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Apprentissage avec incertitude dans la segmentation d’images médicales

Sukesh ADIGA VASUDEVA

RÉSUMÉ

La segmentation d’images est essentielle dans de nombreuses applications cliniques et de

recherche, telles que la caractérisation des maladies, la planification chirurgicale, les mesures

diagnostiques et l’analyse des formes. Cependant, la délimitation manuelle prend du temps,

peut nécessiter une expertise et est sujette à la variabilité. Les algorithmes automatisés offrent

une solution à ces limitations, facilitant ainsi le flux de travail clinique et de recherche. De

récentes techniques basées sur l’apprentissage profond ont permis de fournir avec succès une

segmentation automatisée de haute qualité, utilisant généralement une quantité substantielle de

données étiquetées. Cependant, les étiquettes peuvent être ambiguës ou peu fiables. Cette thèse

s’attaque à ces défis avec pour objectif principal de développer des outils sensibles à l’incertitude

qui peuvent aider à la formation de réseaux de segmentation d’images. En particulier, le

premier objectif propose une stratégie d’étiquetage souple basée sur l’intensité pour s’attaquer

aux ambiguïtés potentielles dans l’annotation. Le deuxième objectif présente une estimation

de l’incertitude tenant compte de l’anatomie pour guider le réseau de segmentation sous une

supervision limitée. Le troisième objectif propose une représentation basée sur l’attention pour

une segmentation faiblement supervisée. Les résultats de ces objectifs de recherche ont donné

lieu à trois revues, deux publications de conférence évaluées par des pairs et un court article de

conférence. Les contributions de chaque objectif de recherche sont résumées ci-dessous.

Dans le premier objectif, nous proposons une approche de lissage des étiquettes géodésiques qui

capture les détails d’intensité de l’image dans le processus d’étiquetage souple. Les intensités de

l’image transmettent des informations qui pourraient clarifier les ambiguïtés potentielles dans

l’annotation. Cependant, les méthodes d’étiquetage souple existantes ne reposent que sur des

masques de segmentation, ignorant le contexte d’image sous-jacent associé à l’étiquette. Nous

exploitons la transformation de distance géodésique pour capturer les variations d’intensité entre

les pixels. Les cartes générées modifient les étiquettes dures pour obtenir de nouvelles étiquettes

souples basées sur l’intensité. Les étiquettes souples géodésiques résultantes modélisent mieux

les relations spatiales et par classe car elles capturent les variations des gradients d’image à

travers les classes et l’anatomie. Les avantages de nos étiquettes souples géodésiques basées

sur l’intensité sont évalués sur trois ensembles divers de jeux de données de segmentation

accessibles au public. Nos résultats expérimentaux montrent que la méthode proposée améliore

systématiquement la précision de la segmentation par rapport aux techniques d’étiquetage souple

de pointe en termes de similarité de Dice et de distance de Hausdorff.

Le deuxième objectif vise à estimer l’incertitude en exploitant la représentation anatomique-

ment consciente pendant l’entraînement du réseau de segmentation dans des conditions semi-

supervisées. Plus précisément, une représentation anatomiquement consciente est d’abord

apprise pour modéliser les masques de segmentation disponibles. La représentation apprise

mappe une prédiction de segmentation dans une segmentation anatomiquement plausible. L’écart
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par rapport à la segmentation plausible aide à estimer les cartes d’incertitude au niveau des

pixels sous-jacentes. Ces cartes filtrent les régions cibles non fiables pour guider le réseau de

segmentation. La méthode proposée estime par conséquent l’incertitude en utilisant une seule

inférence à partir de notre représentation, réduisant ainsi le calcul total pendant l’entraînement

par rapport aux approches existantes tenant compte de l’incertitude. Nous évaluons notre

méthode sur deux ensembles de données de segmentation accessibles au public. Notre approche

anatomiquement consciente améliore la précision de la segmentation par rapport aux méthodes

semi-supervisées de pointe en termes de deux mesures d’évaluation couramment utilisées.

Enfin, le troisième objectif propose d’apprendre une représentation dynamique basée sur

l’attention pour l’analyse d’images médicales. En particulier, une représentation est apprise en

intégrant un module d’attention dans un réseau d’intégration. Ce mécanisme d’attention intégré

fournit un aperçu visuel direct des caractéristiques discriminantes du réseau d’intégration. De

plus, un seul apprenant métrique est inadéquat pour apprendre une variété d’attributs d’objet

dans les images, tels que la couleur, la forme ou les artefacts. Au lieu de cela, plusieurs

apprenants métriques pourraient aider à apprendre différents aspects de ces attributs dans

les sous-espaces d’une intégration globale. Cependant, le nombre d’apprenants doit être

trouvé empiriquement pour chaque nouvel ensemble de données. Nous présentons donc un

apprenant de sous-espace dynamique, qui supprime la nécessité de connaître apriori le nombre

d’apprenants dans l’approche à apprenants multiples. Les avantages de notre représentation

dynamique basée sur l’attention sont évalués dans l’application de la segmentation faiblement

supervisée, du regroupement d’images et de la récupération d’images. Notre méthode fournit

une carte d’attention directement pendant l’inférence pour illustrer l’interprétabilité visuelle des

caractéristiques d’intégration. Ces cartes d’attention proposent des étiquettes proxy, améliorant

la précision de segmentation jusqu’à 15% dans le score Dice par rapport aux techniques

d’interprétation de pointe. De plus, notre méthode obtient des résultats compétitifs par rapport à

l’approche d’apprentissage multimétrique et surpasse considérablement le réseau de classification

en termes de scores de clustering et de récupération sur trois ensembles de données de référence

publics différents.

Les travaux de recherche décrits dans cette thèse font progresser la segmentation des images

médicales en supervision complète, semi-faible et faible. Nos étiquettes souples basées sur

l’intensité améliorent la segmentation, en particulier dans les régions difficiles. Notre approche

d’estimation de l’incertitude tenant compte de l’anatomie utilise efficacement une annotation

limitée, réduisant ainsi le besoin d’étiquetage extensif. L’approche de représentation basée

sur l’attention fournit une organisation structurée des données et une interprétabilité visuelle,

permettant une segmentation avec uniquement des étiquettes au niveau de l’image. Cette

thèse présente de nouveaux outils qui aident les cliniciens et les chercheurs en fournissant une

délimitation plus rapide, cohérente et précise des objets cibles.

Mots-clés: Étiquetage souple, Incertitude anatomique, Apprentissage semi-supervisé, Appren-

tissage métrique, Apprentissage faiblement supervisé, Segmentation d’image



Learning with Uncertainty in Medical Image Segmentation

Sukesh ADIGA VASUDEVA

ABSTRACT

Image segmentation is vital in many clinical and research applications, such as disease charac-

terizations, surgical planning, diagnostic measurements, and shape analysis. However, manual

delineation is time-consuming, may require expertise, and is subject to variability. Automated

algorithms offer a solution to these limitations, thereby assisting clinical and research workflow.

Recent deep learning-based techniques have successfully provided high-quality automated

segmentation, generally using a substantial amount of labeled data. However, the labels can

be ambiguous or unreliable. This thesis tackles these challenges with the primary objective

of developing uncertainty-aware tools that can aid in training image segmentation networks.

Particularly, the first objective proposes an intensity-based soft labeling strategy to tackle

potential ambiguities in the annotation. The second objective presents an anatomically-aware

uncertainty estimation to guide the segmentation network under limited supervision. The

third objective proposes an attention-based representation for weakly supervised segmentation.

The findings from these research objectives have resulted in three journals, two peer-reviewed

conference publications, and a short conference article. The contributions of each research

objective are summarized below.

In the first objective, we propose a Geodesic Label Smoothing (GeoLS) approach that captures

image intensity details within the soft labeling process. The image intensities convey information

that could clear potential ambiguities in the annotation. However, existing soft-labeling methods

rely only on segmentation masks, ignoring the underlying image context associated with the

label. We leverage the geodesic distance transform to capture the intensity variations between

pixels. The generated maps modify the hard labels to obtain new intensity-based soft labels. The

resulting geodesic soft labels better model spatial and class-wise relationships as they capture

the variations of image gradients across classes and anatomy. The benefits of our intensity-based

geodesic soft labels are assessed on three diverse sets of publicly accessible segmentation

datasets. Our experimental results show that the proposed method consistently improves the

segmentation accuracy compared to state-of-the-art soft-labeling techniques in terms of the Dice

similarity and Hausdorff distance.

The second objective aims to estimate uncertainty by leveraging anatomically-aware representa-

tion during training of segmentation network under semi-supervised settings. Specifically, an

anatomically-aware representation is first learned to model the available segmentation masks.

The learned representation maps a segmentation prediction into an anatomically plausible

segmentation. The deviation from the plausible segmentation aids in estimating the underlying

pixel-level uncertainty maps. These maps filter the unreliable target regions to guide the

segmentation network. The proposed method consequently estimates the uncertainty using

a single inference from our representation, reducing the total computation during training

compared to existing uncertainty-aware approaches. We evaluate our method on two publicly
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available segmentation datasets. Our anatomically-aware approach improves the segmentation

accuracy over the state-of-the-art semi-supervised methods in terms of two commonly used

evaluation measures.

Finally, the third objective proposes to learn an attention-based dynamic representation for

medical image analysis. Particularly, a representation is learned by integrating an attention

module into an embedding network. This integrated attention mechanism provides a direct

visual insight into the discriminative features of the embedding network. Furthermore, a single

metric learner is inadequate for learning a variety of object attributes in images, such as color,

shape, or artifacts. Instead, multiple metric learners could aid in learning different aspects of

these attributes in subspaces of an overarching embedding. However, number of learners is to be

found empirically for each new dataset. We, therefore, present a dynamical subspace learner,

which removes the need to know apriori the number of learners in the multiple learners approach.

The benefits of our attention-based dynamic representation are evaluated in the application of

weakly supervised segmentation, image clustering, and image retrieval. Our method provides an

attention map directly during inference to illustrate the visual interpretability of the embedding

features. These attention maps offer proxy labels, improving the segmentation accuracy by

up to 15% in the Dice score compared to state-of-the-art interpretation techniques. Moreover,

our method achieves competitive results compared to the multiple metric learner approach and

significantly outperforms the classification network in terms of clustering and retrieval scores on

three different public benchmark datasets.

The research work described in this thesis advances medical image segmentation across full,

semi, and weak supervision. Our intensity-based soft labels enhance the segmentation, especially

in challenging regions. Our anatomically-aware uncertainty estimation approach effectively uses

limited annotation, reducing the need for extensive labeling. The attention-based representation

approach provides structured data organization and visual interpretability, enabling segmentation

with only image-level labels. This thesis presents new tools that assist clinicians and researchers

by providing faster, consistent, and accurate delineation of target objects.

Keywords: Soft labeling, Anatomically-aware Uncertainty, Semi-supervised Learning, Metric

learning, Weakly supervised learning, Image Segmentation
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INTRODUCTION

0.1 Anatomical Representation to Imaging

Anatomy has been studied for centuries to interpret the structures and physiology of the human

body. Early methods involved direct observation of dissection and vivisection of animal and

human bodies, providing valuable insight into the fundamentals of anatomy. These observations

subsequently enabled the creation of anatomical drawings (Keele, 1964; Vesalius, 1543) and

atlases (Braune, 1872) (Fig. 0.1a-b). Such illustrations became vital tools for visual understanding

and studying anatomy in medical education as well as in traditional surgery. The advent of

photography later facilitated surgeons’ ability to document diseases and anatomy more accurately

for clinical case studies. The discovery of X-rays by Wilhelm Roentgen in 1895 (Roentgen, 1931)

showed a noninvasive way to capture internal anatomy (Fig. 0.1c). Such imaging technology

quickly evolved, becoming a standard tool for medical diagnosis by offering a noninvasive visual

representation of anatomy.

Modern medical imaging has since grown remarkably by incorporating cutting-edge technologies

in healthcare (Bradley, 2008; Wolbarst, Capasso & Wyant, 2013). Over the decades, many

imaging techniques, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI),

Positron Emission Tomography (PET), optical imaging (including tomography and microscopy),

and ultrasonography, have been developed and transformed the landscape of medical imaging

domain. These techniques generate an image by gathering measurements of an object of

interest through advanced sensors. The source used in these measurements varies across the

broad spectrum of electromagnetic waves, such as X-ray in radiography, radio frequency in

MRI, sound waves in ultrasonography, and visible light in dermatoscopy. Various sources

lead to visualizations of different anatomical structures, tissues, tumors, and bones, providing

increasingly detailed and two- or three-dimensional images. The different types of images are

typically referred to as modalities (Suetens, 2017). Multi-modal imaging captures different
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Figure 0.1 Illustration of human anatomical structures from drawing to imaging.

(a) a drawing of the brain and skull by Leonardo da Vinci (1452–1519), (b) a

cross-section anatomical atlas by Wilhelm Braune (1831-1892), and (c) the first X-ray

imaging of a hand by Wilhelm Roentgen (1895).

Taken from (a) Wikipedia contributors (2024a), (b) Braune (1872), and (c) Wikipedia

contributors (2024b)

tissue characteristics using multiple sources at the same location. Examples of different imaging

modalities are shown in Figure 0.2. These varying image modalities have significantly enhanced

diagnostic capabilities, enabling the detection and characterization of various medical conditions

(Suetens, 2017; Taylor, 1996; Van Ginneken, Schaefer-Prokop & Prokop, 2011).

0.2 Medical Image Analysis

Medical images possess rich information about the patient’s health in a noninvasive manner.

These images are assessed to extract meaningful information to quantify a disease, plan treatment,

and monitor diverse medical conditions (Duncan & Ayache, 2000). The benefits of images are

reflected in a growing number of imaging exams performed in healthcare (Alexander, McGill,

Tarasova, Ferreira & Zurkiya, 2019; Richards, Maskell, Halliday & Allen, 2022; Smith-Bindman

et al., 2019). It is estimated that about 4.2 Billion imaging exams are performed per year globally
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Figure 0.2 Examples of imaging modalities that capture different regions of human anatomy.

(a) a high-resolution breast histology image, (b) a microscopic image of a skin lesion, (c) a

grayscale chest X-ray image, and (d)-(e) 2D slices from the 3D volume of abdominal CT and

brain MR images, respectively.

Taken from (a) Aresta et al. (2019), (b) Combalia et al. (2019), and (c), (d), (e) Suetens (2017)

(Mahesh, Ansari & Mettler Jr, 2022), showing that medical imaging has been a well-established

tool in modern healthcare systems.

Over the years, the growth of imaging has been associated with advancements in hardware

and digital technology. However, image analysis yet relies on trained clinicians or radiologists.

Analyzing images solely by human experts is laborious, expensive, and prone to errors. For

instance, manual delineation of organs or tumors can take hours or even days for a single

patient (Shi et al., 2022). It is critical in several time-sensitive clinical examinations, such

as interventions, treatments, screening, computer-aided diagnosis, and prognosis. Moreover,

manual analysis by human experts is limited to meet the rapidly growing pace of image-based

examination1 (Konstantinidis, 2023; Sokolovskaya et al., 2015). These examinations will

significantly burden the healthcare system, affecting delayed diagnosis and contributing to errors

(Winder, Owczarek, Chudek, Pilch-Kowalczyk & Baron, 2021). The expensive nature of manual

analysis also hinders scaling for screening programs and large-scale studies. Also, there exists

variability in image analysis by multiple experts, which leads to ambiguity, causing delayed or

missed diagnosis (Becker et al., 2019; Hsieh et al., 2022).

1https://www.rsna.org/news/2022/may/global-radiologist-shortage
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Automated computation algorithms have the potential to address the limitations mentioned earlier

by assisting radiologists or clinicians (Hardy & Harvey, 2020; Langlotz, 2019). Such algorithms

provide faster and more consistent inference than humans, which may aid clinicians in reducing

analysis time and likely decreasing errors due to workload (Burton, Albur, Eberl & Cuff, 2019).

These algorithms naturally scale the analytical demands for screening programs and large-scale

studies.

The origin of an automated image analysis tool can be traced back to 1970, when a computer

algorithm semi-automatically delineated a left ventricle, enabling the direct quantification of

ejection fraction in the heart region (Strauss, Zaret, Hurley, Natarajan & Pitt, 1971). Such

computer algorithms were gradually adopted into clinical systems. Duncan & Ayache (2000)

summarizes the initial advancements in various image analysis tasks within the medical field.

In the early stages, automated algorithms primarily relied on handcrafted features, demonstrating

promising results in various analysis tasks (Heimann & Meinzer, 2009; Van Leemput, Maes,

Vandermeulen & Suetens, 1999). Such models need to be optimized for each image or task,

resulting in a slower analysis. Data-driven models overcome these limitations by learning

relationships between images and desired output for a given task. Earlier methods relied on

statistical learning to design such models (Learned-Miller, 2005). Recent advancements in

deep learning and computational capabilities have enabled the modeling of complex nonlinear

relationships within the data (Goodfellow, Bengio & Courville, 2016; Prince, 2023; Zhang,

Lipton, Li & Smola, 2023). These models learn the features directly from images and achieve

state-of-the-art performance on diverse medical image analysis tasks (Ayache & Duncan, 2016;

Litjens et al., 2017; Zhou, Greenspan & Shen, 2023).
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Figure 0.3 Examples of medical image analysis tasks. (a) skin lesion classification as

melanoma or benign, (b) brain age prediction via regression, (c) alignment of brain images,

(d) delineation of a brain tumor and abdominal organs, and (e) enhancement of retinal image.

Taken from (a) Combalia et al. (2019), (b), (c), (d-left) Suetens (2017), and (d-right) Ma

et al. (2021b), and (e) Adiga (2019)

0.3 Common tasks in Medical Image Analysis

The specific medical image analysis tasks involve classification, regression, registration, seg-

mentation, and image enhancement (Zhou et al., 2023). For instance, a classification task is a

prediction of a category at image-level, which is helpful in detection and screening systems. A

continuous value is predicted in the regression task, such as a volume or age prediction from an

image. Some analysis requires aligning two or more images at pixel-level, called registration.

Medical images are also degraded due to noise or acquired at low quality (for low dose purposes),

where enhancement tasks aid by mapping them to high-quality images. Delineating an anatomy

or a pathology at pixel-level is critical in diagnosis and treatment, which is referred to as image

segmentation. Examples of medical image analysis tasks are depicted in Fig 0.3. Among these

tasks, segmentation is crucial in downstream clinical applications, such as volume measurement,

planning radiation therapy, monitoring of disease progression, or cell counting. Figure 0.4
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broadly summarizes the use of image segmentation in downstream clinical applications. This

thesis mainly focuses on the medical image segmentation task under different data settings,

which are discussed in the next section.

Figure 0.4 Illustration of how segmentation is utilized in medical image analysis

applications. It involves data preparation, segmentation, and post-processing of segmented

masks, which are subsequently used in downstream clinical applications

0.4 Challenges and Motivation

The collection of medical imaging data is increasing due to advances in imaging techniques (Li,

Zhang, Müller & Zhang, 2018b; Zhang & Metaxas, 2016) as well as collaborative initiatives

(Oakden-Rayner, 2020) in the community, e.g., UK biobank 2, ADNI 3 and grand challenges 4.

An increasing number of medical images, coupled with the labor-intensive nature of manual

analysis and the lack of radiologists, emphasize the need to develop automated image analysis

tools. Many classical algorithms are computationally complex to analyze such a growing scale of

images. Recent advancements in computer vision and deep learning show a promising direction

in handling large-scale data for most visual tasks. Nevertheless, these deep models are often

driven by substantial amounts of annotated data.

The collection of medical imaging data varies in terms of both targeted imaging and annotations.

According to estimates by the World Health Organization (WHO), there are approximately 2

2https://www.ukbiobank.ac.uk/imaging-data/
3http://adni.loni.usc.edu/
4A grand challenge is a platform for end-to-end development of machine learning solutions in biomedical

imaging. https://grand-challenge.org/
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million types of medical devices spanning over 7000 categories 5, contributing a diverse array

of image collections. For instance, low-income countries often employ affordable imaging

devices, where image quality varies. Such diverse image collections pose challenges in

building segmentation tools for different data scenarios. Furthermore, obtaining annotation is

labor-intensive, expensive, and demands expert knowledge of medical data. In addition, the

segmentation task requires pixel-wise or voxel-wise annotations, amplifying the complexity

of obtaining precise annotations. Consequently, various annotation types are leveraged for

segmentation tasks, including image-level, point-based, scribble, and bounding box annotations.

Depending on the type and amount of annotations, different machine learning techniques are

employed, including fully supervised, semi-supervised, or weakly supervised techniques. For

instance, fully supervised methods leverage image-annotation pairs to train segmentation models.

These learning techniques are effective when extensive labeled data is accessible. However,

obtaining a large number of annotated data can be challenging. A semi-supervised approach

tackles such issues by combining unlabeled data with a small amount of labeled data. When

sparse annotations such as image tags, points, or scribble are available, a weakly supervised

method can be developed for the segmentation task.

Nevertheless, the annotations can be unreliable for various reasons, resulting in suboptimal

training of segmentation models. For instance, the annotation can be ambiguous in challenging

regions. These ambiguities originate from poorly defined image intensities due to low contrast,

variations in image acquisition, partial volume effect, or motion artifacts. In scenarios with

limited annotation, pseudo labels are derived from model predictions of unlabeled data, or proxy

labels are formed using saliency maps from a network trained with weak labels such as image

tags. These generated labels are employed in the training of segmentation models. The reliability

of these generated labels significantly influences the effectiveness of learning the segmentation

in such cases.

5https://www.who.int/health-topics/medical-devices
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0.5 Research Objectives and Contributions

In the previous section, we highlighted the general challenges of learning medical image

segmentation models. The main objective of this thesis is to tackle these challenges by devel-

oping a set of uncertainty-aware tools that can aid in training image segmentation networks.

As the challenges vary with different labeling scenarios, we address the main objective with

three specific objectives. The first objective proposes to develop an intensity-based soft labeling

strategy to tackle potential ambiguities in the annotation. The second objective is to build an

anatomically-aware representation for uncertainty estimation in order to guide the segmentation

network training under limited supervision. The third objective proposes to learn an attention-

based representation that provides reliable proxy labels for weakly supervised segmentation

tasks. The specific details of these three objectives of this thesis are as follows:

1. Intensity-based soft labeling for image segmentation: The first objective of this thesis is

to integrate image information in soft labeling for image segmentation. In conventional

segmentation approaches, annotation masks are typically encoded in the form of hard labels.

Such encoding lacks inter-class relationships in the image and spatial relationships between

a given pixel and its neighbors. These relationships are essential in image segmentation,

as pixel-level prediction depends on its neighbors. Soft-label assignments alleviate these

limitations of hard labels. However, existing soft-labeling methods rely only on annotation

masks to train a model. These approaches do not provide reliable soft labels as they ignore

the underlying image context associated with the label. The image intensities convey

information that could help to clear potential uncertainties in the annotation. The proposed

work incorporates the image intensity information within the soft labeling process. The

resulting intensity-based soft labels better model spatial and class-wise relationships by

capturing the variations of image gradients across anatomy and labels. The empirical results

validate the benefits of using intensity information in our soft labeling for segmentation
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tasks. This research contributes new intensity-based soft labels, offering potential solutions

for applications facing challenges in annotation due to ambiguities in image intensities

across labels.

2. Anatomically-aware uncertainty for semi-supervision: The second objective of the thesis

is to learn an anatomically-aware uncertainty estimation for semi-supervised segmentation.

Current semi-supervised methods leverage unlabeled images by generating pseudo labels

from model predictions or regularizing their model predictions during the training process.

The reliability of predictions is critical in training such models. The uncertainty-aware

approaches address this issue by guiding the model with reliable target regions. However,

the existing uncertainty methods rely on multiple inferences from model predictions,

which is computationally expensive. Moreover, these uncertainty maps capture pixel-wise

disparities and lack anatomical knowledge of the data. We present a method that learns

an anatomically-aware representation from the available segmentation labels. The learned

representation will provide the uncertainty maps to guide the training of the segmentation

model. The representation enables the uncertainty estimates using a single inference,

thereby minimizing the total computation. The results from various experiments validate the

benefits of our anatomical-aware uncertainty for image segmentation under semi-supervised

settings. The proposed anatomically-aware approach effectively leverages the limited labels

with enhanced segmentation accuracy, reducing the annotation cost.

