer-generated meshes, compared to those obtained with binary masks.

Our surface reconstruction method was also tested on the OASIS and ABIDE datasets, not
used for training, to evaluate its robustness. As can be found in Table 5.1, our method obtained
a mean AAD below 0.52 mm and mean HD less than 0.97 mm for the white matter surface,
in both datasets. Similarly, reconstructed pial surfaces in Table 5.2, on both datasets have a
mean AAD no greater than 0.58 mm and mean HD less than 1.27 mm for pial surfaces in both
datasets. These results, obtained for subjects of very different ages and with cortical alterations,
are comparable to those obtained for the MindBoggle test set. The qualitative results in Fig. 5.4

validate the visual similarity in surface reconstruction of our method, across datasets.

5.3.2 Effect of reference atlas on parcellation

Instead of predicting class probabilities for each voxel, as in standard 3D segmentation networks,
the proposed network predicts spherical atlas coordinates (i.e., angles ¢, and 7,). This has two
important advantages: i) considerably reducing the number of outputs for the number of classes
to only two, and i) providing information on the precise location of a voxel inside a parcel
instead of simply measuring if a voxel is inside a parcel or not. As we will show in the next
section, this continuous prediction strategy leads to a higher accuracy compared to a standard

segmentation approach. However, the final predicted labels depend on the reference atlas.

For assessing the impact of the reference atlas on segmentation performance, we randomly select
five subjects from the training set and use the spherical coordinates and parcellation labels of

their surface mesh nodes as different atlases Ref7, . .., Refs. Table 5.3 reports the mean Dice
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Figure 5.3 Surface reconstruction visualization — Comparison of cortical white and pial
surface reconstructed by our method (even columns) with FreeSurfer generated surfaces
(odd columns). The first row shows the surfaces reconstructed by our method using binary
mask prediction. A reconstruction error of 2.8 mm in Hausdorff distance (HD) is seen with
the use of binary mask (BW) vs. a reconstruction error of 0.9 mm in Hausdorff distance
(HD) with the use of a signed distance (SD) map. The reconstruction in the last column for
pial surface highlights the downside of using BW masks with irregular surface
reconstruction.

Table 5.3  Effect of reference atlas on parcellation — Column 1-5: The average

Dice overlap (in %) obtained after using five different references as an atlas for

label propagation. The last column shows the results when we vote across five
different atlas references.

Ref Ref, Ref; Refy Ref’; Voting
84.60+190 85.85+1.79 8529+193 85.08+1.54 87.33+1.90 88.69 +1.84

score obtained for test subjects using each of the five atlases. While a high accuracy is obtained

in all cases, the performance also varies significantly from 84.60% to 87.33%.

To provide a greater robustness to the choice of atlas, we apply a simple multi-atlas strategy
in which a separate prediction is obtained for each atlas, and individual predictions are then
combined using majority voting. As shown in Table 5.3 (last column) this strategy leads to an
important boost in Dice score to 88.69% compared to the average of 85.63% computed across

all atlases.
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Figure 5.4 Reconstruction on unseen ABIDE and OASIS datasets — Comparison of a
cortical surface predicted by our joint reconstruction and segmentation method and
FreeSurfer (Fischl ef al., 1999). Our SEGREcoN method yields visually similar results while
being orders of magnitude faster. Reconstruction error on the unseen ABIDE and OASIS
dataset with both healthy and ASD/AD subjects are identical to the MindBoggle dataset the
model is trained on, indicating the robustness of the proposed method. Only right
hemisphere is shown here.

5.3.3 Comparison with the state-of-the-art

We next compare our joint reconstruction and parcellation method SEGREcoN against several
baselines and recent approaches for these tasks. Table 5.4 reports the performance of tested
methods in terms of average Dice scores, mean Hausdorft distances, and runtime. To evaluate
the benefit of predicting cortical parcels using spherical atlas coordinates, we first train a
3D-UNet to predict the parcellation label probabilities directly at the voxel level as in standard
3D segmentation networks. This baseline, called DirectSeg in Table 5.4, gives a low Dice score
of 79.95%. As mentioned above, this is due to the greater number of network outputs (i.e., one

output per class) compared to simply predicting the two spherical atlas coordinates.

We also evaluate the FreeSurfer parcellation against the manual labels provided in the MindBoggle

dataset. FreeSurfer considerably improves parcellation accuracy compared to DirectSeg with a
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Dice score of 84.39%. However, this comes at the price of a significant increase in computation

times, from 300 milliseconds per volume for DirectSeg to a few hours for FreeSurfer.