3. Attention-based representation for weak-supervision:

The third objective of the thesis is to learn an attention-based representation that provides

proxy labels for weakly-supervised segmentation. Existing weakly-supervised methods

employ different types of supervision, including image-level labels, points, scribbles, or

bounding boxes. An image-level label is commonly employed as it is one of the inexpensive

forms of weak supervision. Current methods based on such supervision produce saliency

regions from the image classification network using class activation maps or attention
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maps. The generated saliency maps are subsequently used as proxy labels for semantic

segmentation. However, these salient maps mainly focused on the most discriminant areas.

This research uses a deep metric learning technique to obtain reliable saliency regions from

an embedding network. The proposed attention-based representation method dynamically

learns embedding space using multiple learners and directly provides visual attention

maps. The generated maps act as proxy labels for weakly supervised segmentation. The

experiments highlight the effectiveness of our proxy labels obtained from attention-based

representation for the image segmentation task. The representation is also validated for

clustering and retrieval tasks.

Overall, this thesis contributes towards improving image segmentation across different levels of

supervision through three research objectives. The overview of thesis contributions is depicted

in Fig. 0.5. The background Chapter provides a detailed review of various segmentation regimes

and related work required to understand this thesis.

Figure 0.5 Outline of thesis contributions. This thesis explores different supervision

employed in image segmentation. The research objectives aim to leverage various cues,

highlighted in orange, to enhance the different segmentation regimes outlined in blue

0.6 Thesis Outline

The organization of the work reported in the thesis is described in this section. This introductory

chapter provided an overview of medical image analysis, challenges in segmentation methods,
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motivation, and research contribution of this thesis. Chapter 1 presents the literature on

the state-of-the-art methods in different types of image segmentation and other related areas

required for the thesis, such as distance transform, anatomical prior, and representation learning

techniques. Chapter 2 presents our first research work on intensity-based soft labeling for

image segmentation. The content of this chapter corresponds to the journal article "GeoLS: an

Intensity-based, Geodesic Soft Labeling for Image Segmentation" submitted to the Journal of

Machine Learning for Biomedical Imaging (MELBA), one of the emerging journals in the field

of medical image analysis. An initial article of this work was published at the Medical Imaging

with Deep Learning (MIDL) conference and presented as an oral talk. Chapter 3 introduces

the anatomically-aware uncertainty estimation for semi-supervised segmentation. This chapter

corresponds to the journal article entitled "Anatomically-aware Uncertainty for Semi-supervised

Image Segmentation" published in the Journal of Medical Image Analysis (MedIA), recognized

as one of the premier journals within the community. A part of this work was initially published in

Medical Image Computing and Computer-Assisted Intervention (MICCAI), a leading conference

in the field. Chapter 4 presents an attention-based representation that dynamically learns

embedding space and provides attention maps for weakly supervised segmentation. The content

presented in this chapter corresponds to the journal article titled "Attention-based Dynamic

Subspace Learners for Medical Image Analysis" published in the Journal of Biomedical and

Health Informatics (JBHI), considered one of the top journals in medical image analysis. This

journal article was also presented as a short paper at the Medical Imaging with Deep Learning

(MIDL) conference. Finally, the Conclusion Chapter summarizes the works and discusses its

limitations, recommendations, and future scope of the presented work.
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0.7 Published Work

Findings in this thesis have led to the following publications.

– Journals:

1. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “GeoLS: an Intensity-based Geodesic

Soft Labeling for Image Segmentation”. Submitted to Journal of Machine Learning for

Biomedical Imaging (MELBA) - 2024.

2. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “Anatomically-aware Uncertainty

for Semi-supervised Image Segmentation”. Medical Image Analysis (MedIA) - 2023.

3. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “Attention-based Dynamic Sub-

space Learners for Medical Image Analysis”. IEEE Journal of Biomedical And Health

Informatics (JBHI) - 2022.

– Conferences:

1. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “GeoLS: Geodesic Label Smooth-

ing for Image Segmentation”. International Conference on Medical Imaging with Deep

Learning (MIDL) - 2023.

2. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “Leveraging Labeling Representa-

tions in Uncertainty-based Semi-supervised Segmentation”. International Conference on

Medical Image Computing and Computer Assisted Intervention (MICCAI) - 2022.

– Short papers:

1. Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve. “Attention-based Dynamic Subspace

Learners”. International Conference on Medical Imaging with Deep Learning (MIDL) -

2022.
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Other Publications:

Apart from the aforementioned publications, I had opportunities to collaborate with a few other

publications during the course of my doctoral journey.

1. Murugesan Balamurali, Adiga Vasudeva Sukesh, Liu Bingyuan, Lombaert Herve, Ben

Ayed Ismail, Dolz Jose. “Trust your neighbours: Penalty-based constraints for model

Calibration”. International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI) - 2023.

2. Chauvin Laurent, Adiga Vasudeva Sukesh, Dolz Jose, Lombaert Herve, Toews Matthew. “A

Large-scale Neuroimage Analysis using Keypoint Signatures: UK Biobank”. International

Conference on Organization for Human Brain Mapping (OHBM) - 2020.

0.8 Code Availability

Each work in this thesis is implemented in Python programming language with the PyTroch

library (Paszke et al., 2019) 6. The code and scripts are available in the following links:

- Intensity-based soft labeling for image segmentation:

https://github.com/adigasu/GeoLS

- Anatomically-aware uncertainty for semi-supervision:

https://github.com/adigasu/Anatomically-aware_Uncertainty_for_Semi-supervised_Segmentation

- Attention-based representation learners for weak-supervision:

https://github.com/adigasu/Dynamic_subspace_learners

6https://pytorch.org/





CHAPTER 1

BACKGROUND

Overview

Segmentation is essential in numerous image analysis and computer vision applications,

spanning various domains such as medical imaging, machine vision, scene understanding,

video surveillance, autonomous driving, and augmented reality. This thesis focuses on medical

imaging applications, as segmentation plays a pivotal role in our healthcare system. For instance,

it precisely delineates organs or tumors, aids in measuring diagnostic information such as volume

(e.g., monitoring atrophy) or ejection fraction in cardiology, and assists in planning radiotherapy

and surgeries. This chapter provides an overview of prominent segmentation approaches from

traditional to deep learning techniques, different types of supervision used, and a discussion of a

few related literature.

1.1 Automated Image Segmentation

Segmentation consists of dividing an image into distinct regions so that pixels with similar

characteristics are assigned the same class label. This technique is often used to detect objects,

structures, landmarks, boundaries, or anomalies in an image. For example, a clinician desires to

delineate organs or tumors, as in Fig. 1.1, for pre-operative planning, volume quantification,

tumor screening, or survival prediction. The quality of these delineations is crucial for such tasks,

as false or incorrect labeling could lead to a wrong diagnosis, treatment, or analysis. Since manual

delineation is expensive, automated segmentation algorithms are preferred to provide high-quality

per-pixel delineation to assist the clinician. Over the years, several segmentation algorithms have

been developed by leveraging domain-specific knowledge to address segmentation problems

in medical images. This section briefly reviews image segmentation methods, spanning from

classical to deep learning-based approaches.
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Figure 1.1 Example of images and their corresponding segmentation ground truth of

(a) abdominal organs and (b) brain tumors, obtained from clinical experts

1.1.1 Traditional segmentation approaches

Early segmentation techniques relied upon simple image properties or characteristics to partition

an image into meaningful regions. These image properties include intensity, texture, shape,

color, and spatial relationships, which are leveraged in various ways. A brief discussion of some

of these methods follows.

Thresholding is the simplest way of segmenting an image by selecting a threshold value to divide

the object of interest from their background (Otsu, 1979; Sezgin & Sankur, 2004). Edge-based

approaches employ filters such as Sobel or Canny Edge detector (Canny, 1986) to detect and

link the image edges with object boundaries. In clustering methods, pixels are grouped based

on their distance to cluster centers (Coleman & Andrews, 1979). These approaches often use

k-means clustering with image features, such as intensity, color, texture, and location, to measure

the distance (Achanta et al., 2012). Region-based approaches iteratively merge or split pixels or

regions based on similarity in image properties (Gould, Gao & Koller, 2009). These methods

can be bottom-up, where pixels are merged, e.g., region growing (Adams & Bischof, 1994) or

top-down, where regions are split, e.g., region merging (Nock & Nielsen, 2004), watershed

method (Vincent & Soille, 1991) to obtain the segmented regions.

A graph partitioning approach represents an image using graph theory, where each image

element, such as a pixel or superpixel (i.e., groups of pixels), is a node, and their relationships
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form edges. The goal is to segment the graph into disjoint subsets that correspond to meaningful

regions in the image (Boykov, Veksler & Zabih, 2001; Peng, Zhang & Zhang, 2013). For

instance, (Shi & Malik, 2000) cuts the graph based on similarity within regions as well as

dissimilarities across different regions. Grady (2006) assigns a label to each node based on

its likelihood to the seed points during a random walk. Alternatively, a deformable method

evolves iteratively to identify object boundaries, where internal forces encourage smoothness

and external forces attract the contour towards object boundaries (Chan & Vese, 1999; Kass,

Witkin & Terzopoulos, 1988; Xu, Pham & Prince, 2000).

Conversely, early machine learning methods employ handcrafted features extracted from images

to train a classifier, where the model learns to predict pixels or groups of pixels into different

categories (Bezdek, Hall & Clarke, 1993; Hall et al., 1992). Feature extraction techniques include

histograms, wavelet transforms, filters, or local binary patterns. Training data is then prepared

with pairs of feature vectors and corresponding class labels, which are subsequently used to train

the machine learning classifiers, such as support vector machines (Wang, Wang & Bu, 2011),

decision trees (Shotton, Johnson & Cipolla, 2008), random forests (Breiman, 2001; Schroff,

Criminisi & Zisserman, 2008), and k-nearest neighbors (Shen, Spann & Nacken, 1998).

In summary, traditional methods offer simplicity and interpretability for tasks where the data is

not too complex. However, their performance may be limited in scenarios where data is highly

variable or noisy. Additionally, some methods can be time-consuming and require domain

expertise. The inference can also be slow due to iterative computation in a few techniques.

Therefore, it is challenging to determine a single segmentation algorithm that generalizes across

tasks and datasets.

1.1.2 Towards Deep learning-based segmentation

Over the last decade, Deep Learning (DL) techniques have been growing in popularity, showcasing

promising developments in language processing, audio analysis, and computer vision tasks,
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including semantic segmentation (Long, Shelhamer & Darrell, 2015; Milletari, Navab & Ahmadi,

2016; Ronneberger, Fischer & Brox, 2015). The success of DL methods lies in their ability to

extract complex patterns from extensive datasets automatically.

The fundamental principles of deep learning mirror those of traditional neural networks. A

neural network consists of layers of neurons followed by activation functions, e.g., sigmoid or

rectified linear unit (Nair & Hinton, 2010). These neurons are usually fully connected with

the next layer, forming an input layer, an output layer, and a set of intermediate layers. Such

arrangement of these layers allows them to learn hierarchical features directly from the images,

capturing subtle patterns and non-linear relationships within the data. Integrating convolutional

layers forms Convolutional Neural Networks (CNNs) further improved the ability to learn

patterns from both the input image and intermediate feature maps (LeCun et al., 1989). A

deep neural network encompasses numerous such layers and neurons, thereby acquiring an

increased capacity for learning complex representations of data (LeCun, Bengio & Hinton, 2015).

In addition, the pooling operation reduces feature dimensionality by preserving semantically

similar features, whereas normalization layers (Ioffe & Szegedy, 2015) stabilize the training

process by ensuring features have similar distributions. These key components in deep learning

have substantially enhanced the training of networks. For instance, the CNNs in classification

networks often use a combination of these layers followed by fully connected (or dense) layers

for output class prediction, e.g., AlexNet (Krizhevsky, Sutskever & Hinton, 2012), VGG

(Simonyan & Zisserman, 2015), ResNet (He, Zhang, Ren & Sun, 2016), DenseNet (Huang, Liu,

Van Der Maaten & Weinberger, 2017).

Image segmentation associates a label to every pixel in an input image, requiring precise spatial

alignment between an input image and model output. Earlier classification CNNs are not

directly suitable for segmentation tasks due to the inclusion of pooling layers, which downsample

the input image. Therefore, a mechanism to reverse this downsampling process is needed to

obtain spatially aligned segmentation output. Up-sampling and transposed convolutional layers
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address this by expanding the spatial resolution of downsampled feature maps, facilitating

pixel-to-pixel learning. For instance, Fully Convolutional Networks (FCN) (Long et al., 2015)

employ up-sampling on all pooling outputs to the original spatial dimension and combine them

to learn dense segmentations. The FCN also replaces fully connected layers in the classification

network with convolutional blocks, which allows learning and inferring an arbitrary input size.

Based on this idea, various segmentation architectures have been developed in the vision and

medical community, such as U-Net (Çiçek, Abdulkadir, Lienkamp, Brox & Ronneberger, 2016;

Ronneberger et al., 2015), V-Net (Milletari et al., 2016), DeepLab (Chen, Papandreou, Kokkinos,

Murphy & Yuille, 2017), SegNet (Badrinarayanan, Kendall & Cipolla, 2017).

The U-Net architecture (Ronneberger et al., 2015) is widely used in medical image segmentation

applications. It consists of encoder and decoder blocks with fully convolutional layers, as shown

in Fig 1.2. The encoder block reduces the resolutions like in classification networks, whereas the

decoder block gradually increases the spatial resolutions to obtain an output segmentation that

matches the input image size. In addition, skip connections are used between the encoder-decoder

blocks to enable a direct flow of information and help preserve high-resolution features from

the earlier layers. Since medical data are often 3-dimensional (3D) volumes (e.g., CT and MR

scans), the standard U-Net architecture can be trivially extended to 3D to leverage volumetric

information (Çiçek et al., 2016; Milletari et al., 2016). This extension has proven advantageous

for numerous segmentation tasks (Isensee, Jaeger, Kohl, Petersen & Maier-Hein, 2021; Ma et al.,

2021a; Mehta & Arbel, 2018; Schlemper et al., 2019; Wang et al., 2022b).

1.2 Learning Techniques in Image Segmentation

The training and evaluation of the segmentation model can vary with the specific objectives and

applications (Minaee et al., 2021). Based on the task, the most common categories are semantic

segmentation, instance segmentation, and panoptic segmentation. Semantic segmentation

aims to assign each pixel in an image to one of the known classes. In contrast, instance
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Figure 1.2 Illustration of U-Net, an encoder-decoder style segmentation architecture.

Adapted from Ronneberger et al. (2015)

segmentation involves every pixel classification and also identifies individual objects within

an image. Specifically, pixels belonging to the same class but different instances are assigned

unique identifiers. The panoptic segmentation combines semantic and instance segmentation,

providing a complete segmentation map by identifying all objects in individual and background

classes. This thesis focuses on semantic segmentation for medical image analysis applications.

Before delving into the learning techniques, we establish the notation of semantic segmentation

settings. Since semantic segmentation involves pixel-to-pixel learning, it typically relies on a

substantial amount of image-label pairs (as in Fig 1.1). Let us assume a training dataset with 𝑁𝑙

labeled samples, which is denoted as D = {(X𝑖 ,Y𝑖)}
𝑁𝑙
𝑖=1

, where (X𝑖 ,Y𝑖) is the i-th image-label

pair with input image, X𝑖 ∈ RΩ, and corresponding label, Y𝑖 ∈ {1, ..., 𝐶}Ω, having 𝐶 classes

including background class. Note that the label is often employed as a one-hot representation,

i.e., Y𝑖 ∈ [0, 1]𝐶×Ω. These pairs have spatial domain Ω, which can be 2-D or 3-D. In a

fully-supervised scenario, the model is trained with a large dataset and often yields high-quality

segmentation results. Training and assessing the segmentation model needs objective function

and evaluation measures, which are described next.
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1.2.1 Common objective functions and evaluation measures in segmentation

Objective functions: The objective or loss function measures the difference between the network

predictions and the ground truth annotations, which assists in learning the network parameters.

The typical loss function employed in image segmentation includes the cross-entropy loss, the

Dice loss (Milletari et al., 2016; Sudre, Li, Vercauteren, Ourselin & Jorge Cardoso, 2017), or a

combination of both losses.

The cross-entropy (CE) measures the discrepancy between the predicted probability distribution

and the ground truth. For a 𝐶-class segmentation, the CE loss function at a pixel is defined as:

L𝐶𝐸 = −

𝐶∑
𝑐=1

𝑦𝑐 log(𝑝𝑐), (1.1)

where 𝑦𝑐 and 𝑝𝑐 are the ground truth and the predicted probability values for a class 𝑐. The

final loss is subsequently averaged over all the pixels and all images in a batch to optimize the

network. The CE loss suffers from a class imbalance issue, which is prominent in medical image

segmentation as the background region is dominant compared to the foreground regions.

In contrast, the Dice loss measures the overlap between the predicted probability and the ground

truth mask. The generalized Dice loss (Milletari et al., 2016; Sudre et al., 2017) for a given

class is defined as:

L𝐷𝑖𝑐𝑒 = 1 −
2
∑

𝑣 𝑦𝑣 𝑝𝑣 + 𝜖∑
𝑣 𝑦𝑣 +

∑
𝑣 𝑝𝑣 + 𝜖

, (1.2)

where 𝑣 represents voxel or pixel in the spatial image domain Ω, and 𝜖 is a small constant added

for numerical stability. The total loss is computed by averaging across all classes and all samples.

Unlike the CE loss, the Dice loss addresses the class imbalance implicitly (Sudre et al., 2017).

Nevertheless, the disadvantage of the Dice loss is that its gradients can be unstable, especially

for small segmentations, which can affect convergence. Therefore, the Dice and CE losses are

often combined to leverage their respective benefits (Ma et al., 2021a; Taghanaki et al., 2019).
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Model evaluation:

The evaluation measures estimate the quality of model predictions. The predictions are often

evaluated with overlap and distance-based measures for the segmentation task. For instance,

the Dice Similarity Coefficient (DSC) measures the degree of overlap between the ground truth

mask and the predicted mask. For a given class, the DSC is defined as

𝐷𝑆𝐶 (Y, Ŷ) =
2
∑

𝑣 𝑦𝑣 𝑦̂𝑣 + 𝜖∑
𝑣 𝑦𝑣 +

∑
𝑣 𝑦̂𝑣 + 𝜖

, (1.3)

where 𝑦𝑣 and 𝑦̂𝑣 are values at voxel 𝑣 in the ground truth (Y) and the predicted segmentation

mask (Ŷ). The final Dice score is obtained by averaging the scores across all classes and samples,

similar to the Dice loss. This score ranges between [0, 1], where 0 signifies no overlap between

the masks and 1 indicates perfect overlap. On the other hand, segmentation boundaries are

measured with a distance-based measure. For instance, the Hausdorff Distance (HD) measures

the maximum shortest distance between two point sets coming from the boundary of ground

truth and predicted mask (Huttenlocher, Klanderman & Rucklidge, 1993). Suppose A and B

are point sets from ground truth and predicted mask, respectively. The HD is given as

𝐻𝐷 (A,B) = max

{
max
𝑎∈A

𝑑 (𝑎,B),max
𝑏∈B

𝑑 (A, 𝑏)

}
, (1.4)

where 𝑑 is the minimum distance from the boundary pixel 𝑎 or 𝑏 to the entire set B or A,

respectively. Since HD is sensitive to outlying points, the 95𝑡ℎ percentile of the histogram of

shortest distances is often used instead. The HD is more informative for the measurement of

small or thin structures. The aforementioned two evaluation measures are complementary and

commonly employed in medical image segmentation.
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1.2.2 Limited supervision

As mentioned before, most deep models rely upon abundant image-label pairs to learn a

reasonable model. Acquiring such paired data involves pixel-wise labeling for the image

segmentation task. This process is labor-intensive and prone to subject variability. In addition,

the labeling task is magnified since medical images often require 3D annotations. Recently,

learning techniques with limited supervision (Jiao et al., 2023; Peng & Wang, 2021; Shen

et al., 2023) have been emerging to ease the burden of annotation in two ways: the number of

annotations is reduced by leveraging unlabeled data, or the level of supervision is decreased

from a stronger to a weaker form of annotations. These alternatives are commonly categorized

as semi-supervised and weakly-supervised learning (Peng & Wang, 2021; Shen et al., 2023).

Semi-supervised learning

Semi-supervised learning (SSL) leverages unlabeled data along with relatively few labeled

samples to improve the model performance (Chapelle, Scholkopf & Zien, 2009; Jiao et al.,

2023; Van Engelen & Hoos, 2020). The idea behind SSL is that neighboring data is likely

to have similar labels, and low-density regions separate two or more classes. These premises

suggest that the data within each class should form a cluster with a smooth decision boundary

(Van Engelen & Hoos, 2020). In this context, unlabeled data serve to refine the decision

boundaries and help to learn the distribution of the data. Depending on how unlabeled images

are employed, the recent SSL approaches in medical image segmentation are categorized into

pseudo-labeling, regularization, or knowledge prior techniques. A brief overview of these

strategies is provided in the following section.

Pseudo labeling: The pseudo-labeling or self-training strategy aims to generate labels for

unlabeled images in order to improve the model (Lee et al., 2013). It involves segmentation

predictions for unlabeled images from the initial model and then assigning pseudo labels to

them. These pseudo labels are added to the original labeled set so that it can be used to re-train
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the model. The addition of pseudo labels to training is carried out iteratively to continuously

improve the quality of new pseudo labels. Various ways of pseudo label generation have been

proposed (Bai et al., 2017; Du et al., 2022; Seibold, Reiß, Kleesiek & Stiefelhagen, 2022). For

instance, pseudo labels are generated based on thresholding of predictions (Zeng et al., 2023),

confidence-aware predictions under perturbation (Yao, Hu & Li, 2022), self-ensembling of

predictions (Du et al., 2022; Xie, Luong, Hovy & Le, 2020), post-processing (Bai et al., 2017),

or propagating neighboring labels (Seibold et al., 2022). The challenge with pseudo-labeling

approaches is that a careful addition of pseudo labels is required, as mistakes in the pseudo

labels are propagated during the training process (Chapelle et al., 2009).

Regularization: Regularization-based approaches are prominent in SSL due to their simplicity

in leveraging unlabeled data as an unsupervised loss function during training. A wide range

of regularization-based methods has been proposed for SSL. These regularization techniques

are generally formulated as entropy minimization (Vu, Jain, Bucher, Cord & Pérez, 2019),

adversarial learning (Chaitanya et al., 2019; Nie, Gao, Wang & Shen, 2018), consistency loss

(Bortsova, Dubost, Hogeweg, Katramados & Bruĳne, 2019; Cui et al., 2019), or co-training

learning (Peng, Estrada, Pedersoli & Desrosiers, 2020). For instance, an entropy minimization

strategy is a simple regularization strategy where the entropy of prediction is minimized for

the unlabeled data (Vu et al., 2019). In the adversarial method, the prediction of unlabeled

images encourages closer to those of the labeled data (Chaitanya et al., 2019; Nie et al., 2018)

via adversarial loss. On the other hand, the consistency or co-training methods encourage two

or more segmentation predictions from the same or different networks to be consistent under

different data and model perturbations (Tarvainen & Valpola, 2017) or multiple views of image

(Peng et al., 2020). An example of consistency regularization used in the self-ensembling

framework (Cui et al., 2019; Tarvainen & Valpola, 2017) is shown in Fig. 1.3. It comprises two

identical models, known as student and teacher, receiving different perturbed inputs. The student

model is trained with a supervised loss on labeled data, and a consistency loss encourages
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models to produce similar outputs on labeled and unlabeled data. Meanwhile, the teacher model

is updated using an exponential moving average (EMA) strategy.