Third, we show the advantage of predicting cortical surfaces directly from 3D images, as in
our method, compared to working with surface meshes computed previously. Toward this goal,
we test two mesh-based models, named FS + SRF and FS + GCN in the results. The first one,
Spectral Random Forest (SRF) (Lombaert et al., 2015b), performs a spectral embedding of
nodes in the FreeSurfer mesh graph using the main eigen-components of its Laplace matrix.
The labels of embedded nodes are then predicted separately using a Random Forest classifier. In
the latter, the connectivity of nodes in the mesh graph is also exploited in the prediction using
a graph convolutional network (GCN) (Gopinath et al., 2019b). As can be seen, predicting
labels for all nodes simultaneously in FS + GCN, instead of individually in FS + RF, largely
improves Dice score by 6.72%. However, as both approaches require generating surface meshes
in a former step, which can take around 2 hours for FreeSurfer, their total run time remains
substantial. In comparison, our method achieves a mean Dice score of 88.69% with an average
total run time of only 8 seconds per volume. That is a 4.30% improvement over the Dice score

of FreeSurfer, at a fraction of its computational cost.

Triangularis Caudal middle frontal Middle temporal

— T

Figure 5.5 Visualization of parcellation performance — The manual parcellation
boundaries are shown in red, with our predicted parcellation boundaries in black. Our
model segments 32 parcels in total on the brain surface. We show four parcels, namely,

Triangularis, Insula, Caudal middle frontal and middle temporal of the left hemisphere for
qualitative analysis. The cortical mesh is inflated here for visualization.

Next, we evaluate the performance of our SEGREcoN method in two different settings. First, we

show the importance of the hemisphere prediction loss of Eq. (5.5) on performance. To do so,
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we reduce the weight of the loss term {hemi in Eq. (5.2) to 4 = 0.0001 during training. This
ablation baseline is denoted as w/o hemisphere in Table 5.4. As can be observed, the lack of
accurate hemisphere prediction results in ambiguous label prediction for surface voxels in both
hemispheres which leads to a low Dice score of 59.28%. Finally, we present the setting of our
model for predicting a distance d,, for each voxel. In this way, our model predicts the iso-surface
for surface reconstruction. The accurate prediction of polar and azimuthal angles (¢, and 7,)
for obtaining parcel labels from the atlas yields an average Dice score of 88.69%. Similar
improvements of our method compared to other approaches are also found for the Hausdorft
distance metric. Qualitative results obtained by our surface segmentation method are shown in
Fig. 5.5, where we illustrate the differences between the predicted and manual label boundaries

for four different parcels or regions.

Table 5.4 Evaluation of SEGREcoN on parcellation — Comparison against state-of-the-art
approaches in terms of Dice scores (in %), Hausdorff Distances (in mm), and computational
time. The first row shows the performance of a DirectSeg a 3D-CNN network on surface
parcellation. The second row illustrates the results of the traditional FreeSurfer algorithm
for parcellation. In the third and fourth row, we show the ability of a Spectral Random Forest
(SRF) and graph convolutional network (GCN) learning based approach to segment the
cortical surface. The fifth row shows the importance of learning hemisphere segmentation
in our work. Finally, in the last row, we show the performance of our proposed model.

Methods Dice overlap (%0)  Hausdorff (mm) Time
DirectSeg 79.95 +2.58 - ~ 300 milliseconds
FreeSurfer 84.39 +1.91 2.11 £0.29 ~ 4 hours

FS + SRF 79.89 +2.62 1.97 £0.40 ~ 2 hours + 18 sec
FS + GCN 86.61 +2.45 1.66 +£0.44 ~ 2 hours + 3 sec
w/0 hemisphere 59.28 +£12.20 3.94 +£3.14 ~ 8 sec
SEGRECON (Ours) 88.69 +1.84 1.20 +1.36 ~ 8 sec

5.4 Discussion and Conclusion

We presented SEGREcoON, a novel deep learning end-to-end model for the joint reconstruction and
segmentation of nested surfaces, directly from MRI volumes. Our model learns multiple signed

distance functions that represent surfaces implicitly as iso-levels. An inter-surface distance
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loss, computed from the distance maps during training, ensures that surfaces do not cross and
that the predicted cortical thickness is anatomically possible. After applying a topological
correction method (Bazin & Pham, 2007), a mesh is generated for each surface from their signed
distance map using the Marching Cubes algorithm (Lorensen & Cline, 1987). Jointly, the model
also learns to predict the spherical coordinates of each voxel in a registered atlas space. The

propagation of labels from the atlas space effectively segments the cortical white matter surface.

Our experiments used the largest publicly available dataset of manually-labeled brain surfaces
(Klein et al., 2017), as well as the ABIDE-I (Di Martino et al., 2014) and OASIS (Marcus et al.,
2007) datasets, to evaluate the surface reconstruction and segmentation accuracy of our method.
We first showed the advantage of employing a signed distance map over a binary surface mask
for reconstructing cortical surfaces. When comparing surfaces reconstructed by our method to
those produced by FreeSurfer, using a continuous signed distance map significantly reduces the
Hausdorff distance from 2.8 mm to 1 mm. Fig. 5.3 shows the irregularities and artifacts in the
reconstructed surface due to the use of binary map. We then validated the robustness of our
reconstruction method on the ABIDE and OASIS datasets which were not used in training. The
method yields a Hausdorff distance less than 1.2 mm on samples from these datasets, obtained
with varying acquisition protocols and corresponding to subjects with very different age and
cortical alterations. Surfaces reconstructed by our method, presented in Fig. 5.3 and 5.4, are

visually similar to FreeSurfer meshes which require extensive runtimes to generate.

We analyzed the impact on performance of the reference atlas selected for transferring cortical
parcellation labels to the surface. While Dice scores ranging from 84.60% to 87.33% were
obtained with 5 different atlases, an improved Dice of 88.69% was achieved via a multi-atlas
strategy combining the predictions for different atlases with majority voting. We also compared
our method against several baselines and state-of-the-art approaches for cortical parcellation. Our
approach has higher Dice score than directly predicting cortical labels with 3D-UNet (79.9%)

which, unlike our method, cannot be used to reconstruct cortical surfaces. Moreover, it achieved
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a significantly higher mean Dice score than FreeSurfer (84.3%) with substantially reduced
computation times over compared to this method (hours vs. seconds). Likewise, it improved
by over 2% Dice a state-of-art parcellation method based on GCN that requires pre-computed

surfaces as input.

In summary, our work proposes a joint reconstruction and segmentation of nested brain surfaces,
operating directly on MRI volumes, that can reconstruct and segment cortical surfaces faster and
more accurately than existing approaches. While the potential of our method is demonstrated
on the cerebral cortex, it could be applied to various other surface data such as cardio-vascular
surfaces. Moreover, although our model includes a loss to control the distance between
reconstructed surfaces and prevent them from crossing one another, incorporating more powerful
topological constraints during network training could remove the need for topological correction
in post-processing. Additionally, using a local smoothing based on anisotropic diffusion
(Perona & Malik, 1990), instead of Gaussian smoothing, could help regularize the mesh while

better preserving cortical folding patterns.






CONCLUSION AND RECOMMENDATIONS

The literature reviewed in introduction, highlights the challenges of surface analysis and the
limitation of working directly on brain surfaces. This thesis addresses these challenges by
proposing a set of geometric frameworks to directly learn brain surface data. Specifically, the
four research objectives led to novel tools useful for fast and accurate brain surface segmentation,
classification and reconstruction. In this chapter of the thesis, each contribution for the three
objectives are summarized with its practical impact, current limitations and the possible directions

for future works discussed.

6.1 Summary of contributions

Objective 1: Spectral graph convolutions for cortical surface parcellation

In Chapter 2, we have proposed a general novel methodology based on spectral graph theory
and graph convolution for brain surface analysis. The proposed framework uses advancement in
spectral matching to learn across multiple surface domains. The spectral filters of our graph
convolutions network learns data to perform cortical surface parcellation. Moving from the
conventional Euclidean domain to spectral domain for surface analysis reveals a significant gain
in performance on the largest manually labeled MindBoggle dataset. Results also show that
our framework leverages the geometric neighborhood information effectively compared to the
state-of-the-art approaches. Furthermore, experiments indicate the computation advantages
by providing surface parcellation in seconds rather than hours. The benefits of the method is
multi-fold, on one hand computationally, and on the other, opening new strategy for geometry

aware surface analysis.

Impact: The findings in this chapter has the potential to impact learning surface data directly
with applications to multiple neuroscience studies. The proposed spectral graph convolution

method overcomes the limitations of current spectral approaches, which are restrained to a fixed
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graph structure. It also provides an exhaustive evaluation on a multi-centric, publicly available

data indicating the robustness of the method.

Objective 2: Learnable pooling in graph convolutional networks for brain surface analysis

Chapter 3, presented a new framework that enables learnable pooling operation on graphs of
arbitrary structure. The proposed pooling operation via spectral graph convolutions performs
surface classification and regression tasks. The method leverages the spectral embedding of the
the graph nodes to learn spatially consistent regions to aggregate features across the convolution
layers. Experiments on the MindBoggle dataset of 101 brain surfaces, reveal the correspondence
between the learned pooling regions and the final downstream task. Our results on ADNI dataset
for predicting the stages in Alzheimer’s disease and regressing the brain age show significant
improvements in performance over other surface=based approaches. Moreover, a thorough

ablation study validates the architectural choices for our method.