Figure 1.3 Schematic of consistency regularization in the self-ensembling approach.

Adapted from Cui et al. (2019); Tarvainen & Valpola (2017)

Knowledge prior: To effectively leverage unlabeled data, a few approaches utilize prior

information within the data. Such prior typically incorporated either from images or available

labels as pre-training (He et al., 2020b; Kiyasseh, Swiston, Chen & Chen, 2021), meta-learning

(Li, Zhang & He, 2020a; Xue et al., 2020), or unsupervised losses (Zheng et al., 2019a). For

instance, labeled and unlabeled images are encoded using autoencoder (He et al., 2020b) or

self-supervised learning (Kiyasseh et al., 2021), which are subsequently utilized as priori for

learning segmentation in SSL. Lately, a signed distance map (SDM) is used as shape constraints

during training (Li et al., 2020a; Xue et al., 2020). For instance, Li et al. (2020a) proposes

an additional task of predicting SDM to enforce similarity between labeled and unlabeled

predictions. A probabilistic atlas also has been used to enforce anatomical priors on the

unlabeled predictions (Huang et al., 2022; Zheng et al., 2019a).
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Weakly-supervised learning

Weakly supervised approaches alleviate the need for dense or complete annotations. These

methods utilize sparse or incomplete annotations to train the segmentation network. There are

different types of weak annotation that are used for segmentation tasks, such as image-level

tags (Papandreou, Chen, Murphy & Yuille, 2015), scribbles (Lin, Dai, Jia, He & Sun, 2016),

points (Bearman, Russakovsky, Ferrari & Fei-Fei, 2016), or bounding boxes (Rajchl et al., 2016).

The image-level tags indicate whether a specific class is present or absent in the image, points

or scribbles describe sparse labeling on target regions, whereas bounding boxes contain boxes

around the target objects. Examples of these different weak annotations are shown in Fig. 1.4.

These weak cues are easier and inexpensive to acquire compared to pixel-level annotations.

Figure 1.4 Illustrations of different weak annotations compared to dense segmentation

The literature on weakly supervised segmentation in medical imaging is growing with different

weak annotations. Many methods resort to image-level labels due to the ease of obtaining

such labels (Feng, Yang, Laine & Angelini, 2017; Nguyen et al., 2019; Patel & Dolz, 2022).

These methods derive class-specific feature maps, known as class activation maps (CAMs)

(Zhou, Khosla, Lapedriza, Oliva & Torralba, 2016), from a classification network to provide a

likely segmentation. However, generated CAMs are highly discriminative and result in over
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or under-segmentations. Therefore, these methods focus on improving the initial CAMs using

conditional random fields (CRF) (Nguyen et al., 2019), segmentation proposals (Wu et al., 2019),

or equivariant constraints (Patel & Dolz, 2022). A schematic of a CAM-based segmentation

pipeline is shown in Fig 1.5. The initial activation maps are obtained from a classification

model. These maps are further refined using dense CRF to obtain proxy labels. Such labels are

subsequently utilized to train a segmentation network for final predictions (Nguyen et al., 2019).

Figure 1.5 Illustration of a CAM-based weakly supervised segmentation pipeline.

Adapted from Nguyen et al. (2019)

The points or scribble annotations significantly reduce the annotation efforts. These annotations

are typically used as label propagation to generate pseudo labels using clustering (Qu et al.,

2020), superpixels (Chen et al., 2020b), distance map (Tian et al., 2020) or self-ensembling

(Lee & Jeong, 2020). Conversely, a bounding box annotation is a stronger form of supervision,

which describes the locations by a rectangle (2D) or cuboid (3D) that contains the region

of interest, often with tight boundaries. Methods based on bounding box annotations also

commonly generate pseudo labels, which are used for training the segmentation network (Rajchl

et al., 2016). For instance, DeepCut (Rajchl et al., 2016) produces the pseudo-labeling using

CRF. Alternately, a few methods incorporate additional priors into the loss function, such as

constraints on the bounding box tightness or the target object size (Jia, Huang, Eric, Chang & Xu,

2017; Kervadec et al., 2019; Kervadec, Dolz, Wang, Granger & Ayed, 2020).
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1.3 Related Work

So far, we have discussed various machine learning techniques employed in semantic segmentation

depending on the type and amount of annotations. In addition, our research objectives are

interconnected with other related topics, which are discussed in this section.

1.3.1 Distance Transform

Distance transforms provide spatial information and shape-related cues that are valuable in

medical image segmentation. Traditional methods often use the distance transform to model

the shape of an object or to propagate labels based on distance similarities (Sabuncu, Yeo,

Van Leemput, Fischl & Golland, 2010). They are generally robust to complex and irregular

structures. Distance transform can be applied to an image or a mask using geodesic or Euclidean

distances. Recently, deep learning-based methods incorporate these distances as an auxiliary

task to regularize the segmentation network (Bui et al., 2019; Dangi, Linte & Yaniv, 2019; Li

et al., 2020a; Xue et al., 2020), an additional input to provide the contextual information to the

network (Wang et al., 2018; Wei et al., 2022), or a post-processing operation to improve the

segmentation (Bagheri, Tarokh & Ziaratban, 2021).

1.3.2 Anatomical Priors

Medical images inherently possess valuable anatomical information such as the organ size,

shape, and location. These anatomical priors are incorporated explicitly during the training of

the segmentation network to obtain plausible and accurate results (Nosrati & Hamarneh, 2016).

Nevertheless, integrating such priors poses challenges due to the non-differentiable and complex

nature of objective terms (Oktay et al., 2017). Recent approaches resort to data-driven solutions

to enforce such priors with global or local constraints (Painchaud et al., 2020; Ravishankar,

Venkataramani, Thiruvenkadam, Sudhakar & Vaidya, 2017). In (Oktay et al., 2017), an

autoencoder trained on segmentation masks is utilized to map predictions into an anatomically
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plausible space, with the encoder serving as a global regularizer between the prediction and ground

truth distributions. Alternatively, an anatomically plausible segmentation mapping is utilized

to ensure the smoothness and topological correctness of the segmentation results (Gaggion,

Mansilla, Mosquera, Milone & Ferrante, 2022; Larrazabal, Martínez, Glocker & Ferrante, 2020;

Painchaud et al., 2020; Ravishankar et al., 2017). A probabilistic atlas is used as an alternative

to enforce the priors for an aligned dataset (Huang et al., 2021).

1.3.3 Representation Learning

Representation learning involves extracting patterns and features directly from data (Bengio,

Courville & Vincent, 2013), which facilitates various downstream tasks, such as classification

(Pati, Foncubierta-Rodríguez, Goksel & Gabrani, 2020), image retrieval (Sohn, 2016), clustering

(Ziko, Granger & Ben Ayed, 2018), or segmentation (Liao, Gao, Oto & Shen, 2013). This

representation is commonly learned with labels using supervised approaches or without explicit

labels, such as with an autoencoder or self-supervised learning. The similarity between arbitrary

images can also used to learn the representation. The seminal work of Siamese Networks

(Bromley, Guyon, LeCun, Säckinger & Shah, 1994) learns a representation by contrasting

positive and negative pairs of images such that similar images should be closer in a learned

embedding space while dissimilar images should be farther apart. Likewise, metric learning

presents a compelling approach to similarity learning, aiming to minimize the distance between

images of the same class while maximizing the distance between images from different classes.

Recently, deep metric learning emerged as a powerful approach to learning similarities, where

Euclidean or cosine distances are employed to measure the similarity between pairs of images

(Hadsell, Chopra & LeCun, 2006; Schroff, Kalenichenko & Philbin, 2015).
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1.4 Summary

This chapter has presented a literature review on image segmentation, covering both traditional

and deep learning approaches. Subsequently, we delved into various segmentation approaches

and related research areas that form the groundwork for this thesis. This thesis introduces

new tools that advance image segmentation under different types of supervision utilizing the

interconnected topics discussed earlier. The following Chapters present the specific research

objectives pursued in this thesis.
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𝑎 Department of Software and IT Engineering, École de Technologie Supérieure,

1100 Notre-Dame West, Montreal, Quebec, Canada H3C 1K3

𝑏 Department of Computer Engineering and Software Engineering, Polytechnique Montréal,

2500, chemin de Polytechnique, Montreal, Quebec, Canada H3T 1J4

Paper submitted for publication in Journal of Machine Learning for Biomedical Imaging
(MELBA), March 2024

Presentation

This chapter presents the article “GeoLS: an Intensity-based, Geodesic Soft Labeling for Image

Segmentation” submitted to Journal of MELBA (Machine Learning for Biomedical Imaging)

on 18 March 2024. A preliminary version of this article was published (Adiga Vasudeva,

Dolz & Lombaert, 2023) at MIDL (Medical Imaging with Deep Learning) 2023, presented

as an oral talk in Nashville, USA. The objective of this article is to incorporate ambiguities

associated with image intensity into the soft-labeling process for a segmentation task.

2.1 Introduction

Image segmentation is a highly structured and dense prediction problem where pixels in an image

are grouped into a set of target regions, such as organs or tumors (Pham, Xu & Prince, 2000;

Suetens, 2017). It plays a pivotal role in clinical decision systems, notably in computer-assisted

prognosis and diagnosis, treatment planning, and intervention support (Duncan & Ayache,

2000; Zhou, Rueckert & Fichtinger, 2019). Recent advancements in segmentation methods are

primarily due to the ability of deep learning techniques to solve such complex predictive tasks
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(Hesamian, Jia, He & Kennedy, 2019; Litjens et al., 2017). Training these approaches involves

minimizing the deviation of the network predictions from the given ground-truth annotations

using various objective functions (Lin, Goyal, Girshick, He & Dollár, 2017; Rubinstein & Kroese,

2004; Sudre et al., 2017).

A common strategy to measure this deviation is to employ the cross-entropy function with

the ground-truth mask represented as one-hot encoded vectors. This learning objective

exhibits remarkable performance in problems needing predictions of independent classes, such

as in whole-image classification (Baum & Wilczek, 1987; He et al., 2016; Szegedy, Ioffe,

Vanhoucke & Alemi, 2017). Nevertheless, the use of standard one-hot encoding in segmentation

tasks can be sub-optimal since class predictions at each pixel are inherently conditioned with

surrounding pixels. Such encoding indeed fails to capture the spatial relationships across

neighborhoods as well as inter-class relationships within an image. These relationships, however,

are crucial for the segmentation of medical images. For instance, labels can be similar for pixels

within a homogeneous region, but vary near object boundaries due to various image ambiguities

(Fig. 2.1). Such ambiguity can be attributed to partial volume effect, motion artifacts, or image

acquisition, among other reasons. Moreover, the one-hot label assignments are solely based on

the provided ground-truth masks, where the underlying spatial and inter-class relationships are

not explicitly considered. Therefore, explicitly modeling spatial and inter-class relationships in

the label assignments is sought to improve the performance of the segmentation model.

Recent attempts to incorporate the inter-class relationships in the labels (Galdran et al., 2020;

Szegedy, Vanhoucke, Ioffe, Shlens & Wojna, 2016) generally modify the hard one-hot encoding

into a softer version. For instance, Label Smoothing (LS) (Szegedy et al., 2016) uniformly

redistributes a portion of the target-class probability into all non-target classes to obtain a new

soft label assignment for training a deep model. In (Galdran et al., 2020), a non-uniform label

smoothing approach is proposed to capture the underlying structure within annotations. This

method uses a Gaussian smoothing on each target class to redistribute probability over other
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Figure 2.1 Limitation of one-hot label assignments. (a) A sample image and (b) its

corresponding ground-truth mask, (c) a closeup image around the boundary region (purple),

and (d) the one-hot (OH) encoding for two pixels (orange and pink in closeup images)

classes. It is particularly suitable for datasets featuring ordered class labels, such as tumor or

disease grading. These label-smoothing approaches, however, disregard the spatial relationships

in their soft-label assignments.

To capture the spatial relationships, a few approaches alter the target segmentation mask

to obtain softer labels in the boundary regions (Gros, Lemay & Cohen-Adad, 2021; Kats,

Goldberger & Greenspan, 2019). For instance, Kats et al. (2019) generates the soft labels

in the dilated regions of the target masks by adding granularity in the object boundaries.

Furthermore, a Spatially-Varying Label Smoothing (SVLS) approach models the annotation

ambiguity around object boundaries in target masks (Islam & Glocker, 2021). Its soft labels

capture the local structural variations by applying a Gaussian-smoothing operation on the target

masks. However, the annotation ambiguities of object boundaries stem from poorly defined

image intensities caused by imaging techniques or existing pathologies, which inherently leads to

labeling inaccuracies (Hayward et al., 2008; Joskowicz, Cohen, Caplan & Sosna, 2019). These
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ambiguities are not captured in these soft-labeling methods, as they solely rely on the given

ground-truth masks.

One solution is to incorporate image-based metrics in the soft-label assignments process. More

specifically, a geodesic distance transform captures intensity variations and spatial distances

within an image (Criminisi, Sharp & Blake, 2008; Toivanen, 1996). Our approach, therefore,

leverages the geodesic distance in order to capture inter-pixel and inter-class relationships during

the label smoothing process. The generated soft labels thus become intensity-aware, capturing

image gradient information across object boundaries. Incorporating our geodesic soft labels in

model training is found to improve the segmentation performance, as they model the underlying

intensity variations across objects and labels.

2.1.1 Our contributions

This work proposes a novel Geodesic Label Smoothing (GeoLS) for image segmentation.

Specifically, our originality lies in leveraging the geodesic distance transform to embed intensity

variations in the soft-labeling process. In contrast to existing soft-labeling approaches, our

GeoLS smooths hard labels using geodesic maps, which capture the underlying image context

that is crucial for medical image segmentation. The resulting intensity-based soft labels capture

class-wise relationships by considering image gradient information between two or more object

categories. Furthermore, the geodesic distance between pixels captures the spatial relationships,

integrating richer information than the Euclidean distance. Our approach is extensively validated

on a variety of medical imaging datasets: the 2019 brain tumor segmentation (BraTS) challenge

dataset (Bakas et al., 2017,1), the 2021 abdominal organ segmentation dataset (Ma et al., 2022),

and the prostatic zone segmentation dataset (Litjens, Debats, Barentsz, Karssemeĳer & Huisman,

2014). The results demonstrate the superiority of GeoLS over state-of-the-art methods that

are based on soft-labeling segmentation. Moreover, our experiments include comprehensive

ablation studies to highlight further the effectiveness of our geodesic soft labels for image
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segmentation. In particular, we investigate the parameters influencing the generation of geodesic

soft labels, such as studying the impact of intensity variation and different seeding strategies in

obtaining our soft labels. Additionally, we conduct experiments focusing on the combination of

our proposed loss with other losses, such as Dice, boundary, and focal loss functions, which aim

to assess the synergies in combining these approaches.

2.2 Related Work

2.2.1 Soft labeling

Soft labeling has been actively investigated in the machine learning community (Müller,

Kornblith & Hinton, 2019; Szegedy et al., 2016; Zhang et al., 2021). The early methods often

leverage the nearest-neighbor points to obtain a soft label (Keller, Gray & Givens, 1985; Seo,

Bode & Obermayer, 2003). Such a labeling scheme captures multiple class characteristics in the

dataset, which are later used to train a classifier (El Gayar, Schwenker & Palm, 2006). More

recently, Szegedy et al. (2016) proposed a label smoothing strategy for training deep neural

networks. This smoothing strategy uniformly redistributes the portion of the one-hot label of

a given class to all other classes. The model trained with these soft labels has been shown to

improve the performance in classification tasks in both computer vision (Müller et al., 2019;

Szegedy et al., 2016) and medical imaging domains (Galdran et al., 2020; He, Fang, Rabbani,

Chen & Liu, 2020a; Islam, Seenivasan, Ming & Ren, 2020). It is also shown to be effective in

handling noisy labels (Lukasik, Bhojanapalli, Menon & Kumar, 2020; Lukov, Zhao, Lee & Lim,

2022).

In the context of image segmentation tasks, the label smoothing strategy (Szegedy et al.,

2016) captures inter-class relationships within an image. However, It is also essential to

consider the spatial relationships within neighboring regions. Recent approaches (Gros et al.,

2021; Islam & Glocker, 2021; Kats et al., 2019) attempt to capture such relationships with
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spatially-varying smooth labels, improving segmentation performance. For instance, Kats et al.

(2019) obtains soft labels by expanding the original binary mask using a dilation operation and

subsequently assigns a soft value in the extended region. In (Gros et al., 2021), non-binary

pre-processing and data augmentation techniques are employed on the target mask to obtain

soft labels around the boundaries. These strategies are designed for binary segmentation tasks,

where they disregard the probability distribution in the label assignments. Therefore, adopting

them directly to multi-class segmentation is not trivial. A SVLS approach generates the soft

labels by redistributing the class probabilities based on Gaussian filtering (Islam & Glocker,

2021). Nevertheless, these soft-labeling methods are entirely based on ground-truth masks while

ignoring the ambiguities arising from image intensities.

Alternately, soft labels can also be generated by averaging multi-rater annotations (Lourenço-

Silva & Oliveira, 2021). Such soft labels are even more expensive to obtain in practice,

as they require multiple independent annotations. Furthermore, a few methods also utilize

uncertainty maps for soft segmentation (Tang et al., 2022; Wang et al., 2023). Nevertheless,

these methods require multiple segmentation predictions to compute uncertainty maps, which

are computationally expensive. Compared to these approaches, our method leverages the

geodesic distance transform (Toivanen, 1996) to capture the intensity variations in the label

smoothing process. The resulting intensity-based soft labels capture spatial and class-wise

relationships through the geodesic maps. Moreover, the generated soft labels are computed once

and incorporated into the learning objective to train a segmentation model. Also, our method

generates new soft labels from a single annotation and can be seamlessly integrated into any

segmentation network.

2.2.2 Geodesic Distance Transform (GDT)

The GDT is commonly used for smooth and contrast-sensitive image segmentation (Criminisi

et al., 2008; Protiere & Sapiro, 2007; Toivanen, 1996), as it captures the local contrast and
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structural information within an image. The seminal work, GeoS (Criminisi et al., 2008), proposes

a generalized geodesic distance (GGD) method for segmentation tasks in an energy-based model.

The effectiveness of GeoS has led to various segmentation approaches (Kontschieder, Kohli,

Shotton & Criminisi, 2013; Qiu et al., 2015; Wang et al., 2014b). For instance, Wang et al.

(2014b) utilizes GGDs to bring the spatial context between object boundaries in an atlas-based

label propagation method. Recent approaches have leveraged GGDs in deep learning techniques

to improve image segmentation (Bui et al., 2019; Hammoumi, Moreaud, Ducottet & Desroziers,

2021; Wang et al., 2018; Wei et al., 2022). For instance, Bui et al. (2019) proposes a

regression of the geodesic distance maps to regularize the segmentation network through an

additional prediction branch. Similarly, Ying, Huang, Fu, Yang & Cheng (2023) regularizes

geodesic distance maps in a dual-branch network to enhance edge details for weakly supervised

segmentation. To improve initial segmentation, the geodesic distance from user interactions

(Wang et al., 2018) or initial network predictions (Wei et al., 2022) are employed to provide

the contextual information. The resulting geodesic maps are subsequently used as additional

inputs to the refinement network. These existing approaches require an extra prediction branch

or refinement network to integrate the geodesic maps. In contrast, our method leverages the

geodesic distance to embed underlying image context information into the label smoothing

process. The generated soft labels are computed once and consequently incorporated into the

learning objective to train the segmentation model. Our geodesic soft-labels, therefore, can be

directly combined with any segmentation network.

2.3 Method

An outline of the proposed approach comparing hard labels (OH) and existing soft labels (LS

and SVLS) is shown in Fig. 2.2. Consider two closeup regions with the same masks but differing

image intensities as in Fig. 2.2. The existing methods rely only on ground-truth masks to generate

the soft labels. Therefore, they have the same class probability maps in both closeup regions.

In contrast, our approach adds image context by leveraging geodesic distance transform in the
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Figure 2.2 Visualization of different soft labeling. Left side: Two samples, their

corresponding ground-truth masks, and closeup images having the same ground-truth

masks around tumor regions. Right side: The probabilities of each class (in red, green, and

blue colors) for the same closeup images from One-Hot (OH) encoding, Label Smoothing

(LS), Spatially-Varying LS (SVLS), and ours (GeoLS)

soft-labeling process. The resulting intensity-based soft labels capture the underlying image

ambiguities through geodesic maps. Thus, our method produces different class probability maps

in the two closeups. The following subsections describe the label smoothing formulation and

our proposed geodesic soft-labeling approach.

2.3.1 Preliminaries

Let D = {(X𝑖 ,Y𝑖)}
𝑁𝑙
𝑖=1

indicate the training dataset with 𝑁𝑙 labeled samples, where X𝑖 ∈

R
Ω represents an input volume with a spatial domain Ω, and Y𝑖 ∈ {1, ..., 𝐶}Ω denotes the

corresponding ground truth with 𝐶 classes, which is provided as an OH representation, i.e.,
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[0, 1]𝐶×Ω. The Cross-Entropy (CE) loss function for a given voxel is defined as:

L𝐶𝐸 = −

𝐶∑
𝑐=1

𝑦𝑐 log(𝑝𝑐), (2.1)

where 𝑝𝑐 is the predicted softmax probability from the segmentation network. For simplicity,

we use 𝑖 and 𝑐 notations wherever necessary and assume that the cardinality of the training set

normalizes the loss function.

The OH label encoding, 𝑦𝑐, assigns a probability of ‘1’ for the target class and ‘0’ for the

non-target classes. Such assignments fail to provide the model with annotation ambiguity since

they do not capture the underlying inter-class relationships within the image. One way to model

these relationships is by softening the hard OH encoding during the training process. For

instance, the LS method (Szegedy et al., 2016) reduces the probability of the target class by a

factor 𝛼 and evenly distributes it across all classes. The resulting soft label for a given voxel is:

𝑦𝐿𝑆𝑐 = (1 − 𝛼)𝑦𝑐 +
𝛼

𝐶
(2.2)

These soft labels are subsequently used in training a segmentation network by replacing

the original OH label in Eq 2.1. This strategy has been shown to improve performance in

classification tasks (He et al., 2020a; Islam et al., 2020; Szegedy et al., 2016). Nevertheless, LS

ignores the intrinsic spatial structure that is essential for the segmentation tasks.

2.3.2 Geodesic Label Smoothing (GeoLS)

Existing soft-labeling approaches modify the segmentation masks to capture the spatial relation-

ships (Gros et al., 2021; Islam & Glocker, 2021; Kats et al., 2019), thereby accounting for the

annotation ambiguities around the object boundaries. Nevertheless, they largely overlook the

annotation ambiguities coming from the image, being prone to annotation mistakes. To consider
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such image ambiguities, we integrate the geodesic distance transform (Criminisi et al., 2008;

Toivanen, 1996) directly in the soft labeling of pixels. This addition captures the variation in

intensities and spatial distance between pixels in an image. The following subsections elaborate

on our geodesic label-smoothing method.

2.3.2.1 Generalized Geodesic Distance (GGD) Transform

The GGD transform (Criminisi et al., 2008) computes the shortest geodesic distance between

a set of reference points, known as seed points, and each pixel in an image. This transform

produces a distance map derived from a spatial distance and image gradient combination. The

seed points can be either a single point or a set of points selected from the object of interest. Let

S𝑐 represent a set of seed points upon the target class 𝑐. The generalized geodesic distance of

each voxel 𝑣 to the set S𝑐 of a target class is described as:

𝐷𝑐 (𝑣;S𝑐,X𝑖) = min
𝑣′∈S𝑐

𝑑 (𝑣, 𝑣′,X𝑖), (2.3)

with:

𝑑 (𝑣, 𝑣′,X𝑖) = min
p∈P𝑣,𝑣′

∫ √
| |p′(𝑠) | |2 + 𝛾2(∇X𝑖 · u(𝑠))2𝑑𝑠, (2.4)

where P𝑣,𝑣′ represents the set of all paths between voxels 𝑣 and 𝑣′, and p(𝑠) denotes one such

path parameterized by 𝑠 ∈ [0, 1]. We define a unit vector u(𝑠) = p′ (𝑠)
| |p′ (𝑠) | | , which is tangent in the

direction of the path, and whose spatial derivative is p′(𝑠) = 𝜕p(𝑠)
𝜕𝑠 .