Impact: The proposed learnable pooling is, to the best of our knowledge, the first method to
perform surface analysis across the dataset with varying size and structure. It offers a task
driven pooling regions that could potentially reveal new biomarkers for detecting neurological

disorders.

Objective 3: Alignment invariant brain surface analysis Chapter 4, proposes a novel
adversarial domain adaptation framework to overcome the limitation of aligning the spectral
embedding of brain surfaces. In a data driven approach, this work utilized an adversarial training
mechanism to perform alignment independent surface parcellation. Domain invariant surface
parcellation is evaluated on manually labeled MindBoggle dataset. The results reported in this
chapter show performance improvement for cortical parcellation over spectral graph convolution

network without any adversarial training, in a fraction of the time.
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Impact: The matching of spectral basis is an essential procedure when learning across surface
in spectral domain. However, with the proposed method in the chapter 4, the pre-processing of
aligning the spectral embedding of surfaces could be removed. This aids in a direct domain

invariant learning of surface data.

Objective 4: Direct joint cortical surface reconstruction and segmentation from MRI

volumes

Chapter 5, proposes an end-to-end deep learning model for joint surface reconstruction and
segmentation from a MRI volume. Two continuous signed distance maps to the white and pial
surfaces are predicted densely as an implicit description of surfaces. Topologically correct
cortical meshes are reconstructed with Marching cubes algorithm. Jointly the methods also
learn spherical coordinates to the registered atlas to segment the cortical surface. This method
overcomes the conventional approach that involve geometric simplification based smoothing
and slow segmentation. The performance of the surface reconstruction was evaluated using with
experiments on MindBoggle (Klein et al., 2017), ABIDE (Di Martino et al., 2014) and OASIS
(Marcus er al., 2007) datasets. The results on unseen test datasets show the robustness of the
proposed method. The reconstructed surfaces of our method show qualitatively similar results

to FreeSurfer generated meshes while the method is orders of magnitude faster.

Impact: This works contributes to the first study for joint brain surface reconstruction and
segmentation from MRI volumes. The method as such can directly be used for extracting and
segmenting other organs. The significant reduction in computation time for this joint task could

potentially help in targeted drug treatment for diseases manifested on the brain surface.
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6.2 Limitations and future work

The contributions of this thesis are discussed in the above section. In spite of this, there remains
limitations that were not thoroughly investigated. In this section, the main limitations are

identified, and recommendations for future works are provided.

Spectral embedding estimation: The surface analysis, including parcellation and classification
proposed in this thesis, is dependent on the spectral decomposition of the graph Laplacian matrix.
The assumption made for the spectral methods is that the topology of the graphs or surfaces is
equivalent across the dataset. A developed surface analysis method could have an impact on a
dataset with varying geometry or having missing parts in the surface mesh. Employing a robust
method to evaluate multi-geometry structure could reveal new biomarkers for disease prediction.
Additionally, the computation time for spectral decomposition is dependent on the size of the
graph, which could burden the overall time complexity of the system. Even though our proposed
graph analysis method can compensate for the overall time, in the future, we could focus on
using faster decomposition methods (Li, Lian, Kwok & Lu, 2011) or parallel computing with
GPUs.

Learning brain graph structure: In this thesis, we proposed learning algorithms capable
of estimating statistics for localized anatomical regions. However, handling the longitudinal
surface data would be challenging for these frameworks. For instance, temporal/longitudinal
prediction of surface atrophy for a subject has varying graph structures across multiple time
points. Missing data due to an unsuccessful scan is also a common problem with the longitudinal
analysis. Algorithms such as (Song, Zheng, Song & Cui, 2018) can dynamically learn the graph
connectivity or adjacency matrix through backpropagation. Adapting these frameworks for
temporal studies could potentially aid in finding biomarkers for Alzheimer’s disease.

Graph Un-pooling: The learnable graph pooling strategy contribution in this thesis is used

for classification and regression tasks. However, the limitation of graph un-pooling operation
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hinders hierarchical encoder-decoder analysis. This graph encoder-decoder architecture has
the potential for segmentation, obtaining unique lower-dimensional representation, and many
more applications. Current approaches like Graph Unet (Gao & Ji, 2019) proposes to use fixed
pooling un-pooling operations. Similar to the potential of learning pooling operation, learning to
un-pool could highlight the anatomical regions revealing new disease biomarkers. Moreover, by
incorporating unpooling operations in the proposed model, we could also explore applications
requiring node-level outputs like regressing cortical thickness over time.