In Eq. 2.4, the first term, p′(𝑠), accounts for the spatial distance, while the second term captures

the image gradient (∇X𝑖). The parameter 𝛾, termed the geodesic factor, balances the contribution

of the image gradient, and the spatial distance between the seed set S𝑐 and each voxel in the

image. When 𝛾 = 0, Eq. 2.4 simplifies to the Euclidean Distance, whereas setting 𝛾 to 1

facilitates computation of the geodesic distance (Criminisi et al., 2008). In practice, the geodesic
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distance transform is optimally estimated using the raster scan algorithm (Criminisi et al., 2008;

Toivanen, 1996).

Figure 2.3 Geodesic map generation. (a) A sample image and (b) a corresponding

segmentation mask of a spleen organ. (c) Seed points (in orange) are derived by

skeletonization of the segmentation mask. (d) The GGD map is generated from seed sets to

each pixel in the image. (e) Our final geodesic map is obtained by inverting the GGD map.

(f) An Euclidean map is similarly obtained for the same seed points

An example of generating a geodesic map is shown in Fig. 2.3. The seed points are chosen by

the skeletonization operation on a target mask. The GGD map is subsequently obtained using

Eq. 2.4. To highlight the object of interest, we invert the GGD map to get the final geodesic map

for each target class as follows:

𝑔𝑐 = 𝑒−𝐷𝑐 (2.5)

The resulting maps are thus in the range [0, 1]. The geodesic map of the background class

is obtained by inverting the average of foreground geodesic maps, also in the range [0, 1].

In Fig. 2.3, we have also added an Euclidean distance map for comparison with a geodesic

map. The Euclidean map spreads uniformly from seed points in all directions. In contrast, our

geodesic map propagates based on both spatial distance and gradient information, capturing the

underlying intensity similarities.

2.3.2.2 Geodesic Soft Labels

The geodesic maps encode image gradient details as a function of distance from the target

objects. Such maps account for the intensity variations across object boundaries. Our approach,
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therefore, avails the geodesic maps for smoothing the hard labels. In order to accomplish this,

we first normalize the geodesic map of each class as 𝑔̃𝑐 =
𝑔𝑐∑
𝑐 𝑔𝑐

, such that it follows a probability

distribution. Subsequently, the normalized geodesic maps are integrated with the original

one-hot encoding to produce the new intensity-based soft labels, as defined below:

𝑦𝐺𝑒𝑜𝐿𝑆
𝑐 = (1 − 𝛼)𝑦𝑐 + 𝛼𝑔̃𝑐 (2.6)

These generated soft labels are thereafter substituted in Eq. 2.1 to facilitate the training of the

segmentation network. The generation of our proposed geodesic soft labels is demonstrated

in Fig 2.4. As our approach incorporates intensity variations into the target label assignments

through geodesic maps, it effectively guides the network toward better segmentation.

Figure 2.4 Illustration of our proposed Geodesic Label Smoothing (GeoLS). The geodesic

maps for all target labels are combined to form a probability distribution. The generated

geodesic label is subsequently used to modify the one-hot encoding to obtain the proposed

intensity-based soft label. Our soft label captures the underlying intensity variation, thus it

can better guide the segmentation network in ambiguous regions. Best viewed in color
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2.4 Experiments and Results

2.4.1 Datasets

In order to validate our geodesic label-smoothing method, we utilize three publicly accessible

segmentation datasets. These datasets include: a) the Brain Tumor Segmentation dataset

obtained from the 2019 BraTS challenge (Bakas et al., 2017,1), b) the multi-organ abdominal

segmentation dataset from the 2021 FLARE challenge (Ma et al., 2022), and c) the prostatic zone

segmentation dataset from the ProstateX challenge (Litjens et al., 2014). A detailed description

of these datasets and our experimental settings are presented next.

a) BraTS:

This dataset comprises 335 multimodal MRI volumes of the brain, containing T1, T2, FLAIR,

and T1ce sequences. These volumes are preprocessed with skull-striped, co-registered to a fixed

template, and resampled to an isotropic resolution of 1 𝑚𝑚3. The dataset contains corresponding

annotations of glioma tumors, including delineations of the necrotic and non-enhancing core,

edema, and enhancing tumor regions. These regions are converted into Whole Tumor (WT),

Tumor Core (TC), and Enhancing Tumor (ET) for evaluation purposes. The dataset is partitioned

into 235 for training, 32 for validation, and 68 for testing across all our experiments.

b) FLARE:

The dataset consists of 361 CT volumes of abdominal regions with segmentation masks of four

organs: liver, kidney, spleen, and pancreas. These volumes have variable resolutions, which

are standardized by resampling to a consistent resolution of 2 × 2 × 2.5 𝑚𝑚3. Subsequently,

they are intensity normalized by retaining values within the percentile range of [0.5, 0.95]. We

employ a predefined dataset split for all experiments, allocating 260 volumes for training, 26 for

validation, and the remaining 75 for testing.
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c) ProstateX:

The dataset includes 98 prostatic T2 MRI scans and corresponding segmentation labels of four

anatomical zones, including the peripheral zone (PZ), transition zone (TZ), distal prostatic

urethra (DPU), and anterior fibromuscular stroma (AFS). All volumes are resampled into a fixed

resolution of 0.5× 0.5× 3 𝑚𝑚3 as followed in (Islam & Glocker, 2021). For all our experiments,

the dataset is split into 68 for training, 10 for validation, and the remaining 20 for testing.

2.4.2 Training and implementation details.

To assess the contribution of our geodesic soft labeling, we utilize a 3D U-net (Çiçek et al.,

2016) architecture for the segmentation network. This model is trained using Adam optimizer

(Kingma & Ba, 2015) with a learning rate of 10−4 and weight decay of 10−4. The input size

of 192 × 192 × 128 in BraTS, 160 × 208 × 112 in FLARE, and 320 × 320 × 24 in ProstateX

experiments are fed into the network. Data augmentations such as random flipping and rotation

are utilized, as in (Islam & Glocker, 2021). The network is trained for 200 epochs with a

batch size of 4. For inference, the model with the best dice score on the validation set is

selected for testing. Our evaluation includes experiments with CE, Focal Loss (FL) (Lin

et al., 2017), LS (Szegedy et al., 2016), and SVLS (Islam & Glocker, 2021) losses as training

objectives. Following the literature, commonly utilized hyperparameter values are considered

for each baseline approach, and the result is reported for a value with the best dice score on the

validation set. In particular, the focusing parameter 𝛾 in FL is set to {1, 2, 3}. In the case of

LS, 𝛼 ∈ {0.1, 0.2, 0.3} are used, whereas 𝜎 ∈ {0.5, 1, 2} values are employed in SVLS with a

kernel size of 3. In our method, the geodesic factor 𝛾 is explored for {0.5, 0.75, 1} values with a

fixed smoothing factor of 𝛼 = 0.1.

To obtain the geodesic maps, an open-source library, GeodisTK 1, is employed with a skele-

tonization of a segmentation mask as seed points. Note that our soft labels are computed offline,

1https://github.com/taigw/GeodisTK
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requiring virtually no additional computation during the training process. The only additional

cost is loading the geodesic maps, whose computational burden is negligible. The geodesic

maps are not needed during the inference step, resulting in exactly the same computation cost as

existing approaches. All our experiments were executed on an NVIDIA RTX A6000 GPU with

PyTorch 1.8.0. Our GeoLS implementation is available at: https://github.com/adigasu/GeoLS.

2.4.3 Evaluation

The segmentation performance is evaluated with standard and widely used evaluation measures,

such as the Dice Similarity Coefficient (DSC) and the 95% Hausdorff Distance (HD). The former

measure estimates the overlap between ground truth labels and predictions, whereas the latter

measures the distance between ground truth and predicted segmentation boundaries. To ensure

a fair comparison, we conducted all experiments three times with fixed seed sets on identical

machines, presenting results with mean and standard deviation values.

2.4.4 Comparison with the state-of-the-art.

The performance of the proposed geodesic soft-labeling approach is first compared with the

state-of-the-art soft-labeling methods (LS (Szegedy et al., 2016) and SVLS (Islam & Glocker,

2021)), and their discriminative results are reported in Tables 2.1-2.3 for all three datasets. The

table also includes the hyperparameter value corresponding to the best-performing model for

each method.

The performance of various methods on multi-class brain tumor segmentation dataset is shown

in Table 2.1. The results show that employing soft labels improves the segmentation performance

compared to models trained with a CE loss on hard labels in both scores. Among soft-labeling

baselines, FL and SVLS achieve the best DSC and HD scores, respectively. Our approach

outperforms these best-performing baselines in both DSC and HD scores in all tumor categories.

Notably, we observe that the proposed GeoLS indeed benefits in the enhancing tumor (ET)
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Table 2.1 Segmentation results on the BraTS test set. In all tumor structures (ET, TC,

WT), our method yields the best DSC and HD scores. For each tumor structure, bold and

underlined indicate the best and second-best methods

Methods ET TC WT Average
CE 72.05 ± 2.14 82.38 ± 0.91 90.09 ± 0.39 81.51 ± 1.03

FL (𝛾 = 1) 73.55 ± 0.49 82.82 ± 0.20 90.37 ± 0.16 82.25 ± 0.20

LS (𝛼 = 0.1) 73.28 ± 0.85 82.65 ± 0.30 90.46 ± 0.08 82.13 ± 0.35

SVLS (𝜎 = 1.0) 73.15 ± 2.82 82.67 ± 1.96 90.43 ± 0.78 82.08 ± 1.81

DS
C

(%
)↑

Ours (𝛾 = 0.75) 74.61 ± 0.79 83.51 ± 0.24 90.88 ± 0.12 83.00 ± 0.31
CE 14.55 ± 1.61 7.64 ± 1.15 6.28 ± 0.86 9.49 ± 1.20

FL (𝛾 = 1) 12.81 ± 1.11 7.31 ± 0.32 5.96 ± 0.18 8.69 ± 0.31

LS (𝛼 = 0.1) 13.52 ± 0.35 7.23 ± 0.16 5.95 ± 0.16 8.90 ± 0.21

SVLS (𝜎 = 1.0) 12.83 ± 2.70 6.93 ± 1.37 5.72 ± 1.10 8.50 ± 1.70

H
D

(m
m

)↓

Ours (𝛾 = 0.75) 12.36 ± 0.56 6.08 ± 0.61 5.22 ± 0.52 7.89 ± 0.32

region. Such a region is often irregular and poorly defined, which leads to imprecise annotation

(Menze et al., 2014). Our method improves this challenging region by 1.06% in DSC score and

0.45 mm in HD, highlighting the advantage of combining the intensity information in our soft

labels. These results demonstrate the merit of using our geodesic soft-labeling over hard-labeling

and existing soft-labeling approaches.

Table 2.2 Segmentation results on the FLARE test set. Our method produces the best

DSC and HD scores on average results as well as on a challenging pancreas organ. For each

abdominal organ, bold and underlined indicate the best and second-best methods

Methods Liver Kidney Spleen Pancreas Average
CE 94.88 ± 0.31 94.70 ± 0.33 95.46 ± 0.85 72.52 ± 0.61 89.39 ± 0.14

FL (𝛾 = 1) 94.84 ± 1.08 94.38 ± 0.35 95.56 ± 0.72 69.66 ± 2.02 88.61 ± 0.90

LS (𝛼 = 0.1) 95.96 ± 1.11 94.89 ± 0.35 95.61 ± 0.63 73.07 ± 1.35 89.88 ± 0.38

SVLS (𝜎 = 0.5) 95.76 ± 0.34 94.28 ± 0.34 95.01 ± 0.09 73.39 ± 0.16 89.61 ± 0.10

DS
C

(%
)↑

Ours (𝛾 = 1.0) 95.60 ± 0.87 94.80 ± 0.37 96.52 ± 0.30 73.72 ± 1.02 90.16 ± 0.44
CE 4.15 ± 1.10 2.94 ± 0.11 2.98 ± 1.06 6.72 ± 1.18 4.20 ± 0.19

FL (𝛾 = 1) 3.28 ± 1.28 3.22 ± 0.32 2.80 ± 1.08 8.03 ± 0.46 4.33 ± 0.61

LS (𝛼 = 0.1) 2.87 ± 1.14 2.93 ± 0.37 2.60 ± 0.24 6.37 ± 1.03 3.69 ± 0.26

SVLS (𝜎 = 0.5) 2.61 ± 1.06 3.17 ± 0.78 1.42 ± 0.18 6.26 ± 0.48 3.36 ± 0.20

H
D

(m
m

)↓

Ours (𝛾 = 1.0) 3.01 ± 1.05 2.40 ± 0.50 1.49 ± 0.55 5.59 ± 0.20 3.12 ± 0.21
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Table 2.3 Segmentation results on the ProstateX test set. Our method is competitive in

most cases and achieves the best DSC score on average results. At the same time, baselines

are ranked differently across prostatic zones (PZ, TZ, DPU, and AFS). For each prostatic

zone, bold and underlined indicate the best and second-best methods

Methods PZ TZ DPU AFS Average
CE 71.56 ± 0.55 86.34 ± 0.28 48.39 ± 2.46 38.27 ± 4.46 61.14 ± 1.21

FL (𝛾 = 1) 72.18 ± 1.11 86.38 ± 0.20 51.19 ± 2.73 35.50 ± 6.85 61.31 ± 1.96

LS (𝛼 = 0.2) 70.52 ± 0.31 86.34 ± 0.46 53.31 ± 2.89 35.16 ± 6.65 61.33 ± 1.29

SVLS (𝜎 = 1.0) 72.08 ± 1.89 85.89 ± 0.64 51.10 ± 4.14 35.67 ± 3.08 61.19 ± 2.12

DS
C

(%
)↑

Ours (𝛾 = 1.0) 70.86 ± 1.11 86.51 ± 0.36 51.50 ± 0.50 39.50 ± 2.60 62.09 ± 0.75
CE 6.51 ± 0.34 3.22 ± 0.10 11.28 ± 0.44 9.58 ± 1.21 7.65 ± 0.24

FL (𝛾 = 1) 5.76 ± 0.97 3.38 ± 0.39 7.89 ± 3.34 9.68 ± 0.59 6.68 ± 1.05
LS (𝛼 = 0.2) 6.64 ± 0.69 3.33 ± 0.15 7.28 ± 2.20 9.75 ± 1.14 6.75 ± 0.70

SVLS (𝜎 = 1.0) 7.04 ± 0.84 3.73 ± 0.24 10.94 ± 5.75 10.2 ± 1.26 7.98 ± 1.59

H
D

(m
m

)↓

Ours (𝛾 = 1.0) 7.83 ± 2.72 3.22 ± 0.06 6.50 ± 0.52 9.78 ± 0.26 6.83 ± 0.78

Table 3.2 presents the results of the multi-organ abdominal segmentation on the FLARE test set.

A similar pattern is observable in the LS, SVLS, and GeoLS results compared to those obtained

from the BraTS dataset (Table 2.1). Nevertheless, there is an apparent performance gap in FL

compared to CE results, which may be attributed to the over-emphasis on mislabeled pixels

present in the data. Overall, our GeoLS yields the best segmentation performance corresponding

to the baselines, notably enhancing the segmentation in the challenging pancreas and spleen

regions.

The results of the multi-class prostatic zone segmentation on the ProstateX dataset are reported

in Table 2.3. A similar trend in FL, LS, and GeoLS results is observed as in Table 2.1. However,

SVLS produces a drop in performance compared to CE results (HD), possibly due to the

over-suppression of original one-hot encoding in the boundaries. Moreover, existing methods

are ranked differently across datasets and evaluation measures, indicating that these approaches

are sensitive to datasets. In contrast, our GeoLS outperforms the state-of-the-art approaches in

most cases. Based on these results, we can conclude that our method remains consistent across

diverse datasets, highlighting the robustness of our intensity-based soft labels.
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2.4.5 Qualitative Results

Figure 2.5 shows the visual comparison of different segmentation results on brain tumors

from BraTS, abdominal organs from FLARE, and prostatic zones from ProstateX datasets. In

brain tumor segmentations (top row), the results of existing approaches (OH, FL, SVLS) are

predominantly over-segmenting in non-enhancing core regions (blue), whereas the LS and GeoLS

reduce the segmentation errors. In the middle row of Fig. 2.5, the existing methods struggle

to segment the challenging pancreas organ (yellow) organ. In contrast to these baselines, our

GeoLS delivers a superior segmentation of the pancreas organ. The prostatic zone segmentations

are arguably challenging due to imprecise boundaries between different zones. In the bottom

row, the results of prostatic zone segmentations are poor in all approaches. Our method produces

reasonable segmentation results, notably in the AFS prostatic zone (yellow).

Figure 2.5 Qualitative results on BraTS, FLARE, and ProstateX datasets. Our GeoLS

minimizes classification errors in ambiguous regions, such as the non-enhancing core (blue)

in BraTS (top), the pancreas (yellow) in FLARE (middle), and PZ (blue) and AFS (yellow)

zones in the ProstateX (bottom) examples

In addition, the prediction probability maps of baseline and our method for the same examples

are shown in Fig. 2.6. Our GeoLS produces reasonably low probabilities in poorly defined image

intensities and misclassified regions, ensuring segmentation accuracy even in challenging areas.



49

Figure 2.6 Predicted probability maps. The probability maps indicate the non-enhancing

core (blue) in BraTS (top), the pancreas (yellow) in FLARE (middle), and PZ (blue) in

ProstateX (bottom) examples

At the same time, it consistently maintains high probabilities in well defined image intensities

regions. Furthermore, the quantitative results presented in Sec. 2.4.4 support these visual results.

These results indicate that supplying image gradient information through geodesic maps in our

intensity-based soft-labeling approach enhances the segmentation performance.

2.4.6 Sensitivity to 𝛾

The hyperparameter 𝛾 in Eq. 2.4 plays a crucial role in balancing between the Geodesic Distance

and the Euclidean Distance. Since the intensity variations and spatial distance can influence

the geodesic distance transform, we investigate the segmentation performance by varying the 𝛾

parameter and report their results in Fig. 2.7, across all datasets. Additionally, we include the

segmentation result obtained from a model trained with 𝛾 = 0, i.e., utilizing only the Euclidean

Distance for soft labels. The results demonstrate that the segmentation performance is better

for higher 𝛾 values compared to the models solely relying on Euclidean distance maps. This

indicates that incorporating geodesic information based on image gradients in our soft labels

positively impacts the performance of segmentation tasks.
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Figure 2.7 Sensitivity of geodesic factor 𝛾 on segmentation performance. Each bar

indicates the average DSC ↑ (top) and HD ↓ (bottom) scores on each dataset. 𝛾 = 0 here

uses only using Euclidean Distance. Segmentation accuracy improves when the 𝛾 value is

increased towards 1, indicating a higher emphasis on Geodesic Distance in soft labels

2.4.7 Choice of seed set S

Our soft label relies on the geodesic maps, which vary with the different choices of seed set S.

Therefore, to validate the effectiveness of our seeding strategy on segmentation performance,

we conduct experiments with different seed-set strategies. These strategies involve obtaining a

random selection of pixels within each target class. For this, our experiments include 3, 5, and

7 randomly selected pixels as seed points. Such seed points are inadequate for large regions,

such as the liver, or multiple instances of a class label, such as the kidney. To address this issue,

seed sets are also obtained using the remainings of the skeletonization and erosion operations

applied to each target class. The results of these experiments are reported in Table 2.4. It shows

that the segmentation performances are comparable for different seed-set choices, which further

demonstrates the strength of our geodesic soft labels. Furthermore, the results suggest that

the skeleton-based seed strategy consistently yields favorable results across all datasets, which

indicates that this seeding strategy could also be viable on new datasets.
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Table 2.4 Performance under different seed sets S. Average DSC and HD scores on each

dataset are reported. Segmentation accuracy is consistent across datasets for skeleton-based

seed points. The bold and underlined indicate the best and second-best results

Datasets BraTS FLARE ProstateX

choice of S DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓
random-3 82.98 ± 0.68 8.10 ± 0.09 87.83 ± 1.02 4.79 ± 0.16 58.65 ± 3.73 7.41 ± 1.59

random-5 82.51 ± 0.80 9.00 ± 0.70 89.46 ± 1.00 4.20 ± 0.97 60.88 ± 0.85 7.07 ± 0.33

random-7 82.36 ± 0.48 8.89 ± 0.81 89.23 ± 0.21 4.41 ± 0.49 61.76 ± 2.62 6.84 ± 0.91

skeleton 83.00 ± 0.31 7.89 ± 0.32 90.16 ± 0.44 3.12 ± 0.21 61.72 ± 0.97 6.73 ± 1.00
erosion 81.93 ± 0.93 9.17 ± 0.68 89.56 ± 0.08 3.63 ± 0.27 61.72 ± 0.90 6.96 ± 0.55

2.4.8 Combining with other loss function

The main goal of this work is to provide an alternative to state-of-the-art soft labeling losses

by leveraging geodesic distance transform. Nevertheless, the proposed approach is orthogonal

to other types of segmentation losses, including widely used Dice loss (Sudre et al., 2017).

Moreover, combined CE and Dice losses are often employed to train segmentation models for

medical images (Ma et al., 2021a; Taghanaki et al., 2019). Thus, we investigate whether the

findings observed when comparing the CE loss hold when we combine the proposed GeoLS

with the Dice loss. These results, depicted in Fig. 2.8, demonstrate that adding the Dice loss

improves the segmentation performance of both CE and GeoLS across all datasets. Moreover,

combining GeoLS and Dice losses achieves the best results in most cases, demonstrating the

consistency of our geodesic label-smoothing approach.

Furthermore, we performed experiments by combining ours and CE loss with boundary loss

(BL) first and then with focal loss (FL), whose results are reported in Fig. 2.9. The results show

a similar trend as with a combination of Dice loss. Combining our method with BL and FL

yields better segmentation results than combining CE with BL and FL across all three datasets.

These results demonstrate the robustness of the proposed GeoLS when combined with other

loss functions.



52

Figure 2.8 Segmentation performance with a combination of Dice loss. Each bar

indicates the DSC (top) and HD (bottom) scores on all three datasets. The segmentation

performance improves by adding Dice loss on both CE and our models. A combination of

ours and Dice loss yield consistently best in most cases

Figure 2.9 Segmentation performance with a combination of Boundary loss (BL) and

Focal loss (FL). Each bar indicates the average DSC ↑ (top) and HD ↓ (bottom) scores on all

three datasets. Combining our method with BL and FL consistently provides better

segmentation results compared to combining CE with BL and FL in most cases

2.5 Discussion and Conclusion

Despite the growing popularity of contemporary soft-labeling approaches, the underlying

image context information associated with the label is largely overlooked in the soft labels

for image segmentation. This work demonstrates that incorporating such information into

standard hard labels would improve the performance of deep segmentation networks. To that
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effect, our contribution, a Geodesic label smoothing, incorporates intensity variation details

into the soft-labeling process through geodesic distance transforms. More specifically, our

proposed approach generates new intensity-based soft labels that capture ambiguity between

neighboring target regions. Employing our soft labels in the training of segmentation models

has consequently demonstrated an improved segmentation performance. Our results have in fact

shown that our geodesic-based smoothing consistently outperforms state-of-the-art approaches

in soft-labeling, across three different datasets: multi-class tumor segmentation in brain MRIs,

organ segmentation in abdominal CTs, and zone segmentation in prostatic MR volumes. Both

quantitative and qualitative results indicate notable improvements in the segmentation of known

challenging regions, such as of enhancing tumors, as well as the pancreas.

Furthermore, the ablation study conducted on the geodesic factor parameter indicates that

our geodesic maps integrate richer intensity information in the yielded soft labels, effectively

producing an improved segmentation performance than utilizing only Euclidean distance maps.