Uncertainty estimation: Automatic segmentation of cortical surfaces into multiple anatomical
or functional regions is proposed in this thesis. Manually labeling the surface is a challenging and
time consuming task. Trainable models use registered atlas labels or manual annotations to learn
the parcel regions. The boundary for each parcel can be uncertain depending on the expert or the
type of labeled atlas (MNI or DKT). Similarly, the learned model depending on the complexity,
could have uncertain boundary regions. Recent methods (Dgani, Greenspan & Goldberger,
2018; Zhao, Chen, Hu & Cho, 2020) aim to understand and investigate both aleatoric (data
dependent) and epistemic (model dependent) uncertainties when using the graph convolution
models. Quantifying uncertainties for specific tasks like parcellation could help clinicians in
explaining and interpreting the complex surface data and the learned model.

Reconstruction of surfaces: A contribution of this thesis is proposing a joint reconstruction
and segmentation of nested brain surfaces. While the potential of our method is demonstrated
on the cerebral cortex, it could be applied to various other surface data such as cardio-vascular
surfaces. Depending on the domain, adding a topological or anatomical constraint could extract
robust surfaces. Another future contribution could be to include an end-to-end deep learning
model for input image normalization and higher resolution synthesis to reconstruct multiple
resolution surfaces.

Other surface analysis applications: The potential of our spectral graph convolution is

demonstrated on cortical parcellation. It can be applied to other analyses of surface data.
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For instance, our framework has a direct impact on other morphometric measurements on
surfaces, for instance, regressing cortical thickness or curvature. Likewise, the potential of
GCN with pooling operation is shown for classification. This method could be extended to
brain fingerprinting or shape based brain retrieval systems. The use of adversarial learning
could be helpful in semi-supervised surface segmentation, thereby mitigating the need for large
amounts of labeled surfaces. Currently, the spectral graph representation provides a global
description of the shapes useful for population based analysis. The impact of higher frequency

input representations could be evaluated in future work to embed the local information.

In summary, the findings of the thesis provide new geometric tools for brain surface analysis. The
first research objective led to learning algorithms capable of estimating statistics for localized
anatomical regions with high speed and accuracy. The subsequent research objective led
to the development of a learnable pooling operation for graph convolution networks. The
proposed approach was found to be useful to brain surface analysis, but general enough for other
applications. The final objective enables fast and accurate joint brain surface reconstruction
and segmentation from MRI volumes. These works proposed in the thesis with concrete
recommendations for future work will significantly assist clinicians in the early prediction of

cortical atrophy and planning treatments for diseases.
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Presentation

This chapter presents the article “Graph Domain Adaptation for Alignment-Invariant Brain
Surface Segmentation” (He et al., 2020) submitted to ISBI conference (IEEE International
Symposium on Biomedical Imaging), published on April 2020. The article was presented as an
oral talk, held virtually at this conference. The first two authors have contributed equally to this
work. The objective of this article is learn the transformation matrix for aligning brain surfaces

in spectral domain.
A.L2. Introduction

The surface of a human brain is a complex geometrical structure containing multiple convoluted
folding patterns. Statistical analysis of the brain surface aids in understanding its anatomy, and
machine learning methods are often sought for automating this analysis. Conventional machine
learning frameworks exploit spatial information from the Euclidean domain such as image or
volumetric coordinates Hua et al. (2013); Zhang & Davatzikos (2011). Similarly, state-of-the-art
deep learning approaches Dolz er al. (2017); Kamnitsas et al. (2017b) operate on data lying in
Euclidean spaces, offering a drastic speed advantage over traditional methods. However, the
geometry of the brain is highly variable, hindering the direct use of these modern deep learning

algorithms over multiple brain surfaces.
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Recently, deep learning approaches on irregular graphs Bronstein ef al. (2017); Levie et al.
(2018); Monti et al. (2017) have been proposed. These methods formulate a convolution theorem
from Fourier space to spectral domains over graphs. One main limitation of these spectral
approaches is their lack of expressing surface data in comparable spectral bases across different
surface domains Bronstein ef al. (2013); Eynard er al. (2015); Kovnatsky et al. (2013). The
Laplacian eigenbases are indeed incompatible across multiple geometries, challenging their
direct use during training. As a solution, some recent work Boscaini e al. (2016); Masci
et al. (2015) maps the local information onto geodesic patches and uses conventional template
matching in spatial convolutions. For instance, Monti ef al. (2017) proposed local convolution
operation as filtering over small neighborhoods in spatial domain. Their spatial representations
of surface data remain, however, defined in a Euclidean space by using polar representations of

pixels or mesh vertices.
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Figure A.Ll Overview of the our spectral graph transformer architecture — The
spectral decomposition of the brain graph is randomly sub-sampled as an input point cloud
to a SGT network. The SGT learns the transformation parameters aligning the eigenvectors

of multiple brains. The transformation matrix is multiplied with original spectral
coordinates to feed the GCN for parcellation. The point cloud is illustrated before and after
alignment with our SGT network. The GCN architecture follows recommendations from
Gopinath et al. (2019b).

In the literature, spectral graph matching has been used to transfer surface data across aligned
spectral domains Lombaert ef al. (2015a). Such strategy Gopinath ez al. (2019b) enables the

learning of spectral graph convolution networks across multiple surface data. These methods,
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however, involve an explicit computation of a transformation map for each brain towards one
reference template. This process of aligning the eigenvectors of graph Laplacians is currently
an important computational bottleneck. This expensive step is necessary in such approach
to handle the differences across eigenvectors, including sign flips, ordering, and mixing of
eigenvectors in higher frequencies. In this work, we propose a framework for learning this
transformation function across multiple brain surfaces. In an alternative application for natural
image classification, Jaderberg, Simonyan, Zisserman et al. (2015) proposes a transformer
network for CNNs for learning a transformation matrix to spatially standardize the image data.
Similarly, Qi, Su, Mo & Guibas (2017a) also proposes a transformation network for learning
over point clouds of geometric structures. These methods are, however, limited to pointwise
information in a Euclidean space. This paper introduces a Spectral Graph Transformer Network
(SGT) to learn the parameters for aligning multiple surfaces directly in the spectral domain. We
illustrate the learning capabilities of this approach with an application to brain parcellation. We
use the aligned coordinates from our SGT network along with a graph convolution network
(GCN) for quantifying parcellation. The learnt alignment of 101 manually-labeled brain surfaces
Klein et al. (2017) reveals that our approach improves brain parcellation by 4.4%, from an
average Dice overlap of 78.8% to 83.2%. The performance of our method is shown to be at
par with traditional alignment strategies, performing at 84.4%, but gains a significant speed
improvement. The learning of an end-to-end SGT and GCN model enables a direct, automatic
learning of surface data across multiple brains. Our SGT part learns a transformation matrix that
handles the eigenvector differences, while the GCN part focuses on the brain parcellation. The
next section details the fundamentals of our SGT and GCN model, followed by an evaluation of

our alignment strategy for graph convolutions.

A.LI.3. Method

An overview of the method is shown in Fig. A.I.1. Firstly, the cortical surfaces modeled as

brain graphs are embedded in a spectral manifold using the graph Laplacian operator. Secondly,
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graph nodes are randomly sampled in the spectral embeddings and fed to the SGT network to
align the brain embeddings. Finally, a GCN provides a labeled graph as output, taking spectral

coordinates and cortical sulcal depth as input.
A.L.3.1 Spectral embedding of brain graphs

Let G = {V, &} be a brain graph defined with node set V, such that |'V| = N, and edge set
&. Each node i has a feature vector x; € R? representing its 3D coordinates. We map G to a
low-dimension manifold using the normalized graph Laplacian operator L = I — _%AD_%,
where A is the weighted adjacency matrix and D the diagonal degree matrix. In this work, we
define the weight between two adjacent nodes as the inverse of their Euclidean distance. Let
L = UAUT be the eigendecomposition of L, the normalized spectral coordinates of nodes are

given by U=A":U.
A.L3.2 Spectral transformer network

The normalized spectral coordinates U from the spectral embedding of L is only defined up to
an orthogonal transformation. We thus need to align the spectral representations of different
brain graphs to a common representation. As a base reference, we align the normalized spectral
embedding of all the brain surfaces to a template ﬁref in the dataset. This traditional alignment
process involves computing an expensive optimal orthogonal transform based on iterative

Procustes algorithm Lombaert ef al. (2015a), which can be formulated as

N
argmin [T, - @) [ (A1)

n (i)
. i=1

This alignment step is computationally expensive, taking few seconds to converge. Also, the
alignment process is independent of the final target task. Our STN consists of learning the

transformation matrix T for every brain graph in a data-driven manner. As input to the network,
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we provide Uqup, a set of N randomly sub-sampled U coordinates, chosen similarly to Qi ef al.
(2017a), with enough samples to recover T. Since most information on graph connectivity is
encoded in the first eigencomponents of L, to limit processing times, we only keep the first 3
components for the learning step. Thus, Uqyp, is @ matrix of size N x3. Fig. A.I.1 describes the

architecture of our spatial transformer network.