Our experiments have also evaluated several key seeding strategies for generating soft labels.

These results show that the skeleton-based strategy remains consistent across all datasets. The

design of the seeding process can be further explored in order to better capture the intrinsic

structures of target objects. This work provides, therefore, a valuable alternative to hard-labeling

and existing soft-labeling losses. Nonetheless, our geodesic label smoothing loss can also be

combined with other segmentation losses, such as the conventional Dice loss. The use of such

loss has in fact shown further improvements in the segmentation accuracy within our experiments.

As future work, our approach could also be potentially applicable to segmentation tasks under

noisy annotations (Karimi, Rollins, Velasco-Annis, Ouaalam & Gholipour, 2023; Lukasik et al.,

2020). Overall, our proposed geodesic-based soft-labeling could be virtually leveraged in

broader ranges of applications where annotation remains challenging due to ambiguities in

image intensities across regions.
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Presentation

This chapter presents the article “Anatomically-aware Uncertainty for Semi-supervised Image

Segmentation” (Adiga Vasudeva, Dolz & Lombaert, 2024) submitted to Journal of MedIA

(Medical Image Analysis) on 11 December 2022, revised on 11 August 2023, and accepted

for publication on 18 October 2023. An initial article was published (Adiga Vasudeva,

Dolz & Lombaert, 2022b) in the conference of MICCAI (Medical Image Computing and

Computer Assisted Intervention), held in Singapore. This article aims to guide a segmentation

model with reliable target regions through anatomically-aware uncertainty estimation within

semi-supervised scenarios.

3.1 Introduction

Segmentation is a fundamental task in medical image analysis, where image pixels are associated

with a target object, such as an organ, structure, or abnormal region. It is a vital pre-processing

step in many clinical applications, notably in computer-assisted diagnosis, intervention assistance,

treatment planning, and personalized medicine (Ayache & Duncan, 2016; Duncan & Ayache,

2000). Recent segmentation methods based on deep learning techniques are driving progress

under the full-supervision regime, often outperforming traditional methods (Litjens et al., 2017).
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Such a regime, however, relies on a large amount of annotations, which is time-consuming.

Delineating an image at a pixel-level is indeed challenging, especially in homogeneous or low-

contrast regions, and often requires prohibitive clinical expertise. The burden of image annotation

motivates new learning strategies with limited supervision (Cheplygina, de Bruĳne & Pluim,

2019).

Semi-supervised learning is an emerging strategy that alleviates annotation scarcity by leveraging

unlabeled data with a small set of labeled data. Current semi-supervised segmentation methods

typically utilize unlabeled data either in the form of pseudo labels (Bai et al., 2017; Zheng

et al., 2020) or in a regularization term (Cui et al., 2019; Nie et al., 2018; Peng et al., 2020).

The former strategies augment the original labeled dataset with unlabeled data alongside its

corresponding model predictions, commonly referred to as pseudo labels. Later techniques

incorporate unlabeled data into the training process by constraining predictions with a regularizer

term. Training these semi-supervised approaches typically involves a supervised loss associated

with labeled data and an unsupervised loss associated with unlabeled data.

Among regularization techniques, consistency-based approaches (Laine & Aila, 2017; Tar-

vainen & Valpola, 2017) are often used in semi-supervision due to simple ways to leverage

unlabeled data. Their approach encourages two or more segmentation predictions to be consistent

under different perturbations of the input data (Bortsova et al., 2019; Cui et al., 2019; Li et al.,

2020b). However, the segmentation predictions can be unreliable and noisy for unlabeled data

since its annotations are unavailable. To alleviate this issue, uncertainty-aware regularization

methods (Sedai et al., 2019; Yu, Wang, Li, Fu & Heng, 2019) have been proposed to gradually

add reliable target regions in predictions. Although these methods perform well in low-labeled

data regime, their high computation and complex training techniques remain a limiting factor to

broader applications. For instance, the pixel-level uncertainty approximation with Monte-Carlo

Dropout (MCDO) (Gal & Ghahramani, 2016) or ensembling (Lakshminarayanan, Pritzel & Blun-

dell, 2017) requires multiple predictions per image, thereby increasing the computation of
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Figure 3.1 Uncertainty maps from different semi-supervision methods. K denotes the

number of inferences. Green arrows in regions of probable uncertainty due to unclear

boundaries or annotator cut preference (such as in pulmonary veins cut in top right). Red

arrows in regions of lower uncertainty as they depict high image gradients in uninformative

clear boundary or inner foreground content

each training step. Moreover, these approaches do not consider global information to estimate

uncertainty. The resulting uncertainty maps capture pixel-wise disparity, most likely around

boundaries (Kendall, Badrinarayanan & Cipolla, 2017). However, high gradient regions near

anatomical boundaries or inner content of anatomical structures should have a certain labeling

mask. For instance, Fig. 3.1 shows uncertainty captured by MCDO mostly over boundaries,

while regions with high gradients (red arrows) could indicate certain boundaries or anatomical

details with certainty. Probable uncertainty may lie in areas of low image gradients. For instance,

anatomical boundaries may be unclear due to imaging or even non-existent in case of an arbitrary

cut from an annotator (green arrows), as illustrated in the pulmonary veins in Fig. 3.1. Existing

methods could benefit from capturing informative uncertainty in images beyond highlighting

high image gradients or all over boundaries.

The global information of the anatomical regions is one promising direction to provide cues

about informative uncertainty in images. Our approach will, therefore, exploit and capture

global anatomical information by leveraging available masks to approximate segmentation

uncertainty. Our main idea is to learn an anatomically-aware representation from a training

set of segmentation masks. The learnt representation maps incorrect model predictions onto

an anatomically-plausible segmentations. The plausible segmentation is subsequently used to

estimate the uncertainty maps and further guide training of the segmentation network. We show

that the proposed uncertainty estimates are more robust and computationally less expensive
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than deriving them from a standard entropy variance-based method, which requires multiple

inferences for each training step.

3.1.1 Our contributions

We propose a novel approach to estimate the uncertainty maps from an anatomically-aware

representation of the segmentation masks, in order to guide the training of a semi-supervised seg-

mentation model. More precisely, we innovate semi-supervised segmentation with uncertainty-

based training by integrating a pre-trained denoising autoencoder (DAE) into the training of our

segmentation network to: (i) map the inaccurate model predictions to plausible segmentation

masks and (ii) estimate new uncertainty maps that guide the training of our segmentation model.

As we approximate the uncertainty based on the difference between predicted segmentation and

its DAE reconstruction learned from the segmentation mask, it can better integrate anatomical

information. In contrast to most uncertainty-based approaches, estimating the uncertainty map

requires a single inference from the DAE model, thereby reducing computational complexity. Our

method is extensively evaluated on two medical imaging datasets: the 2018 Atrial segmentation

challenge dataset (Xiong et al., 2021) and the 2021 Abdominal organ segmentation dataset

(Ma et al., 2022). Results demonstrate the superiority of our approach over the state-of-the-art

methods in semi-supervised segmentation. Moreover, we investigate the impact of various

design choices made in our anatomically-aware (DAE) module and training settings to highlight

the robustness of our method for image segmentation. Additionally, a qualitative comparative

analysis of uncertainty for different methods and their computation time is provided, showing

the merit of our anatomically-aware uncertainty estimation.
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3.2 Related Work

3.2.1 Semi-Supervised Segmentation

Semi-supervised learning (SSL) is an established approach in the literature under the paradigm

of learning with limited supervision (Jiao et al., 2023). A wide range of SSL strategies have been

explored for segmentation, such as self-training (Bai et al., 2017; Zheng et al., 2020), entropy

minimization (Grandvalet & Bengio, 2004; Wu, Fan, Zhang, Lin & Li, 2021a), consistency

regularization (Bortsova et al., 2019; Cui et al., 2019), co-training (Peng et al., 2020; Xia

et al., 2020) or adversarial learning (Chaitanya et al., 2019; Nie et al., 2018). For instance,

self-training methods (Bai et al., 2017; Zheng et al., 2020) typically employ pseudo-labels on

unlabeled data to train models in an iterative way. However, potential labeling mistakes in the

pseudo labels can quickly propagate during training, causing undesired segmentation outcomes.

Entropy minimization strategies (Wu et al., 2021a) circumvent such issues by enforcing high

confidence in predictions but can also easily lead to trivial solutions if additional priors are

not used. Co-training approaches (Peng et al., 2020; Xia et al., 2020) avoid iterations but at

the cost of simultaneously training two or more networks with multi-view images. Adversarial

methods (Chaitanya et al., 2019; Nie et al., 2018) encourage the predictions of unlabeled

images to be closer to those of the labeled images. However, they remain challenging in

terms of convergence (Salimans et al., 2016). Among the existing SSL strategies, consistency

regularization-based methods (Laine & Aila, 2017; Tarvainen & Valpola, 2017) are widespread

due to their simple assumption that predictions should not change significantly under different

realistic data perturbations. This notion is formulated as a consistency regularization term in

the loss function, which encourages predictions to be consistent between data and its perturbed

version (Bortsova et al., 2019; Cui et al., 2019; Li et al., 2020b). Similarly, our method leverages

unlabeled data with a consistency regularizer.
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3.2.2 Uncertainty-based methods

Uncertainty estimation approaches often employ Bayesian neural networks (Neal, 2012), however,

their training process poses significant computational challenges. Recent deep learning methods

address this limitation by approximating uncertainty through the generation of multiple samples

(Abdar et al., 2021). For instance, Monte-Carlo Dropout (MCDO) (Gal & Ghahramani, 2016)

performs several forward passes via the same model with dropout enabled at test time to generate

multiple samples for the same input. Deep ensembles (Lakshminarayanan et al., 2017) train a

set of independent models to generate multiple samples. These approaches, however, tackle the

problem of approximating epistemic uncertainty associated with the model output but not the

aleatoric uncertainty associated with the input (Kendall & Gal, 2017). A set of recent methods

models the aleatoric uncertainty by using intra-/inter-annotation variability as a proxy to the

underlying input uncertainties (Baumgartner et al., 2019; Kohl et al., 2018; Monteiro et al.,

2020). Aforementioned methods have been shown to produce reliable uncertainty estimations in

fully-supervised segmentation (Camarasa et al., 2021; Mehta et al., 2022).

In the context of semi-supervised segmentation, the uncertainty in the prediction is widely

used within the optimization process (Wang et al., 2021,2; Yu et al., 2019). In particular, the

uncertainty information assists the segmentation models by providing reliable target regions

on unlabeled data during each training step. For instance, Yu et al. (2019) first approximates

an uncertainty map using a predictive entropy of several predictions under data and model

perturbations. The generated uncertainty map is later used to gradually add the reliable target

regions in the consistency loss term. This idea was further extended to integrate uncertainty on

a feature-level (Wang et al., 2020) and multiple prediction branches (Wang et al., 2022a). The

uncertainty estimation in these approaches commonly use MCDO (Gal & Ghahramani, 2016) or

ensembling (Lakshminarayanan et al., 2017), which inherently relies on multiple predictions

per image. In addition to being computationally expensive, estimating such entropy-based

uncertainty is suboptimal in a multi-class scenario since it disregards inter-class overlaps
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(Van Waerebeke, Lodygensky & Dolz, 2022). More recently, multi-scale (Luo et al., 2022) or

multi-decoder (Wu et al., 2022) approaches have been proposed to overcome the expensive

computation of uncertainty using multiple predictions in a single forward pass. Nevertheless,

these methods often fail to capture the actual uncertainty regions. In contrast to existing strategies,

our method leverages an anatomically-aware representation from the available annotations to

estimate the uncertainty in a single inference step. This strategy leads to a lower computational

complexity and an improved computational efficiency.

3.2.3 Towards anatomically-plausible segmentations

Recent approaches incorporate anatomically-aware priors in a segmentation network (Oktay

et al., 2017; Painchaud et al., 2020; Ravishankar et al., 2017) by learning the variability

of structures in a medical imaging dataset. For instance, Oktay et al. (2017) first learn an

anatomically-aware representation with an autoencoder-based architecture using segmentation

masks. This representation is later utilized to map a prediction into an anatomically-plausible

space. These methods use the encoder of the representation as a global shape regularizer that

enforces the model predictions to follow the ground truth distribution. The anatomically-aware

representation can also map an erroneous mask into an anatomically-plausible segmentation.

Such mapping is subsequently used to correct the segmentation predictions as a post-processing

step (Larrazabal et al., 2020; Painchaud et al., 2020) or improve the segmentation on unseen

test images (Karani, Erdil, Chaitanya & Konukoglu, 2021). In order to encode the masks in the

anatomically-aware representation, a substantial amount of annotations are used either from

the given dataset (Larrazabal et al., 2020; Painchaud et al., 2020) or the source domain dataset

(Karani et al., 2021). The anatomically-aware representation is alternately substituted with a

probabilistic atlas to enforce the priors (Huang et al., 2022; Zheng et al., 2019a), which requires

an aligned dataset. For instance, Dalca, Guttag & Sabuncu (2018) learns an anatomically-aware

representation on aligned labelings and subsequently uses it for unsupervised segmentation on

aligned images. In contrast to these approaches, our method leverages an anatomically-aware
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representation in a low-data regime with the goal of obtaining uncertainty maps in order to guide

the segmentation network during the training process.

Figure 3.2 Overview of anatomically-aware uncertainty estimation for semi-supervised

segmentation. A pre-trained anatomically-aware representation (DAE) module is integrated

into the training of the mean teacher model, which maps the teacher prediction P𝑇 into a

plausible segmentation P̂𝑇 . The uncertainty map (U) is subsequently estimated with the

output of the teacher and the DAE model in order to further guide the student model

3.3 Method

An overview of the proposed anatomically-aware uncertainty estimation for semi-supervised

segmentation is shown in Fig 3.2. The main idea is to exploit an anatomically-aware representation

that maps the segmentation prediction into a plausible mask. The reconstructed segmentation

will be indicative in estimating an uncertainty map, which later is used to guide the segmentation

training. The following subsections describe the semi-supervised setting, anatomically-aware

representation, and uncertainty estimation process.
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3.3.1 Preliminaries

The standard semi-supervised learning consists of 𝑁𝑙 labeled and 𝑁𝑢 unlabeled data in the

training set, where 𝑁𝑙 � 𝑁𝑢. Let D𝐿 = {(X𝑖 ,Y𝑖)}
𝑁𝑙
𝑖=1

and D𝑈 = {(X𝑖)}
𝑁𝑢
𝑖=1

denote the labeled

and unlabeled sets, where an input volume is represented as X𝑖 ∈ RΩ with a spatial domain Ω,

and its corresponding segmentation mask is Y𝑖 ∈ {1, 2, ..., 𝐶}Ω, with 𝐶 being the number of

classes. The objective is to train a segmentation network with a combination of supervised loss

L𝑠 and unsupervised loss L𝑢 using labeled and unlabeled data, i.e., L = L𝑠 + 𝜆L𝑢, where 𝜆

controls the weight of unsupervised loss.

3.3.2 Mean Teacher Formulation

Following current literature (Yu et al., 2019), we adopt the common mean teacher approach

(Tarvainen & Valpola, 2017) for training a segmentation network. It consists of a student (𝑆)

and a teacher (𝑇) model, both having the same segmentation architecture. The overall objective

function is defined as follows:

L = min
𝜃𝑆

𝑁𝑙∑
𝑖=1

L𝑠 ( 𝑓 (X𝑖; 𝜃𝑆),Y𝑖) + 𝜆𝑐

𝑁𝑙+𝑁𝑢∑
𝑖=1

L𝑐 ( 𝑓 (X𝑖 , 𝜂; 𝜃𝑆), 𝑓 (X𝑖 , 𝜂′; 𝜃𝑇 )), (3.1)

where 𝑓 (·) denotes the segmentation network, and 𝜃𝑆 and 𝜃𝑇 are the learnable weights of the

student and teacher models. The supervised loss L𝑠 measures the segmentation quality on the

labeled data, whereas the unsupervised consistency loss (L𝑐 = L𝑢) measures the prediction

consistency between the student and the teacher models for the same input volume X𝑖 under

different perturbations (𝜂 and 𝜂′). The balance between the supervised and unsupervised loss is

controlled by a ramp-up weighting coefficient 𝜆𝑐, which is defined as

𝜆𝑐 = 𝛽 ∗ 𝑒−𝑟 (1−
𝑡

𝑡𝑚𝑎𝑥
)2 , (3.2)
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where 𝛽 is a consistency weight, 𝑟 controls the rate of ramp-up, 𝑡 and 𝑡𝑚𝑎𝑥 denote the current

and maximum training steps. For training, the student model parameters (𝜃𝑆) are optimized with

stochastic gradient descent (SGD), whereas the teacher model parameters (𝜃𝑇 ) are updated using

an exponential moving average (EMA) at each training step 𝑡. The EMA is defined as

𝜃𝑡𝑇 = 𝛼𝜃𝑡−1
𝑇 + (1 − 𝛼)𝜃𝑡𝑆, (3.3)

where 𝛼 is the smoothing coefficient of EMA that controls the update rate.

3.3.3 Anatomically-aware Uncertainty Approach

The reliability of the model prediction on the unlabeled dataset plays an essential role in the

consistency loss. An uncertainty-aware scheme can assist this loss by providing reliable target

regions. The existing approaches (Wang et al., 2020; Yu et al., 2019) estimate uncertainty

at a pixel-level, which fails to consider global information within the dataset. To address

this limitation, our approach learns an anatomically-aware representation prior in order to

capture global information. The measurable deviations from this prior provide informative cues

about the uncertainty of the segmentation mask. The following subsections elaborate on our

anatomically-aware uncertainty method.

3.3.3.1 Anatomically-aware Representation Prior

Incorporating anatomically-aware prior in deep segmentation models is not obvious. One of the

reasons is that, in order to integrate such prior knowledge during training, one needs to augment

the learning objective with a differentiable term, which is not trivial. To circumvent these

difficulties, a simpler solution is to resort to an autoencoder trained with segmentation masks,

which maps the predictions into anatomically-plausible segmentation. This strategy has been

adopted for fully-supervised learning as a global regularizer during training in (Oktay et al., 2017)

and as a post-processing step in (Larrazabal et al., 2020) to correct the segmentation predictions.
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Motivated by this concept, we encode the available segmentation masks in a non-linear latent

space of a denoising autoencoder (DAE) (Vincent et al., 2010) to learn an anatomically-aware

representation prior. This learned representation captures the global information from the

segmentation masks such that it maps an inaccurate prediction into a plausible segmentation.

The DAE model consists of an encoder 𝑓𝑒 (·) and a decoder 𝑓𝑑 (·) with a 𝑑-dimensional latent space

as shown in the Fig. 3.2. The DAE is trained to reconstruct the clean label Y𝑖 from its corrupted

version Ỹ𝑖, which can be achieved with a mean squared error loss: 1
|Ω|

∑
𝑣∈Ω | | 𝑓𝑑 ( 𝑓𝑒 (Ỹ𝑖

𝑣)) −Y𝑖
𝑣 | |

2,

where 𝑣 is a voxel. Additionally, the dice loss is added to handle the class imbalance between

foreground and background in the labels.

3.3.3.2 Anatomically-aware Uncertainty

The role of the uncertainty is to gradually update the student model with reliable target regions

from the teacher model predictions. Our proposed method estimates the uncertainty directly

from the anatomically-aware representation network 𝑓𝑑 ( 𝑓𝑒 (·)), requiring only one inference step.

First, we map the segmentation prediction from the teacher model (P𝑖
𝑇 ) with a DAE model to

produce a plausible segmentation P̂𝑖
𝑇 = 𝑓𝑑 ( 𝑓𝑒 (P𝑖

𝑇 )). We subsequently estimate the uncertainty

as the pixel-wise difference between the DAE output and the prediction, which is given as:

U𝑖 = | |P̂𝑖
𝑇 − P𝑖

𝑇 | |
2. (3.4)

Note that the uncertainty formulation is related to the conventional sample variance-based

uncertainty estimation. Specifically, for a given input, X𝑖, and its corresponding multiple model

predictions, P𝑖𝑠 , the sample variance estimation is defined as follows:

𝑣𝑎𝑟 (P𝑖) =
1

𝑆 − 1

𝑆∑
𝑠=1

(P𝑖𝑠 − P̄𝑖)2, (3.5)
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where P̄𝑖 represents the sample mean and is defined as P̄𝑖 = 1
𝑆

∑𝑆
𝑠=1(P𝑖𝑠 ). The parameter 𝑆

denotes the number of prediction samples. When 𝑆 is set to 2, the sample mean P̄𝑖 reduces to

P𝑖1+P𝑖2
2

, resulting in the variance estimation taking the form of:

𝑣𝑎𝑟 (P𝑖) = (P𝑖1 −
P𝑖1 + P𝑖2

2
)2 + (P𝑖2 −

P𝑖1 + P𝑖2

2
)2,

= (
P𝑖1 − P𝑖2

2
)2 + (

P𝑖2 − P𝑖1

2
)2,

𝑣𝑎𝑟 (P𝑖) =
1

2
(P𝑖1 − P𝑖2)2.

(3.6)

The above equation is equivalent to our uncertainty formulation in Eq. 3.4, where two samples

are drawn from the output of the teacher model and the DAE model.

The resulting uncertainty maps from Eq. 3.4 are subsequently used to obtain the reliable target

regions as follows: 𝑒−𝛾U𝑖 , similarly to (Luo et al., 2022), where 𝛾 is an uncertainty weighting

factor empirically set to 1. The reliable targets are finally combined in a consistency loss as:

L𝑐 (P𝑖
𝑆,P

𝑖
𝑇 ) =

∑
𝑣 𝑒

−𝛾U𝑖 | |P𝑖
𝑆 − P𝑖

𝑇 | |
2

∑
𝑣 𝑒

−𝛾U𝑖 , (3.7)

where 𝑣 is a voxel. Note that the consistency loss L𝑐 will be equivalent to a standard mean

teacher method (Tarvainen & Valpola, 2017) when 𝛾 = 0. Overall, we jointly optimize the

consistency loss L𝑐 and supervised loss L𝑠 as learning objectives, where L𝑠 is a combination

of cross-entropy and dice losses.

3.4 Experiments

3.4.1 Datasets

The performance of our method is validated on two publicly available benchmarks: (a) the left

atrium (LA) binary segmentation dataset from the 2018 atrial challenge (Xiong et al., 2021),
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and (b) the abdominal multi-organ segmentation dataset from the FLARE challenge (Ma et al.,

2022).

(a) LA dataset

It consists of 100 3D late gadolinium-enhanced magnetic resonance imaging (LGE-MRI)

scans and corresponding LA segmentation masks. These scans have an isotropic resolution of

0.625 𝑚𝑚3 and are center cropped at the heart region. The dataset is split into 80 for training

and the remaining 20 for testing as in the literature (Li et al., 2020a; Luo, Chen, Song & Wang,

2021; Wang et al., 2020; Yu et al., 2019).

(b) FLARE dataset

This dataset consists of 361 CT scans of the abdominal region and corresponding segmentation

masks of four organs, namely liver, kidney, spleen, and pancreas. These scans are collected

from multiple medical centers, having varying resolutions. Each image is first resampled to

a uniform resolution of 2 × 2 × 2.5 𝑚𝑚3 and then normalized by clipping the intensity values

outside [0.5, 0.95] percentile range. For all our experiments, we use a fixed dataset split of 260

for training, 26 for validation, and the remaining 75 for testing.

3.4.2 Implementation and Training details

To validate our proposed method, we employ a V-Net (Milletari et al., 2016) as a backbone

architecture for the segmentation networks, as followed in earlier work (Luo et al., 2021; Wang

et al., 2020; Yu et al., 2019). Our anatomically-aware representation prior module (i.e., a DAE)

follows a similar architecture as V-Net but without skip connections. Such design effectively

makes it an autoencoder-style architecture, which is also comparable to prior work (Larrazabal

et al., 2020; Oktay et al., 2017). To encode the segmentation mask in a latent space, a dense

layer of 𝑑-dimension is added at the bottleneck layer of the DAE module as shown in Fig. 3.2.
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For training, the student model uses a SGD optimizer with an initial learning rate (𝑙𝑟) of 0.1 and

a momentum of 0.9 with a cosine annealing decaying (Loshchilov & Hutter, 2017). The teacher

weights (in Eq. 3.3) are updated by an EMA with a rate of 𝛼 = 0.99 (Tarvainen & Valpola, 2017).

The DAE model is also trained using a SGD optimizer with an initial 𝑙𝑟 = 0.1, a momentum of

0.9, and decaying the 𝑙𝑟 by a factor of 2 every 5000 iterations. Following the literature (Luo et al.,

2022; Yu et al., 2019), the consistency weight 𝛽 and ramp-up factor 𝑟 in Eq. 3.2 are set to 0.1

and 5, respectively. Inputs to both segmentation and DAE networks are randomly cropped to a

size of 112× 112× 80 and 144× 144× 96 for LA and FLARE datasets, respectively. We employ

online standard data augmentation techniques such as random flipping and rotation. In addition,

input labels to the DAE are corrupted with a random swapping of pixels around class boundaries,

morphological operations (erosion and dilation), resizing, and adding/removing basic shapes

(Van der Walt et al., 2014). The latent space of the DAE is injected with a small noise drawn

from a Gaussian distribution to explore different sets of plausible segmentation during training of

the segmentation network. The training set is partitioned into 𝑁𝑙 labeled and 𝑁𝑢 unlabeled splits,

which are fixed across all experiments. The batch size is set to 4 in both networks. Input batch for

the segmentation network uses two labeled and unlabeled data. During the inference phase, the

segmentation predictions are generated using the sliding window strategy. For the cardiac dataset

(LA), following the literature (Li et al., 2020a; Luo et al., 2021; Yu et al., 2019), the final model

is evaluated at the last training iteration (i.e., 6000), whereas the best validation model is selected

in the case of the abdominal dataset (FLARE). All our experiments were run on an NVIDIA

RTX A6000 GPU with PyTorch 1.8.0. The implementation of our work is available at: https://

github.com/adigasu/Anatomically-aware_Uncertainty_for_Semi-supervised_Segmentation.

3.4.3 Evaluation

We employ common Dice Score Coefficient (DSC) and 95% Hausdorff Distance (HD) evaluation

measures to assess quantitative segmentation performance. The DSC score evaluates the degree

of overlap between ground truth and prediction regions. In contrast, the HD score measures the
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distance between ground truth and predicted segmentation boundaries. For a fair comparison,

all experiments are run three times with a fixed set of seeds on the same machine, and their

average results are reported.

3.5 Results

3.5.1 Comparison with the state-of-the-art

We first compare our method with relevant semi-supervised segmentation approaches and report

the quantitative results in Tables 3.1 and 3.2. The upper and lower bound from the backbone

architecture V-Net (Milletari et al., 2016) are reported at the top of each section. Furthermore,

non-uncertainty-based methods such as MT (Tarvainen & Valpola, 2017), DTC (Luo et al.,

2021), and SASSnet (Li et al., 2020a) and uncertainty-based methods UAMT (Yu et al., 2019),

DUMT (Wang et al., 2020), and URPC (Luo et al., 2022) are included in our evaluation.

(a) Left Atrium segmentation

Table 3.1 shows the segmentation performance on the Left Atrium (LA) test set under the standard

10% (top) and 20% (bottom) annotation settings. From the top half of the table, we observe that

leveraging unlabeled data improves the lower bound across all models. The uncertainty-based

approaches typically outperform their non-uncertainty counterparts in terms of DSC, but yield

inferior results in terms of HD. Among these methods, UAMT and DTC achieve the best

DSC and HD scores, respectively. Nevertheless, compared to these best-performing baselines,

our method brings improvements in both DSC (1.5%) and HD (0.8mm) scores. Moreover,

uncertainty estimation in our method requires a single inference from an anatomically-aware

representation, whereas UAMT uses 𝐾=8 inferences per training step to obtain an uncertainty

map. This highlights the efficiency of the proposed approach, which yields a better segmentation

performance yet requires substantially less computational time at each training step.
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Furthermore, we validate our method on the 20% annotation scenario, whose results are reported

in bottom half of Table 3.1. We observe a similar trend in these results, with uncertainty-based

approaches outperforming non-uncertainty-based methods in DSC, whereas their performance

in terms of HD is degraded. An interesting observation is that existing methods are ranked

differently across the two annotation settings, indicating that they might be sensitive to the

annotation scenario. For example, while UAMT achieves the best DSC score under the 10%

annotation setting, URPC yields the best results in the 20% annotation case. Similarly, the best

models are different for HD metric, i.e., DTC under the 10% setting and SASSNet in the 20%

setting. In contrast, our method consistently outperforms each existing approach in both DSC

and HD scores, highlighting its robustness against the amount of labeled data.

Table 3.1 Segmentation results on the LA test set for the 10% and 20% annotation

settings. Uncertainty-based methods with 𝐾 inferences per training step are grouped at the

bottom of each section, while 𝐾 = - indicates non-uncertainty-based methods. Ours

achieves the best DSC and HD scores in both annotation scenarios. The best and

second-best results are highlighted in bold and underlined, whereas the statistical

significance between the top two results is denoted in ∗

𝑁𝑙/𝑁𝑢 Methods #𝐾 DSC (%) ↑ HD (mm) ↓
80/0 Upper bound - 91.23 ± 0.44 6.08 ± 1.84

8/0 Lower bound - 76.07 ± 5.02 28.75 ± 0.72

MT (Tarvainen & Valpola, 2017) - 78.22 ± 6.89 16.74 ± 4.80

SASSnet (Li et al., 2020a) - 83.70 ± 1.48 16.90 ± 1.35

DTC (Luo et al., 2021) - 83.10 ± 0.26 12.62 ± 1.44

UAMT (Yu et al., 2019) 8 85.09 ± 1.42 18.34 ± 2.80

DUMT (Wang et al., 2020) 16 82.97 ± 1.76 14.43 ± 0.67

URPC (Luo et al., 2022) 1 84.47 ± 0.31 17.11 ± 0.60

8/72

(10%)

Ours 1 86.58 ± 1.03∗ 11.82 ± 1.42
16/0 Lower bound - 81.46 ± 2.96 23.61 ± 4.94

MT (Tarvainen & Valpola, 2017) - 86.06 ± 0.81 11.63 ± 3.40

SASSnet (Li et al., 2020a) - 87.81 ± 1.45 10.18 ± 0.55

DTC (Luo et al., 2021) - 87.35 ± 1.26 10.25 ± 2.49

UAMT (Yu et al., 2019) 8 87.78 ± 1.03 11.10 ± 1.91

DUMT (Wang et al., 2020) 16 87.42 ± 0.97 10.78 ± 2.26

URPC (Luo et al., 2022) 1 88.58 ± 0.10 13.10 ± 0.60

16/64

(20%)

Ours 1 88.60 ± 0.82 7.61 ± 0.78∗
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Table 3.2 Segmentation results on the FLARE test set for the 10% and 20% annotation

settings. Uncertainty-based methods with 𝐾 inferences per training step are grouped at the

bottom of each section, while 𝐾 = - indicates non-uncertainty-based methods. Our method

produces the best results on average. The best and second-best results are highlighted in

bold and underlined, whereas ∗ denotes statistical significance between the top two results

𝑁𝑙 /𝑁𝑢 Methods #𝐾 Average Liver Kidney Spleen Pancreas
260/0 Upper bound - 85.80 ± 1.42 94.95 ± 0.30 93.20 ± 0.81 89.65 ± 2.91 65.38 ± 2.57

26/0 Lower bound - 70.09 ± 2.77 88.37 ± 2.31 81.12 ± 2.49 70.74 ± 4.41 40.14 ± 3.84

MT (Tarvainen & Valpola, 2017) - 70.76 ± 2.79 88.77 ± 3.11 83.34 ± 1.22 72.91 ± 4.35 38.01 ± 2.62

SASSnet (Li et al., 2020a) - 61.43 ± 14.3 86.94 ± 2.88 63.59 ± 43.0 59.83 ± 18.6 35.36 ± 5.05

DTC (Luo et al., 2021) - 68.07 ± 1.42 87.99 ± 1.79 83.11 ± 3.93 66.04 ± 3.40 35.15 ± 1.26

UAMT (Yu et al., 2019) 8 73.63 ± 0.65 91.65 ± 0.49 84.70 ± 2.39 76.16 ± 2.58 42.01 ± 2.24

DUMT (Wang et al., 2020) 16 69.04 ± 1.39 87.28 ± 0.82 80.47 ± 3.88 68.23 ± 6.79 40.18 ± 2.59

URPC (Luo et al., 2022) 1 73.31 ± 1.11 91.09 ± 0.62 85.88 ± 1.82 75.40 ± 2.64 40.89 ± 4.05

DS
C

(%
)↑

26/234

(10%)

Ours 1 75.28 ± 1.54∗ 90.78 ± 1.26 87.09 ± 1.89 78.13 ± 1.23 45.12 ± 2.20∗

260/0 Upper bound - 6.37 ± 1.15 5.50 ± 2.86 3.31 ± 1.10 7.49 ± 1.94 9.17 ± 0.66

26/0 Lower bound - 18.51 ± 4.01 15.26 ± 0.90 9.89 ± 2.13 30.51 ± 11.9 18.40 ± 3.53

MT (Tarvainen & Valpola, 2017) - 18.58 ± 1.66 12.09 ± 3.72 8.70 ± 0.85 35.89 ± 7.47 17.64 ± 1.53

SASSnet (Li et al., 2020a) - 27.76 ± 8.51 24.59 ± 23.0 15.1 ± 11.1 51.86 ± 21.3 19.53 ± 0.89

DTC (Luo et al., 2021) - 23.11 ± 6.01 21.63 ± 16.7 18.8 ± 11.3 32.64 ± 16.8 19.31 ± 2.07

UAMT (Yu et al., 2019) 8 14.30 ± 1.94 10.44 ± 1.45 8.08 ± 1.41 20.44 ± 6.18 18.24 ± 3.04

DUMT (Wang et al., 2020) 16 22.35 ± 3.82 13.23 ± 2.28 19.21 ± 13.9 36.17 ± 15.5 20.77 ± 3.58

URPC (Luo et al., 2022) 1 14.23 ± 1.97 11.71 ± 2.37 7.41 ± 1.16 20.82 ± 5.02 16.96 ± 3.00

H
D

(m
m

)↓

26/234

(10%)

Ours 1 13.69 ± 0.68 10.85 ± 1.69 9.48 ± 2.10 18.45 ± 4.17 15.98 ± 1.33
52/0 Lower bound - 70.15 ± 1.58 88.40 ± 1.24 81.91 ± 2.07 68.40 ± 5.68 41.88 ± 7.44

MT (Tarvainen & Valpola, 2017) - 72.10 ± 1.84 89.82 ± 2.30 85.15 ± 1.66 71.87 ± 4.28 41.55 ± 2.99

SASSnet (Li et al., 2020a) - 69.74 ± 4.43 88.41 ± 1.10 86.19 ± 3.13 64.11 ± 12.1 40.25 ± 3.07

DTC (Luo et al., 2021) - 68.49 ± 1.30 89.61 ± 0.71 83.31 ± 4.39 62.76 ± 5.64 38.29 ± 3.38

UAMT (Yu et al., 2019) 8 74.72 ± 1.15 89.54 ± 3.10 87.92 ± 1.52 73.07 ± 3.91 48.34 ± 1.41
DUMT (Wang et al., 2020) 16 72.08 ± 2.77 90.11 ± 1.66 85.43 ± 4.82 71.83 ± 0.92 40.94 ± 4.17

URPC (Luo et al., 2022) 1 74.26 ± 1.02 91.02 ± 0.54 87.91 ± 2.47 72.06 ± 1.82 46.03 ± 0.40

DS
C

(%
)↑

52/208

(20%)

Ours 1 76.69 ± 0.81∗ 91.84 ± 1.00∗ 88.72 ± 0.74 78.07 ± 0.69∗ 48.14 ± 1.73

52/0 Lower bound - 15.63 ± 0.33 15.18 ± 4.46 11.93 ± 4.64 20.50 ± 2.56 14.91 ± 2.78
MT (Tarvainen & Valpola, 2017) - 16.39 ± 3.34 11.04 ± 0.58 10.89 ± 0.91 25.70 ± 9.08 17.94 ± 4.50

SASSnet (Li et al., 2020a) - 23.84 ± 0.79 34.01 ± 14.3 11.89 ± 8.66 32.28 ± 1.53 17.16 ± 1.69

DTC (Luo et al., 2021) - 22.46 ± 2.12 25.23 ± 20.1 18.09 ± 8.14 29.05 ± 4.84 17.46 ± 1.02

UAMT (Yu et al., 2019) 8 14.50 ± 2.46 16.60 ± 4.11 7.83 ± 0.76 17.91 ± 8.34 15.66 ± 0.76

DUMT (Wang et al., 2020) 16 15.53 ± 2.75 11.74 ± 2.27 8.64 ± 0.95 25.43 ± 8.42 16.31 ± 0.89

URPC (Luo et al., 2022) 1 14.16 ± 0.68 11.16 ± 2.09 8.47 ± 2.79 20.66 ± 0.80 16.33 ± 1.70

H
D

(m
m

)↓

52/208

(20%)

Ours 1 13.11 ± 0.45 11.32 ± 2.29 7.79 ± 2.69 17.38 ± 4.19 15.94 ± 0.28

(b) Abdominal multi-organ segmentations

Table 3.2 presents the performance of the abdominal multi-organ segmentations on the FLARE

test set. The results of 10% and 20% annotation experiments are grouped in the top and bottom

half of the table, respectively. We report individual organs as well as average results. From the

top half of the table, we first notice that the performance of most existing methods is improved

when compared to the lower bound in both DSC and HD scores, except SASSNet, DTC, and

DUMT. The gap in the segmentation performance of SASSNet and DTC is due to the use of
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signed distance maps (SDM), which are designed for binary segmentation. Adopting these

methods for multi-class segmentation is challenging since it requires careful hyperparameter

tuning of per-class SDM predictions, which is beyond the scope of this work. Note that DUMT

did not outperform the simple baseline under a multi-class setting, which is consistent with the

observations in (Van Waerebeke et al., 2022). Among the existing methods, the uncertainty-based

methods (UAMT and URPC) perform well in both segmentation measures. These methods

improve the segmentation of liver and spleen regions, achieving the best average DSC and HD

scores in UAMT and URPC, respectively. Compared to these best-performing baselines, our

method predominantly improves the segmentation of challenging regions, notably the pancreas

organ. Overall, our anatomically-aware method consistently performs well in all regions and

improves average DSC (1.65%) and HD (0.6mm) scores.

The results of the 20% annotation scenario are reported in the bottom half of Table 3.2. We notice

a similar trend in the results when compared to the 10% annotation setting. All existing methods,

except SASSNet and DTC, improve the segmentation performance over the lower bound in

both DSC and HD scores. Our method outperforms the best-performing baselines (UAMT and

URPC) in most cases and improves the average DSC (1.95%) and average HD (1mm) scores.

These results show that our method consistently outperforms the existing approaches across

different datasets and labeling scenarios. We can, therefore, argue that including our novel

anatomically-aware module is a valuable alternative to existing semi-supervised segmentation

approaches.

3.5.2 Qualitative Analysis

Visual results of the left atrium (LA) segmentation obtained by different methods are depicted in

Fig. 3.3. In the top row (10% annotation setting), the existing approaches produce segmentation

output with holes (SASSnet, UAMT) and noisy boundaries (SASSnet, DTC, UAMT, DUMT).

In contrast, URPC and our methods produce smoother segmentations, but URPC generates
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Figure 3.3 Qualitative comparison under the 10% and 20% annotation settings on LA

dataset. DSC (%) and HD (mm) scores are mentioned at the top of each image. Each image

is overlaid with a contour of segmentation prediction or ground truth (red)

Figure 3.4 Qualitative comparison under the 10% and 20% annotation settings on FLARE

dataset. Average DSC (%) and average HD (mm) scores are mentioned at the top of each

image. The colorings are liver (blue), kidney (green), spleen (red), and pancreas (yellow)

under-segmented output compared to our method. Note that a post-processing tool is commonly

employed in SASSNet to improve the segmentation performance. However, this is avoided in

our experiments for a fair comparison. In the 20% annotation setting (bottom row), with access

to more labeled data, all methods reduce segmentation errors. Even in this case, our method

produces promising and smoother segmentations when compared to existing approaches.

To highlight the deficiencies of these approaches in multi-class segmentation, we now show

qualitative results on abdominal organs in Fig. 3.4. In the 10% annotation setting (top row), we

first observe that misclassification between different organs is a common problem across existing

approaches, notably in SASSnet, DTC, UAMT, and DUMT. For instance, part of the liver is
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segmented as a spleen in SASSnet and DUMT, whereas the parts of the spleen are misclassified

as kidneys in DTC and as pancreas in UAMT. This misclassification could be due to either similar

intensity characteristics across different organs (Durieux, Gevenois, Muylem, Howarth & Keyzer,

2018) or the inefficiency of networks in discriminating multi-class distributions (Van Waerebeke

et al., 2022). Furthermore, most methods (SASSnet, DTC, UAMT, URPC) have failed to capture

the challenging pancreas region. In contrast, our method provides an improved segmentation in

this challenging region and minimizes classification errors. In the bottom row of Fig. 3.4, adding

more labeled images to the training (20% annotation setting) also reduces classification errors

(UAMT, URPC). Our method similarly improves the segmentation performance in all observed

regions. The quantitative results from the previous section further support the superiority of our

approach. Overall, we argue that the observed improvements in both datasets could be attributed

to the knowledge derived from the anatomically-aware representation.

3.5.3 Choice of Latent Space in DAE

Our anatomically-aware prior (DAE) plays a vital role in guiding the segmentation model.

Therefore, we investigate the impact of the design choices made in the DAE on the final

segmentation performance. The latent space (LS) of our DAE is first studied under varying sizes

(𝑑) across two datasets in Fig. 3.5. The results show that the segmentation performance varies

with LS sizes. The best results are achieved for 𝑑=128 in binary left atrium segmentations and

𝑑=512 in abdominal multi-organ segmentations. It indicates that the choice of the latent space

size, 𝑑, depends on the complexity of the dataset.

Furthermore, the LS of the DAE is perturbed with an addition of a Gaussian noise. This

facilitates a different set of reconstructions from the DAE when training the segmentation model.

The different reconstructions aid in better guiding the segmentation model. To validate this

notion, we conduct experiments with and without adding a noise in the LS across both datasets in

Fig.3.6. The results demonstrate that the final segmentation performance improves up to 1.79%
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Figure 3.5 Segmentation performance with different latent space sizes of DAE. Each

bar indicates the DSC (top) and HD (bottom) scores under the 10% annotation setting.

The best results are obtained for the latent space size 𝑑=128 in binary LA segmentations

(a), whereas 𝑑=512 is needed for abdominal multi-organ segmentations (b)

Figure 3.6 Impact of noise in the latent space of DAE on

segmentation performance. Each bar indicates the DSC (top) and

HD (bottom) scores under the 10% annotation setting. The addition

of a noise (orange) in latent space improves DSC and HD scores
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Table 3.3 Effectiveness of our proposed uncertainty estimation on segmentation results

using different strategies. 𝑁𝑙 and 𝑁𝑢 indicate the number of labeled and unlabeled data

LA Dataset FLARE Dataset
𝑁𝑙/𝑁𝑢 Methods DSC (%) ↑ HD (mm) ↓ DSC (%) ↑ HD (mm) ↓

UAMT (Yu et al., 2019) 85.09 ± 1.42 18.34 ± 2.80 73.63 ± 0.65 14.30 ± 1.94

Ours (Threshold) 85.39 ± 0.91 12.96 ± 3.05 74.25 ± 1.76 14.47 ± 1.63

Ours (Entropy) 85.92 ± 1.52 11.16 ± 0.82 74.01 ± 0.62 15.03 ± 2.00

8/72

(10%)

Ours 86.58 ± 1.03 11.82 ± 1.42 75.28 ± 1.54 13.69 ± 0.68
UAMT (Yu et al., 2019) 87.78 ± 1.03 11.10 ± 1.91 74.72 ± 1.15 14.50 ± 2.46

Ours (Threshold) 88.12 ± 1.16 8.44 ± 1.96 74.80 ± 0.80 14.09 ± 1.83

Ours (Entropy) 87.76 ± 0.36 8.90 ± 0.48 74.57 ± 0.53 15.38 ± 2.57

16/64

(20%)

Ours 88.60 ± 0.82 7.61 ± 0.78 76.69 ± 0.81 13.11 ± 0.45

in DSC and 1.69mm in HD by adding a noise in the LS of the DAE module. These analyses

show the impact of our design choices in the anatomically-aware prior on the segmentation

performance.

3.5.4 Ablation Study on uncertainty

To validate the effectiveness of our uncertainty estimation on the segmentation performance, we

conducted two experiments by adopting a threshold strategy and a predictive entropy scheme

used in UAMT. Specifically, a threshold strategy filters out the most unreliable region from

the uncertainty map (U𝑖), defined as 𝐻 > U𝑖 with a threshold, 𝐻, set with a ramp-up function,

as in UAMT (Yu et al., 2019). In the entropy experiments, we estimate the uncertainty (U𝑖)

using the entropy of the DAE prediction (P̂𝑖
𝑇 ) and then combining it in a consistency loss as in

Eq 3.7. The results of these ablation experiments on the LA and FLARE datasets under the

10% and 20% annotation settings are reported in Table 3.3. Compared to UAMT, our threshold

and entropy experiments improve the segmentation performance in both DSC and HD scores

in most cases. At the same time, our proposed uncertainty method (Sec. 3.3.3.2) achieves the

best performance in all the settings. These results show the merit of our anatomically-aware

uncertainty estimation for guiding the segmentation model.
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3.5.5 Impact of 𝛾 and 𝛽 hyperparameters

The sensitivity of the uncertainty weight 𝛾 (in Eq.3.7) and the consistency weight 𝛽 on the

segmentation performance is shown in Fig. 3.7. In particular, we evaluate the segmentation

performance using DSC and HD scores by varying the 𝛾 and 𝛽 values across the LA and

FLARE datasets. In Fig. 3.7(a)-(b), increasing the gamma value leads to an improvement in the

segmentation performance in both DSC and HD scores across both datasets. The best results are

usually observed for 𝛾 = 1. Beyond that, performance generally decreases, possibly due to an

exponential decrease in the weight (Eq.3.7) of the reliable target regions.

Figure 3.7(c)-(d) shows the segmentation performance for varying the 𝛽 values. The results

show that increasing the beta value improves the segmentation performance. The best result

is achieved for 𝛽=0.1 except in the LA dataset (in Fig. 3.7(c)), where 𝛽=1 produces the best

scores. Nevertheless, we chose to set 𝛽=0.1 across all our experimental scenarios, as this value

is widely adopted in the literature on consistency-based approaches (Tarvainen & Valpola, 2017;

Wang et al., 2021) and for a fair comparison with our baselines (Luo et al., 2022; Wang et al.,

2020; Yu et al., 2019).

Figure 3.7 Sensitivity of the consistency weight 𝛽 (a, b) and the uncertainty weight 𝛾 (c,

d). Each point in a line indicates the DSC (top) and HD (bottom) scores on LA and FLARE

datasets under 10% (blue) and 20% (red) annotation settings
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3.5.6 Training time

To evaluate the speed of our uncertainty estimation, we compare the computation time required

for each training iteration by the proposed and the baseline methods in Table 3.4. From the

table, we observe that the non-uncertainty-based methods (SASSnet, DTC) are slower when

compared to uncertainty-based methods across both datasets, LA and FLARE. The relative slow

speed of SASSnet and DTC is attributed to the additional computational overhead required for

predicting the signed distance maps (SASSnet, DTC) and the inclusion of a discriminator module

(SASSnet). On the other hand, ours and the URPC method are faster than the MCDO-based

methods (UAMT and DUMT) due to the need of only one inference when estimating the

uncertainty (#𝐾=1). Overall, our approach adds a minimal overhead on top of the mean teacher

(MT) approach for estimating uncertainty while producing superior segmentation results on both

datasets.