The model first applies a sequence of two point-wise linear transformation layers on Uqup, each
one followed by a non-linear rectifier (ReLLU) function. Such layer takes a N X M;_; matrix X
as input and post-multiplies it by a M;_; X M; parameter matrix W, to give an output matrix of
size NxM;. This transformation, which is similar to 1x 1 convolutions in CNNs, expresses
each embedded node with respect to a shared set of M; hyper-planes in the spectral space, and
is used to capture the global shape of the embedding. In our model, we use M| = 256 for the
first layer and M, = 128 for the second one (note that My = 3). Next, the output of the second
point-wise transformation layer is converted to a fixed-size representation of size 128x 1 by
applying average pooling. Last, to get the final spectral transformation matrix, we apply three
MLP layers of size [128, 64, 9], also with ReLLU activations, and reshape the output of the last
layer into a 3 X 3 matrix. This transformation matrix is multiplied to the normalized spectral

coordinates U to obtain the aligned spectral coordinates.

The parameters of the spectral transformer network are optimized by computing the mean
square error between the predicted coordinates and spectral coordinates U obtained with the
iterative alignment method. To enforce regularization during training, and match the possible
rotation and flip ambiguity of eigendecomposition, we also add a second loss term imposing the

transformation matrix to be orthogonal. The final loss function is given by

Ep(©;) =[[U-UT(®)[% + [IT(®,)T"(0,) - I3 (AI-2)
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A.L.3.3 Graph convolution on surfaces

The second part of our end-to-end model is based on a geometric convolutional neural network
that maps the now-aligned spectral coordinates to a common comparable graph embedding. A
generalized convolution operation on a graph G = {V, &}, with N; = {j | (i, j) € &}, as the

neighbors of node i € V, is defined as

M, K
l ! ! ~ = I !
Gy = D 202 Wpak Vi #0005 00) + b, (A1-3)
JeN; g=1 k=1

where ¢(u;,u;;0y) is a symmetric kernel in the embedding space with parameter @;. In

this work, we follow Gopinath ef al. (2019b) and use a Gaussian kernel: ¢(W;,u;; gy, o) =

exp (— o |0, — 0;) — pae]?).

We define a fully-convolutional network comprising of 4 graph convolution layers with sizes 256,
128, 64, and 32. Each layer have K; = 6 Gaussian kernels similar to Gopinath ez al. (2019b). The
total target parcels are 32, hence, our last layer is of size 32. Leaky ReLU is applied after each
layer to obtain our filter responses. A softmax operation is used after the last graph convolution
layer in order to obtain the probabilities of the mutually-exclusive parcels at each node. Our
output loss function employs a cross-entropy with Dice loss for all parcellations. Our final
end-to-end model comprising of a spectral transformer and a graph convolution network for

brain parcellation is trained using the loss function given by

Eﬁnal(gt’gg) = /lEspt(Gt) + Egcn((')g)- (AT1-4)

This final loss Efp, 1S minimized by back-propagating the error using standard gradient descent

optimization.
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Figure-A I-1 SGT network data sampling vs. mean square error — Each point indicates
the performance of SGT model in terms of mean square error. It is observed that the model
trained with fewer nodes than 500 perform poorly compared to all the models. The best
mean square error is achieved for model with 1000 nodes as input to SGT.

A.L4. Experiments and Results

In this section, we evaluate how inputs affect our SGT network. The optimal SGT parameters are
thereafter used to train our end-to-end model for brain parcellation. We validate our approach
on the Mindboggle Klein ef al. (2017) dataset containing manually-labeled brain surfaces. The
dataset contains 101 cortical meshes, each with 102K to 185K vertices and 32 manually-labeled
parcels. We randomly split the dataset into training, validation and testing in a 70-10-20% ratio
for our experiments. Here, we induce random sign flips on the eigenvectors of the training
dataset to balance flipping and rotation variance. The performance of the methods are measured
in terms of average Dice overlap and Hausdorff distances. The experiments are carried out on an

17 desktop computer with 16GB of RAM and a Nvidia Titan X
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Figure A.I2 Brain parcellation — Performance comparison of different alignment
strategies using GCN measured with average Dice overlap and Hausdorftf distance. Model
trained with no SGT yields low Dice of 78.6% with irregular segmentation boundaries.
Training an end-to-end SGT and GCN model achieves a Dice overlap of 83.2% similar to
the performance of a traditional alignment model with Dice overlap of 84.4%. The
Hausdorff distance and qualitative results show very similar results between the two
methods. However, a significant speed gain in order of 10.7 milliseconds is achieved with
our SGT and GCN model.

A.L.4.1 Spectral transform data sampling

Our spectral transformer network takes as input a set of points in the spectral domain. The
number of eigenvectors is fixed to three, as suggested in Gopinath ez al. (2019b). To evaluate the
effect of input size N, we sample spectral points randomly from 50 to 50, 000. We study the

performance of spectral alignment using our SGT model in terms of mean square error.

The results shown in Fig. I-1 illustrate that the best alignment performance is achieved with
a sub-sampling size of N = 1000. The input data with N = 50, 100, 500 is inadequate to
capture the complete geometric information of the brain, as seen in Fig. I-1. In addition to lower
performance, a higher number of nodes also increases memory consumption and computation

time. The gain in mean square error for input size over N = 1000 can also be seen in Fig. I-1.

A.L.4.2 Brain surface parcellation

We now evaluate the performance of our end-to-end SGT and GCN model on brain surface

parcellation. The predicted transformation matrix from SGT aligns all brain surfaces. The
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Table A.I.1 Different alignment strategies with GCN approaches — Average Dice
overlaps (in %) over 32 parcels on test set are shown along with classification accuracy (in
%), and average Hausdorff distances (in millimeters).

Method Dice overlap (%)  Accuracy (%)  Avg. Hausdorff (mm)
No Alignment 78.82 +4.02 81.68 +3.88 2.54+£2.86
Pretrained + Orthogonal 81.97+£3.20 84.14£2.88 1.99+2.19
Pretrained + MSE 82.29+4.46 84.38 +4.09 1.94+2.23
End-to-end (Ours - 10.7 milliseconds) 83.26 £ 3.66 85.17+3.48 1.85+£2.04
Traditional Alignment (Gopinath e al., 2019b) (15 seconds) 84.42 +2.59 85.99+2.53 1.76 +1.75

number of embedded node coordinates used during training SGT is set to N = 1000. These

nodes are randomly sub-sampled for each subject during the training of our end-to-end model.

Our method is compared with different alignment strategies for graph parcellation. We show
the limitations of ignoring the spectral alignment. The GCN trained with non-aligned spectral
coordinates achieves a Dice overlap performance of 78.8%. This low accuracy is due to the
incompatibility of eigenbases across brain surfaces. Training our end-to-end SGT with GCN
provides a performance improvement of 4.4% for parcellation over no alignment. Next, our
transformer network is trained independently from the parcellation task in order to learn the SGT
weights. The rationale of this experiment is to evaluate the use of a fixed alignment strategy for
learning the GCN model. We evaluate the use of both SGT loss and orthogonal regularization
independently. The model trained with only orthogonal regularization has a performance gain
of 3.1% from 78.8% to 81.9%. This increase indicates the usefulness of regularization to learn
rotation and flipping. We see a further performance boost by training our SGT model with mean
square error. Table A.I.1 shows a similar performance gain of 3.4% compared to not using
alignment. Note that updating the weights of both SGT and GCN in an end-to-end framework
further guides the learning of the transformation matrix. This experiment setup trains the SGT
model to learn a transformation most suitable for the parcellation task. Our end-to-end model
indeed yields an improvement in average Dice overlap of 83.4% compared to 82.2% when

trained separately. The results of the experiments are reported in Table A.IL.1.
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A.L5. Discussion and Conclusion

This paper presented a novel end-to-end framework for learning a spectral transformation
required for graph convolution networks. The proposed SGT network learns a transformation in
the spectral domain that maps input spectral coordinates to a reference set. We first evaluate the
optimal size of the coordinate set necessary for training the SGT network. Next, our experiments
on brain surface parcellation validate the benefits of our alignment strategy. Training a GCN
model without any alignment results in a low Dice overlap and irregular parcel boundaries as
shown in Fig. A.I.2. The conventional procedure of aligning different brain surfaces to a reference
is an expensive computational step. Our method learns this alignment step automatically by
capturing the geometry of the brain, yielding a Dice overlap of 83.2%. Qualitatively, as illustrated
in Fig. A.L2, the performance of our method is similar to a GCN trained with traditional
alignment, however computation times are reduced by a 1400-fold, from 15 seconds to 10.7
milliseconds. The use of SGT is evaluated in this paper with brain surface parcellation as
an application. Nevertheless, our method can potentially be used for other surface analysis

problems such as disease classification or identifying new geometry-related biomarkers.



APPENDIX II

CODE AVAILABILITY

Matlab scripts for Spectral alignment of brain surfaces available at:

https://github.com/kharitz/spectral _alignment.git

PyTorch scripts for Spectral graph convolution for cortical parcellation are available at:

https://github.com/kharitz/spectral_alignment.git

PyTorch scripts for the Learnable pooling for brain surface analysis are available at:

https://github.com/kharitz/learnpool.git
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