Table 3.4 Comparison of average training times in seconds per iteration.

Our method adds a minimal overhead on top of the mean teacher (MT)

approach for uncertainty estimation

Methods #𝐾 LA FLARE
MT (Tarvainen & Valpola, 2017) - 0.612 1.108

SASSnet (Li et al., 2020a) - 1.442 5.856

DTC (Luo et al., 2021) - 0.989 4.874

UAMT (Yu et al., 2019) 8 1.207 2.429

DUMT (Wang et al., 2020) 16 3.804 7.678

URPC (Luo et al., 2022) 1 0.779 1.504

Ours 1 0.745 1.266

3.5.7 Uncertainty Analysis

The predicted segmentation and uncertainty map from different uncertainty-based methods are

shown in Fig. 3.8. The top row shows the 10% annotation setting, where uncertainties are all over

the predicted regions for UAMT. These uncertainties inside the prediction regions are reduced

in DUMT, possibly due to more inferences and the addition of feature uncertainty. However, the
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uncertainties are highly focused on the prediction boundaries. The uncertainty is produced at

arbitrary regions in URPC due to their multi-scale discrepancy-based uncertainty estimation.

Our method produces uncertainty in challenging regions, such as unclear anatomical boundaries

or annotator cuts (as in pulmonary veins), which are estimated using anatomically-aware

representation. In the below row of Fig. 3.8, increasing labeled samples (i.e., 20% setting)

improves the predictions and uncertainty in most cases. Nevertheless, uncertainties are all

over the boundaries, or arbitrary regions remain in the existing methods. Our method further

improves the uncertainties due to the improvement of anatomically-aware representation using

more access to labels. Moreover, our method requires a single inference when compared to

entropy-based methods.

Figure 3.8 Uncertainty analysis on the left atrium dataset. Prediction and uncertainty map

(overlaid on its image) are shown for each uncertainty-based method. The number of

inferences for generating the uncertainty map is denoted as 𝐾

3.6 Discussion and Conclusion

This work proposes a novel anatomically-aware uncertainty estimation method for semi-

supervised image segmentation. Our approach consists of leveraging an anatomically-aware

representation of labeling masks to estimate the segmentation uncertainty. The obtained

uncertainty maps guide the training of the segmentation model within reliable regions of

the predicted masks. Our experimental results demonstrate that the proposed method yields

improved segmentation results when compared to state-of-the-art baselines on two publicly

available benchmarks using left atria and abdominal organs. The qualitative results also show

how our anatomically-aware approach improves segmentation in challenging image areas. The
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ablation studies demonstrate the effectiveness and robustness of our uncertainty estimation when

compared to entropy-based methods. Adding noise in the latent space of our representation

helps to map the predictions into a better set of plausible segmentations, which improves the

segmentation accuracy. Unlike most uncertainty-based approaches, our anatomically-aware

uncertainty requires a single inference, thereby reducing computational complexity. Moreover,

as our anatomically-aware representation is independent of any image information, it can

be further enhanced with existing segmentation masks from different datasets or imaging

modalities (Karani et al., 2021), potentially further improving the modeling capacity of our

representation. The learning representation with an additional constraint can also be explored

separately as a post-processing tool that maps the erroneous prediction into anatomically-

plausible segmentation (Larrazabal et al., 2020; Painchaud et al., 2020). Additionally, our

anatomically-aware representation prior could also benefit from the image intensity information

to learn a joint representation (Judge et al., 2022; Oktay et al., 2017) for uncertainty estimation in

a limited supervision problem. Overall, our proposed approach could be leveraged to a broader

range of applications where uncertainties could be related to anatomical information.
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Presentation

This chapter presents the article “Attention-based Dynamic Subspace Learners for Medical Im-

age Analysis” (Adiga Vasudeva, Dolz & Lombaert, 2022a) submitted to the IEEE JBHI (Journal

of Biomedical And Health Informatics), sent on 11 April 2021, revised 13 October 2021 and

21 January 2022, and accepted for publication on 10 June 2022. The journal article was also

presented as a short paper (Adiga Vasudeva, Dolz & Lombaert, 2022c) at the conference MIDL

(Medical Imaging with Deep Learning) in Zurich, Switzerland. The objective of this article is

to develop attention-based dynamic representation learners for various medical image analysis

applications, including segmentation, clustering, and retrieval tasks.

4.1 Introduction

Learning the similarity between arbitrary images is a fundamental problem in many key areas of

computer vision, such as image retrieval (He, Zhou, Zhou, Bai & Bai, 2018; Movshovitz, Toshev,

Leung, Ioffe & Singh, 2017; Sohn, 2016), recommender system (Ma, Zhou, Cui, Yang & Zhu,

2019), duplicate detection (Zheng, Song, Leung & Goodfellow, 2016), clustering (Ziko et al.,

2018), or zero-shot learning (Zhang & Saligrama, 2016). In this context, metric learning is

commonly used for measuring similarities by learning a distance function over objects (Kulis
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et al., 2012; Weinberger, Blitzer & Saul, 2006). Recently, deep metric learning (DML) has

been raised as a powerful approach to learn these similarities (Kaya & Bilge, 2019). More

specifically, the goal of DML is to learn an embedding space where images from the same

classes are encouraged to be close to one another. In contrast, images belonging to different

classes are pushed away in the embedding space. In recent DML approaches, the loss function

can be typically expressed in Euclidean distances or cosine similarities between pairs or tuples

of images in the embedding space. Well-known losses employed in DML include: contrastive

loss (Hadsell et al., 2006), triplet loss (Wang et al., 2014a), lifted structure loss (Oh Song,

Xiang, Jegelka & Savarese, 2016), N-pairs loss (Sohn, 2016), margin loss (Wu, Manmatha,

Smola & Krahenbuhl, 2017), angular loss (Wang, Zhou, Wen, Liu & Lin, 2017b), or ProxyNCA

loss (Movshovitz et al., 2017). In addition to novel learning objectives, recent efforts are also

devoted to designing efficient sample-mining (Wu et al., 2017), or sample weighting (Wang,

Han, Huang, Dong & Scott, 2019b) strategies.

Most of these methods use a single-metric learner to learn the embedding mapping function.

However, medical images have complex distributions consisting of different object attributes

such as color, shape, size, or artifacts. Thus, learning the complex similarity associated with

these different object attributes may be inadequate with only one single learner. A few attempts

have been made towards leveraging multiple metric learners to address this complexity (Kim,

Goyal, Chawla, Lee & Kwon, 2018; Lombaert, Zikic, Criminisi & Nicholas, 2014; Sanakoyeu,

Tschernezki, Buchler & Ommer, 2019). For example, Kim et al. (2018) ensemble multiple

learners, whereas a divide-and-conquer strategy is used in (Sanakoyeu et al., 2019) by splitting

the manifold into several embedding subspaces. One main limitation of these approaches is a

need to empirically find the optimal number of learners, which requires a new validation for

every new setting, including every use of a new dataset. Furthermore, the sizes of the embedding

subspaces associated with each learner might differ since learning the various sets of object

attributes requires varying degrees of modeling complexity.
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Despite the popularity of DML, surprisingly few works attempt to visually explain which regions

contribute to the similarity between images in embedding networks (Hu, Vasu & Hoogs, 2022).

These visualizations are of pivotal importance since they provide an efficient mechanism to

understand the predictions of the model. Recent efforts have been devoted to the interpretability

of deep neural networks, resulting in a variety of different approaches (Belharbi et al., 2021; Chen,

Chen, Ren, Huang & Zhang, 2019; Koh & Liang, 2017; Selvaraju et al., 2017; Zeiler & Fergus,

2014). Among these methods, GradCAM (Selvaraju et al., 2017) has been widely employed to

explain deep classification models. This method uses gradients to highlight the discriminative

regions of an image. Nevertheless, since the gradients are not available during testing, directly

applying this strategy in embedding networks is not feasible (Chen, Chen, Hajimirsadeghi & Mori,

2020a). Integrating interpretability in embedding networks requires either attaching an additional

classification branch (Zheng, Karanam, Wu & Radke, 2019b) or employing multiple images

simultaneously (Stylianou, Souvenir & Pless, 2019; Zhu, Yang & Chen, 2021). Needless to say,

interpretability is of particular interest in medical imaging, as visual explanations of predictions

directly impact the diagnosis, therapy planning, and follow-up of many diseases. Thus, existing

DML approaches may be inadequate to visually uncover what constitutes similarities among a

complex set of medical images.

Motivated by these gaps and the scarcity of the DML literature in medical imaging, we propose

a novel attention-based dynamic subspace learners approach. The underlying metric learning

method is inspired by the idea of a divide-and-conquer strategy. More specifically, we propose

to follow the approach of (Sanakoyeu et al., 2019) in order to capture different object attributes,

each of them processed with an independent subspace learner. These subspace learners having

variable sizes are learned dynamically as and when the network accuracy is plateauing during

training. Thereby avoids the need to find apriori the number of subspace learners while retaining

the state-of-the-art performance. Furthermore, the visual interpretation of the embedding is

addressed by integrating an attention module after feature extraction layers, encouraging the

learners to focus on the discriminative areas of target objects. Consequently, the learning process
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provides a visual insight of which image region considerably contributes to the clustering of

image sets in the form of pixel-wise interpretable predictions.

4.1.1 Our Contribution

We contribute a novel approach to the state-of-the-art method in deep metric learning and

illustrate its application in medical image analysis. More precisely, we propose a training strategy

that (i) explores the dynamic learning of an embedding, (ii) overcomes the empirical search of an

optimal number of subspaces in approaches based on multiple metric learners, and (iii) produces

compact subspaces of variable size to attend different object attributes. Furthermore, the

integration of an attention module in our dynamic learner approach focuses the attention of

each independent learner on the discriminative regions of an object of interest. This attention

mechanism provides the added benefit of visually interpreting relevant embedded features. The

evaluation of our proposed method is conducted by extensive experiments on three publicly

available benchmarks: ISIC19 (Codella et al., 2019; Combalia et al., 2019), MURA (Rajpurkar

et al., 2018), and HyperKvasir (Borgli et al., 2020). The performance is evaluated on clustering

and image retrieval tasks, showing that the proposed method achieves competitive results with

the state-of-the-art without requiring the grid searches over optimal numbers of learners. We

also demonstrate that the attention maps produced by our method can be used as proxy labels to

train deep segmentation models. In particular, we evaluate our approach on ISIC18 (Codella

et al., 2019; Tschandl, Rosendahl & Kittler, 2018) in a weakly supervised segmentation task

and show improvements to the visual attention and class activation maps obtained from recent

state-of-the-art methods, including the method specifically designed for skin lesion detection

(Zhang, Xie, Xia & Shen, 2019).
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4.2 Related Work

4.2.1 Deep Metric Learning

Metric learning is a widely explored research field in the learning community (Bromley et al.,

1994; Weinberger et al., 2006). The seminal work of Siamese Networks (Bromley et al., 1994)

represents the first attempt to use neural networks for feature embedding. Its concept is to

employ two identical neural networks that learn a contrastive embedding from a pair of images.

With the advent of deep learning, deep metric learning (DML) has gained popularity, becoming

a mainstay in many modern computer vision problems, such as image retrieval (Opitz, Waltner,

Possegger & Bischof, 2017), person re-identification (Liao, Hu, Zhu & Li, 2015), or few-shot

learning (Snell, Swersky & Zemel, 2017). In DML, the images are mapped into a manifold

space via deep neural networks. Euclidean or cosine distances can then be directly used as a

metric distance between two images in this mapped space. Typical losses employed in DML

include contrastive (Hadsell et al., 2006) or triplet loss (Schroff et al., 2015). The contrastive

loss (Hadsell et al., 2006) encourages images from the same class to stay closer –in the learned

manifold– while pushing away samples from different classes, which should be separated by

a given fixed distance. Nevertheless, forcing the same distance for all pairs of images can

discourage any potential distortion in the embedded space. In contrast, this assumption is relaxed

in triplet loss (Hadsell et al., 2006), which only imposes that negative pairs of images should be

further away than positive pairs.

In the same direction as our work, (Kim et al., 2018) and (Sanakoyeu et al., 2019) have leveraged

the use of multiple learners to diversify the learning space towards different object attributes.

While Kim et al. (2018) proposes an ensemble of multiple learners driven by attention, a divide

and conquer strategy is employed in (Sanakoyeu et al., 2019), which promotes the discovery of

multiple subspaces. For example, Sanakoyeu et al. (2019) explicitly splits the embedded space

into a predefined number of learners with fixed-size subspaces. Then, each learner independently
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learns a part of an embedding space, i.e., a subspace, from a portion of clustered data, and

the final embedding is later refined by multiple learners. Even though this strategy leads to

improvements over its single-learner counterpart, a grid search is needed to find an optimal

number of learners with each new dataset. Furthermore, the size of the embedding space

is uniform across the learners, whereas some attributes, such as color, might require smaller

embeddings to encode the information than other attributes, such as shape.

4.2.2 Metric Learning in Medical Image Analysis

Despite the interest in other domains, metric learning, and more particularly DML, remains

almost unexplored in medical imaging. In the pre-deep learning era, related work includes (Yang

et al., 2008), which employed distance metric learning in a traditional boosting framework in

a medical image retrieval scenario. More recently, Yan et al. (2018) investigates the use of

DML to model the similarity relationship between lesions in the context of radiology images,

where a triplet loss is employed to learn the lesion embeddings. Gupta et al. (Gupta, Thapar,

Bhavsar & Sao, 2019) also resorts to the triplet loss to learn the underlying manifold space

for the task of Mitotic classification, whose embedded features are subsequently used as input

for a Support Vector Machine classifier. Recently, a combination of cross-entropy loss and a

contrastive loss or triplet loss has been used to classify whole slide images in digital pathology

(Pati et al., 2020; Teh & Taylor, 2019). In (Sikaroudi et al., 2020), a triplet loss is used to learn

a representation of source domain images, which is later used for target domain classification

under the few-shot learning paradigm. In (Teh & Taylor, 2020), DML is used to pre-train a

model in the application of digital pathology classification, where authors use a ProxyNCA loss

for learning transferable features. To enhance the embedding, (Yang et al., 2019; Zhong et al.,

2021) has integrated a multi-similarity loss to DML in the context of chest radiography and liver

histopathology images, respectively. Nevertheless, most of these methods are developed with

the goal of classification tasks and do not effectively leverage the geometrical information of the

underlying embedding space.
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4.2.3 Weakly Supervised Segmentation

Weakly supervised segmentation (WSS) has emerged as an alternative to alleviate the need for

large amounts of pixel-level labeled data. These labels can come in the form of image-level labels

(Papandreou et al., 2015), scribbles (Lin et al., 2016), points (Bearman et al., 2016), bounding

boxes (Rajchl et al., 2016) or direct losses (Kervadec et al., 2019). Among them, image-level

labels are easier and inexpensive to obtain (Bearman et al., 2016). Particularly, class activation

maps (CAM) (Zhou et al., 2016) have gained popularity in identifying saliency regions based

on image labels. It is achieved by associating feature maps of the last layers and weighting

their activation using a global average pooling (GAP) layer. However, generated saliency maps

are typically spread around the target object, only focusing on the most discriminant areas.

This limits its usability as pixel-level supervision for semantic segmentation. To enhance the

generated saliency regions, some alternatives based on back-propagation (GradCAM (Selvaraju

et al., 2017)) or super-pixels (SP-CAM (Kwak, Hong, Han et al., 2017)) have been proposed.

Nevertheless, these methods demand additional gradient computations (Selvaraju et al., 2017)

or supervisions (Kwak et al., 2017).

The literature on WSS in medical imaging with deep learning remains scarce. While few methods

resort to direct losses, hence requiring additional priors, such as the target size (Jia et al., 2017;

Kervadec et al., 2019), other approaches rely on stronger forms of supervision, for instance,

using bounding boxes (Rajchl et al., 2016) or scribbles (Can et al., 2018). Tackling WSS from a

perspective of image-level labels typically involves visual features, which has not been thoroughly

investigated (Dubost et al., 2020; Feng et al., 2017; Meng et al., 2019; Nguyen et al., 2019).

For example, Nguyen et al. (2019) has proposed a CAM-based approach for the segmentation

of uveal melanoma. In their method, the CAMs generated by the classification network are

further refined using an active shape model and conditional random fields (Krähenbühl & Koltun,

2011). More recently, CAMs derived from image-level labels have been combined with attention

scores to refine lesion segmentation in brain images (Wu et al., 2019). By doing so, they
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have demonstrated a performance improvement compared to the vanilla version of CAMs.

Nevertheless, these methods typically integrate CAM or GradCAM with complex models to

enhance the performance of a final segmentation.

4.3 Methodology

4.3.1 Overview

An overview of the proposed approach is depicted in Fig. 4.1. The main idea is to split the

embedding space into multiple subspaces (𝐾) such that the original embedding space can be

learned by refining its subspaces. Contrary to (Sanakoyeu et al., 2019), the embedding space

is split dynamically, which removes the need to search for the optimal number of learners 𝐾

in each scenario. The whole process is divided into two iterative steps. First, input images

are mapped into the lower dimension embedding space using the entire embedding layer e

of 𝑑-dimension, where they are clustered into different groups. Second, the clustered data is

consequently assigned to an individual subspace learner, where their corresponding images

are used to train each subspace. These two steps are repeated at regular intervals, as well as

each time a new learner is added. The key idea is that each subspace learner learns a part

of the embedding space from a subgroup of images instead of learning a whole embedded

representation vector. Finally, all subspaces are combined to generate a full embedding space.

Furthermore, an attention module is integrated into the learning process to guide the learning

of distance metrics. The following sections describe the deep metric learning formulation and

present the proposed dynamic subspace metric learning and attention module.

4.3.2 Deep Metric learning Formulation

Let the training dataset be defined as D = {(X𝑖 ,Y𝑖)}
𝑁𝑙
𝑖=1

, where i-th image is denoted as X𝑖 ∈ RΩ

with spatial domain Ω, and Y𝑖 ∈ {1, 2, ..., 𝐶} is its corresponding class label. 𝐶 defines the

total number of classes. The goal of deep metric learning is to learn an embedding function
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Figure 4.1 Overview of our proposed attention-based dynamic subspace learners. The

embedding space is dynamically divided into multiple subspaces (𝐾) of varying sizes during

training. Step 1: the dataset is first split into 𝐾 groups (e.g., 3 groups for epoch 94) using

full embedding space (e) and assigns each data subgroup to an individual subspace learner.

Step 2: each learner then only attends the data from its subgroup in the learning stage

𝑓𝜃 (·) : RΩ → R𝑑 , which discriminatively maps semantically similar images (same class) in the

input space RΩ onto metrically close points in the learned manifold R𝑑 . Similarly, semantically

dissimilar images (different class) in RΩ should be mapped metrically far in R𝑑 . The parameters

𝜃 of the mapping function are learned by a convolutional neural network. Formally, the distance

metric 𝑑 (X𝑖 ,X 𝑗 ) : R𝑑 ×R𝑑 → R, between two images in the embedding space R𝑑 can be defined

as:

𝑑 (X𝑖 ,X 𝑗 ) = | | 𝑓𝜃 (X𝑖) − 𝑓𝜃 (X 𝑗 ) | |, (4.1)

where | | · | | denotes the Euclidean norm. This distance can be minimized in different ways,

depending on the loss function employed. In this work, we resort to the Margin loss (Wu et al.,

2017):

L𝑚𝑎𝑟𝑔𝑖𝑛 =
∑

(X𝑖 ,X 𝑗 )∼𝐵

[𝛼 + 𝜇𝑖 𝑗 (𝑑 (X𝑖 ,X 𝑗 ) − 𝛽)]+, (4.2)
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where 𝛽 is the boundary between the similar and dissimilar pairs, 𝛼 is a separation margin,

and 𝜇𝑖 𝑗 ∈ {−1, 1} indicates whether the images in the pair are similar (𝜇𝑖 𝑗 = 1) or different

(𝜇𝑖 𝑗 = −1). Note that any other metric learning loss function can be employed with our approach.

4.3.3 Dynamic Subspace Learners

The complexity of the original problem can be solved by dividing the problem into smaller

sub-problems, which are easier to solve. We follow the approach in (Sanakoyeu et al., 2019),

where an embedding space R𝑑 and dataset is split into multiple groups. Specifically, splitting of

the embedding space is conducted by slicing the R𝑑 space, i.e., the last dense layer of the network,

into 𝐾 sub-vectors of the same size, 𝑑/𝐾 . Furthermore, data is clustered into 𝐾 groups based on

their pairwise distance in the embedding space R𝑑 , for instance, using K-means. Then, a set

of 𝐾 independent learners is used to learn over each subspace by using a fraction of the input

data, thereby reducing the complexity of the original problem. Nevertheless, a major bottleneck

is finding an optimal number of subspaces 𝐾 to learn an effective embedding, which must be

found empirically for every new dataset. Moreover, the subspace is divided equally, which is

ineffective as not all the object attributes require the same size to encode the information.

Contrary to (Sanakoyeu et al., 2019), our proposed learning strategy finds an optimal embedding

by dynamically splitting the embedding space and associating it with a metric learner during

training. To construct each subspace, we group highly contributing neurons of the embedding

layer e, which is repeated until network convergence. Initially, the entire embedding space is

learned with all the data, with an initial single learner 𝐾 = 1. As the learning progresses, the

accuracy of the model starts to reach an initial plateau. At this stage, we compute the score of

each neuron (𝑒𝑖) in the embedding layer, similarly to the pruning strategy as in (Molchanov,

Tyree, Karras, Aila & Kautz, 2017). In particular, the low-scoring neurons are pruned such that

the performance drop of the model is minimal, i.e., |Δ 𝑓𝜃 (𝑒𝑖) | = | 𝑓𝜃 (D, 𝑒𝑖 = 0) − 𝑓𝜃 (D, 𝑒𝑖) |. By

using Taylor expansion, as in (Molchanov et al., 2017), the scoring of each neuron 𝑒𝑖 can be
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reduced to:

𝑠(𝑒𝑖) = |Δ 𝑓𝜃 (𝑒𝑖) | =

���� 𝑓𝜃 (D, 𝑒𝑖) −
𝜕 𝑓𝜃
𝜕𝑒𝑖

𝑒𝑖 − 𝑓𝜃 (D, 𝑒𝑖)

���� =
����𝜕 𝑓𝜃𝜕𝑒𝑖

𝑒𝑖

���� (4.3)

Thus, the scoring of neurons is simplified to multiplying the activation and the gradient output

in the embedding layer. This score 𝑠(𝑒𝑖) is computed for each training example separately,

and is consequently averaged across all training data and normalized to [0, 1]. The neurons

having high normalized scores are subsequently grouped to form a new subspace. Particularly,

the neurons having more than 50% of the confidence score, i.e., 𝑠(𝑒𝑖) > 0.5, are grouped as

a new subspace. The current metric learner (L𝑘) is later assigned to this group of neurons.

The remaining neurons of the embedding layer, 𝑒𝑟 , are eventually reset, similar to the pruning

technique (Molchanov et al., 2017) and assign a new metric learner as in Eq. 4.4. After adding

this new learner, the training data is clustered by mapping into the entire embedding space using

K-means with the updated 𝐾 (𝐾 = 2 for the second iteration). Note that the entire embedding

space here is a combination of all the subspaces. Each learner is eventually assigned a subgroup

of data from the clustering, resulting in each learner being trained with a fraction of the input

data. The addition of a new learner is repeated with the remaining neurons 𝑒𝑟 when the network

performance reaches a new plateau, until convergence. In the end, it results in 𝐾 mapping

functions, f = [ 𝑓 1, 𝑓 2, ..., 𝑓 𝐾], where each mapping function 𝑓 𝑘 will project the images RΩ into

the corresponding subspace of R𝑑𝑘 , each with a variable size.

All learners are trained jointly by resorting to the margin loss (Wu et al., 2017), which for each

learner can be defined as:

L
𝑓 𝑘𝜃𝑘
𝑘 (X𝑖 ,X 𝑗 ) =

∑
(X𝑖 ,X 𝑗 )∼𝐵

[𝛼 + 𝜇𝑖 𝑗 (𝑑 𝑓 𝑘𝜃𝑘
(X𝑖 ,X 𝑗 ) − 𝛽)]+, (4.4)

where (X𝑖 ,X 𝑗 ) ∼ 𝐵 is the current mini-batch (uniformly sampled from each data group) having

both positive and negative classes, and 𝑑 𝑓 𝑘𝜃𝑘
is the distance metric (similar to Eq.4.1) for the

𝑘-th learner. Once individual learners are trained, these are merged to compose the entire
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Algorithm 4.1 Dynamic Subspace Learner Pseudocode

Inputs :D, D𝑡𝑒𝑠𝑡 : Training and test data

𝜃 : backbone network parameters

e : Embedding space

𝑇𝑐, 𝑇𝑝 : clustering and network plateau threshold

Initialize :K ← 1, number of learners

𝐵 ← 0, Best epoch

ep ← 1, current epoch

𝑒𝑟 ← e, remaining embedding space

RC ← True, re-clustering flag

1 while Not converged do
2 if RC then ⊲ Re-cluster the data

3 e ← ConcatEmbedding({𝑒1, 𝑒2,...𝑒𝐾−1, 𝑒𝑟})

4 emb ← ComputeEmbedding(D, 𝜃, e)

5 {𝐶1, 𝐶2,...,𝐶𝐾} ← ClusterData(emb, K)

6 {𝑒1, 𝑒2,...𝑒𝐾−1, 𝑒𝑟} ← SplitEmbedding(e, K)

7 RC ← False

8 end
9 repeat ⊲ Train all learners

10 𝐶𝑘 ∼ {𝐶1, 𝐶2,...,𝐶𝐾}

11 b ← GetBatch(𝐶𝑘)
12 𝐿𝑘 ← FPass(b, 𝜃, 𝑓 𝑘)
13 𝜃, 𝑓 𝑘 ← BPass(𝐿𝑘 , 𝜃, 𝑓 𝑘)

14 until epoch completed
15 ep ← ep + 1

16 e ← ConcatEmbedding({𝑒1, 𝑒2,...𝑒𝐾−1, 𝑒𝑟})

17 RC ← (ep mod 𝑇𝑐 == 0)

18 if Evaluate(D𝑡𝑒𝑠𝑡 , 𝜃, e, ep) > B then ⊲ Is better than best

19 B ← ep

20 end
21 else if 𝑒𝑝 ≥ (𝐵 + 𝑇𝑝) then ⊲ Is network plateaued

22 K ← K + 1 ⊲ Update new learner

23 {𝑒𝐾−1, 𝑒𝑟} ← splitLearner({𝑒𝑟}) ⊲ using Eq.4.3

24 {𝑒1,..𝑒𝐾−1, 𝑒𝑟} ← SplitEmbedding(e, K, 𝑒𝐾−1)

25 reset(𝑒𝑟 )
26 RC ← True

27 end
28 end
29 e ← ConcatEmbedding({𝑒1, 𝑒2,...𝑒𝐾−1, 𝑒𝑟})

30 𝜃, e ← FineTune(D, 𝜃, e)

31 Output: 𝜃, e
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embedding space, which is refined with the entire training set. Furthermore, assuming that the

learned embedding space is improving over time, we re-cluster the images at every 𝑇𝑐 epoch by

mapping all the images using the entire embedding space e. An outline of the proposed method

is presented in Algorithm 4.1.

4.3.4 Attentive Dynamic Subspace Learners

Deep attention is raising as an efficient mechanism to focus the learning on the objects of interest

in a wide range of applications, such as person re-identification (Li, Zhu & Gong, 2018a), object

classification (Wang et al., 2017a), or medical image segmentation (Schlemper et al., 2019;

Sinha & Dolz, 2020). Inspired by these advances, we introduce an attention module to learn

attentive features, with the goal of enhancing the learning of the embedding space. For a given

input image X𝑖, feature extractor 𝑆(·) produces a set of feature maps S𝑖 = 𝑆(X𝑖) ∈ R𝑐×𝑚×𝑛,

where 𝑚, 𝑛 denote the spatial dimension of the feature map and 𝑐 the number of channels. The

attention map produced by the attention module 𝐴(·) can be then defined as A𝑖 = 𝐴(S𝑖) ∈ R𝑚×𝑛.

The generated attention map is multiplied with each feature map, A𝑖 
 S𝑖, where 
 is the

element-wise product, resulting in the set of attentive features. Last, the attentive features are

combined to produce a 𝑐−dimensional vector by using global average pooling (GAP), which is

mapped into the manifold space using a dense layer (Fig. 4.1).

4.3.5 Attention maps for Weakly Supervised Segmentation

The attention maps obtained by our proposed method can serve as proxy pixel-level labels to

train a segmentation network in a fully-supervised manner. Specifically, the input image X𝑖 and

corresponding attention map A𝑖 are used as a training pair. To differentiate foreground pixels

from the background pixels in A𝑖, we threshold the attention maps with 𝑇𝑠 (i.e., pixels in A𝑖

greater than 𝑇𝑠 are set to 1, 0 otherwise) before training the segmentation network. The network

is trained with binary cross-entropy as a loss function, which is computed over pixel-wise
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softmax probabilities, defined as:

L𝐵𝐶𝐸 (X,A) = −
1

𝑁

𝑁∑
𝑖=1

2∑
𝑐=1

A𝑖
𝑐 · 𝑙𝑜𝑔(𝐹𝜃𝑠 (X𝑖

𝑐)), (4.5)

where 𝐹𝜃𝑠 is a segmentation network parameterized by 𝜃𝑠. Note that the learning objective

that trains a segmentation network is same in both the fully and weakly supervised scenario.

However, the main difference lies in the labels employed in the cross-entropy term. In particular,

while the former resorts to given segmentation masks, e.g., Y𝑖, the latter leverages the obtained

attention masks as pseudo-labels, i.e., A𝑖.

4.4 Experiments

4.4.1 Experimental Setting

The performance of the proposed attention-based dynamic subspace learners (ADSL) is compared

to other deep metric learning methods applied in medical imaging (Gupta et al., 2019; Pati et al.,

2020; Sikaroudi et al., 2020; Teh & Taylor, 2019; Yan et al., 2018), which resort to contrastive

or triplet loss. To assess the effectiveness of the dynamic learner training strategy, we compare

it with the divide and conquer approach (DCML) (Sanakoyeu et al., 2019). Since we use class

labels information, we compare with the classification network trained using a cross-entropy

loss. For a fair evaluation, the backbone architecture and hyper-parameters are fixed across the

different methods. In addition, experiments across all the models and datasets are run three

times, and their average performances are reported. Note that the baselines based on triplet and

contrastive loss rely on single-learner, whereas models based on the divide-and-conquer strategy

and our method employ multiple learners.

To assess the performance of our approach in terms of segmentation, we benchmark the resulting

attention maps against the popular GradCAM (Selvaraju et al., 2017) from the classification

networks. We include a recent Attention Residual Learning (ARL) approach in (Zhang et al.,
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2019) since it has been similarly proposed in the context of skin lesion analysis. We also include a

recently proposed weakly supervised segmentation method, Embedded Discriminative Attention

Mechanism (EDAM) (Wu et al., 2021b), applied for the natural image. Lastly, we include

as an upper bound the results obtained by U-Net (Ronneberger et al., 2015) that was trained

on the provided pixel-level masks. Note that the model architecture and hyperparameters are

fixed across the different methods. Nevertheless, the ARL model employs a carefully modified

ResNet50 backbone with soft-attention blocks in each layer. It is noteworthy to mention that

it also uses an offline multi-scale patch extraction strategy, resulting in extra images during

training. At the same time, the EDAM model employs a collaborative multi-head attention

module after the feature extraction layer to directly generate the discriminative activation masks.

4.4.1.1 Datasets

The performance of the proposed method, in terms of clustering and image retrieval, is evaluated

on three diverse medical imaging datasets: skin lesion images from the ISIC 2019 Challenge

(Codella et al., 2019; Combalia et al., 2019), musculoskeletal radiographs from the MURA

dataset (Rajpurkar et al., 2018), and gastrointestinal tract images from the HyperKvasir dataset

(Borgli et al., 2020). To assess the segmentation performance, we resort to the skin lesion

dataset from the ISIC 2018 Challenge (Codella et al., 2019; Tschandl et al., 2018).

ISIC19

This dataset consists of 25,331 images across eight different categories. In our experiments,

following the standard procedure in DML, we split our dataset into independent training and

testing sets. Specifically, 20,000 images were used for training and the remaining 5,331 for

testing.
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MURA

It consists of 40,561 images from 9,045 normal and 5,818 abnormal musculoskeletal radiography

studies across seven standard upper extremity types. We configure this as 14 categories (7

normal and 7 abnormal) to represent the data in a manifold. We use the provided split of 36,808

images for training and 3,197 images for testing.

HyperKvasir

This dataset consists of 110,079 images, of which 10,662 images are labeled across 23 different

classes of findings. We randomly split the data into 8,567 images for training and the remaining

2,095 images for testing.

ISIC18

This dataset is composed of 2,594 images and their corresponding pixel-level masks. The

segmentation dataset is randomly split into three sets: training (1,042), validation (520), and

testing (1,038). We leverage the attention maps and GradCAMs generated on the ISIC19 dataset

(25,331 images) as proxy labels to train the segmentation networks. In contrast, the training set

is used to train the upper-bound model, i.e., fully-supervised.

4.4.1.2 Evaluation

We follow the evaluation protocol typically employed in deep metric learning (Oh Song et al.,

2016; Sanakoyeu et al., 2019). In particular, we employ the normalized mutual information

(NMI) to assess the clustering performance using K-means and the Recall score (with k = 1 and

4) to evaluate the image retrieval quality. To assess the segmentation performance, we employ

the common Dice score coefficient.
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4.4.1.3 Implementation details

As in (Sanakoyeu et al., 2019), we use ResNet50 (He et al., 2016) as the backbone architecture.

The feature extractor layers consist of the first three residual blocks of ResNet50, used as input to

the attention module. The attention module consists of three convolution layers with 3× 3 kernel

and filters size of {128, 32, 1}, with a ReLU activation between each convolutional layer. Last,

a sigmoid activation is integrated into the final layer to produce the activation map. An input

image size of 224 × 224 is used for all our experiments. All models are trained using the Adam

optimizer (Kingma & Ba, 2015) with a batch size of 𝐵 = 32. In each mini-batch, 8 images per

class are sampled to ensure a class-balanced scenario, and experiments are trained for 300 epochs.

The last 50 epochs are fine-tuned with full embedding. The re-clustering parameter is set to 𝑇𝑐 =

2 as in (Sanakoyeu et al., 2019), and the network plateau threshold is empirically set to 𝑇𝑝 = 10.

The margin loss parameters are set to 𝛼 = 0.2, 𝛽 = 1.2, as in (Wu et al., 2017). Last, since most

DML approaches (Sanakoyeu et al., 2019; Wu et al., 2017) employ an embedding space of size

𝑑 = 128, we use the same latent dimension in all our experiments. The PyTorch implementation

of our work is publicly available here: https://github.com/adigasu/Dynamic_subspace_learners.

Regarding the segmentation task, we use U-Net (Ronneberger et al., 2015) architecture with an

initial kernel size of 32 with two convolution layers and a depth of 3. It is trained with Adam

optimizer with batch sizes of 16. For each method, the threshold parameter 𝑇𝑠 is set to maximize

the Dice score on the initial maps of the validation set (Fig. 4.6).

4.4.2 Clustering and image retrieval results

4.4.2.1 Impact of number of learners 𝐾

One of the motivations of this work is to remove the need to empirically search for the optimal

number of learners. To validate this hypothesis, we first study the performance of DCML

(Sanakoyeu et al., 2019) by varying the number of subspace learners (𝐾). Figure 4.2 depicts



98

Figure 4.2 Impact of number of learners 𝐾 in DCML (Sanakoyeu et al., 2019). Each line

indicates the NMI (top) and Recall@1 (bottom) scores across the three datasets. The

default loss function employed is margin loss, whereas models with a triplet loss are

explicitly mentioned. Best seen in color

the results of this experiment across the three datasets and under two different loss functions:

margin and triplet loss. In these plots, it can be observed that the optimal 𝐾 value significantly

differs across datasets and metrics. Thus, this limitation of the DCML approach results in extra

time-consuming steps to fine-tune the model in each dataset. In contrast, the proposed method

(dotted line) eliminates the need to manually define 𝐾 by dynamically exploring the manifold

yet achieves on-par results with the best-performing DCML setting.

We also report the average 𝐾 values obtained from our method over three runs, as well as the 𝐾

value of DCML that achieves the best result in Table 4.1. The table shows that the 𝐾 value has

no relation to the number of ground-truth classes. The dynamically obtained 𝐾 in our method

is driven by image content, not by the number of ground-truth classes, which explains their

uncorrelated values.

Table 4.1 Comparison of the obtained 𝐾 value from our method and the

DCML best K value with respect to the number of ground-truth classes

Dataset #classes ADSL - Avg. K DCML - Best K
ISIC19 8 7 6

MURA 14 4.67 1

HyperKvasir 23 4.33 2
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Table 4.2 Quantitative evaluation on ISIC19 test set. The NMI, Recall, and average scores

from the different methods. Our method is emphasized with light gray, whereas the best and

second-best results are highlighted in bold and underlined

Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)
Classification network 45.41 ± 1.95 77.85 ± 0.86 90.54 ± 0.51 61.63 ± 1.40

Contrastive loss 31.47 ± 0.39 78.13 ± 0.59 91.13 ± 0.08 54.80 ± 0.49

Triplet loss 50.97 ± 0.61 79.84 ± 0.49 91.70 ± 0.26 65.41 ± 0.55

DCML (worst NMI, K = 1) 50.53 ± 1.01 82.84 ± 0.39 91.51 ± 0.43 66.69 ± 0.70

DCML (best NMI, K = 6) 55.08 ± 0.83 82.29 ± 0.56 91.73 ± 0.36 68.69 ± 0.70

ADSL (free from K, ours) 55.14 ± 0.87 82.39 ± 0.11 92.11 ± 0.27 68.77 ± 0.49

Table 4.3 Quantitative evaluation on MURA test set. The NMI, Recall, and average scores

from the different methods. Our method is emphasized with light gray, whereas the best and

second-best results are highlighted in bold and underlined

Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)
Classification network 71.09 ± 1.25 74.21 ± 0.27 92.59 ± 0.40 72.65 ± 0.76

Contrastive loss 74.28 ± 0.53 71.65 ± 0.53 92.07 ± 0.36 72.97 ± 0.53

Triplet loss 74.41 ± 0.27 74.51 ± 0.78 92.95 ± 0.33 74.46 ± 0.53

DCML (worst NMI, K = 10) 72.88 ± 0.40 73.55 ± 0.16 91.17 ± 0.19 73.22 ± 0.28

DCML (best NMI, K = 1) 74.67 ± 0.35 75.36 ± 0.79 92.89 ± 0.18 75.02 ± 0.57

ADSL (free from K, ours) 74.88 ± 0.09 75.52 ± 0.18 92.25 ± 0.42 75.20 ± 0.15

Table 4.4 Quantitative evaluation on HyperKvasir test set. The NMI, Recall, and average

scores from the different methods. Our method is emphasized with light gray, whereas the

best and second-best results are highlighted in bold and underlined

Method NMI (↑) R@1 (↑) R@4 (↑) Avg. of NMI + R@1 (↑)
Classification network 80.13 ± 2.34 85.66 ± 0.39 94.42 ± 0.39 82.90 ± 1.87

Contrastive loss 83.89 ± 0.15 78.52 ± 0.86 93.44 ± 0.48 81.21 ± 0.51

Triplet loss 82.24 ± 0.19 83.44 ± 0.34 93.92 ± 0.22 82.84 ± 0.27

DCML (worst NMI, K = 1) 83.31 ± 0.19 84.79 ± 0.59 94.05 ± 0.26 84.05 ± 0.39

DCML (best NMI, K = 2) 84.40 ± 0.52 85.46 ± 0.31 94.19 ± 0.28 84.93 ± 0.42

ADSL (free from K, ours) 84.18 ± 0.12 85.82 ± 0.27 94.24 ± 0.41 85.00 ± 0.20

4.4.2.2 Comparison to prior literature

We now compare our method with recent prior work as baselines, whose results are reported

in Tables 4.2-4.4. As the performance of DCML varies with 𝐾, we report only the best and

worst models. Note that the DCML with a single-learner, i.e., 𝐾 = 1, is equivalent to a margin
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loss method (Wu et al., 2017). We also report the performance of the embedding space learned

by the classification network. From the Tables 4.2-4.4, we observe that the proposed method

consistently achieves the best results in terms of NMI across the three datasets while performing

on par with the best setting of the DCML approach on image retrieval metrics. As shown

previously, it is important to note that the performance of DCML heavily depends on the value

of 𝐾 . For instance, the difference between the worst and best DCML configuration in the NMI

score can be up to 5% on the ISIC19 dataset. Compared to single-learner approaches, our

method brings up to 5 and 2% improvements in NMI and Recall scores on the ISIC19 dataset

and up to a 1% improvement in both scores on the MURA and HyperKvasir datasets. This

highlights the potential of exploring embeddings via multiple subspaces.

Furthermore, the comparison with the conventional classification network shows that our method

consistently outperforms its accuracy by up to 10% in terms of NMI score on ISIC19, and up to

4% NMI score on MURA and HyperKvasir datasets, and up to 4% and 1.5% in terms of Recall

scores on the ISIC19 and MURA datasets. The averaged NMI and R@1 results of the proposed

method slightly outperform the best DCML configuration, which is consistent across all the

datasets. The standard deviation of our method is smaller in all cases for all metrics compared to

the DCML. Overall, our method shows a better robustness with compared to the state-of-the-art

methods in the learning manifold space. The performance of our method is also in line with the

recent literature (Allegretti et al., 2021; Barata & Santiago, 2021).

Ablation study on the use of attention

Adding an attention module brings additional value to our model in terms of interpretability.

Nevertheless, to assess whether this improvement is also reflected in the model performance, we

compare our model to its non-attention counterpart, denoted as Dynamic Subspace Learners

(DSL). Results from this study are reported in Table 4.5, which shows that adding attention

typically leads to a boost in the model performance. In particular, the attentive model brings
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Table 4.5 Impact of attention module. Per-dataset and average results of the

proposed model with (ADSL) and without (DSL) the attention module. Best

result is highlighted in bold for each dataset as well as for the average results

Dataset Method NMI (↑) R@1 (↑) R@4 (↑)

ISIC19
DSL 54.11 82.74 91.95

ADSL 55.14 82.39 92.11

MURA
DSL 74.21 75.85 92.26

ADSL 74.88 75.52 92.25

HyperKvasir
DSL 84.44 85.36 93.54

ADSL 84.18 85.82 94.24
DSL 70.92 81.32 92.58Average

ADSL 71.40 81.24 92.87

0.5 and 0.3% improvement on average over the three datasets for the NMI and R@4 metrics,

respectively, while achieving on par results for R@1. Additionally, the attention module

minimally increases the model memory by 5 MB (includes parameters, forward and backward

pass size) when compared to the non-attention counterpart, which is arguably negligible with

respect to the overall model size (607 MB) in the case of deployment.

Impact of the embedding size

We also evaluate the effect of representing the embedding space with different sizes. In particular,

we assess the clustering and image retrieval performance on the ISIC19 dataset by fixing the

embedding dimension size to 64, 128, 256, and 512. Figure 4.3 shows that increasing the

embedding size results in a performance improvement, which is reflected in both NMI and recall

metrics. Nevertheless, beyond a 256-dimension embedding, the performance of both models

typically decreases.
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Figure 4.3 Impact of the embedding size. Each bar indicates the NMI (top) and

Recall@1 (bottom) scores on the ISIC19 dataset. Compared to the best model of

DCML, our method produces better NMI and Recall scores for most cases

Qualitative Analysis

To show the inter and intra-class representation power in the embedding space across different

models, we visualize a t-SNE mapping (Maaten & Hinton, 2008) on the ISIC19 test set (Fig. 4.4).

The classification network fails to discover clear boundaries across classes in the embedding

space (Fig. 4.4b). This could be because the cross-entropy loss when coupled with softmax, does

not explicitly guarantee the minimization of intra-class variance or maximization of inter-class

variance, which results in suboptimal discriminative features (Liu, Wen, Yu & Yang, 2016).

The single metric learner, i.e., DCML 𝐾 = 1 (Fig. 4.4c), improves the class boundaries when

compared to the classification network, yet they fail to possess compact clusters. On the other

hand, inter-class discrimination is visually enhanced when resorting to multiple learners, i.e.,
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Figure 4.4 Visualization of ISIC19 test set in embedding space using t-SNE. Each class is

indicated by its individual color. When compared to a standard classification network,

DCML 𝐾 = 1 (a single-learner) improves the separation between classes. The multi-learner

methods, DCML 𝐾 = 6, and our method further improve the separation between classes,

while our method has the advantage of being free from the number of learners 𝐾

DCML 𝐾 = 6 (Fig. 4.4d) and our approach (Fig. 4.4e). Further, we can also observe that the

proposed model yields more compact clusters than the DCML approach, which might be due to

the freedom of our model to explore the manifold.

Qualitative evaluation in terms of image retrieval is assessed in Fig. 4.5, where a given random

query with its five nearest neighbors, found using both DCML and our method, are shown.

Additionally, we overlay the contour of our attention maps (having a probability above 0.5) from

the proposed method over their respective retrieved image. First, our method indeed retrieves

images having similar lesions and colors from the ISIC19 dataset. In radiography wrist images,

both DCML and our method have similar retrieval errors. Finally, retrieval images from the

HyperKvasir dataset have similar image semantics in terms of texture and probe length using

our method when compared to DCML. The coherence of image retrievals indicates that the
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Figure 4.5 Performance of image retrieval on test sets. Each query image and its five

nearest neighbors in ascending order of distance are shown (left to right) from the DCML

(best K) and our method with an overlay of our attention maps (probability above 0.5)

intra- and inter-class similarities have been captured by our method and thereby demonstrate the

robustness of our learned embedding. Moreover, our attention maps mainly concentrate on the

lesion in the skin images, the wrist in the radiography images, and the probe contact region in

the endoscopic images, demonstrating that our model decisions are consistent over all retrievals.
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4.4.3 Weakly Supervised Segmentation results

Table 4.6 reports the results of the segmentation experiments. In this table, Init maps are used to

denote the raw visual salient regions from either GradCAM or attention maps. Refined refers to

the performance of the segmentation network trained on the Init maps. First, we can observe

that segmentation results obtained by raw attention maps and GradCAMs are considerably

low, with Dice values around 40%. This is likely due to the well-known fact that both are

highly discriminative, resulting in over-segmented regions. The Attention Residual Learning

(ARL) significantly outperforms these baselines, whose improvement could be due to the use

of attentive residual blocks and additional multiscale data augmentation. The attention maps

from the recent Embedded Discriminative Attention Mechanism (EDAM) method perform at a

similar level when compared to ARL. Last, the attention maps from the proposed approach bring

a significant boost compared to all the other methods. In particular, our model outperforms

the baselines by nearly 30% and the recent ARL model by 13%. These results are typically

consistent if we employ the initial maps as proxy labels to train a segmentation network. In this

case, raw attention maps or GradCAMs barely improve or even decrease the initial segmentation

performance. In contrast, ARL, EDAM, and the proposed method reach higher Dice values,

with about 1%, 3.5%, and 3% of increase, respectively. This represents a difference of 15%

in Dice with respect to ARL. On the other hand, by only using image-level information, the

proposed model bridges the gap with a fully-supervised network, with only a 14% difference.

This suggests that the proposed model generates reliable segmentations.

4.4.3.1 Ablation study of threshold 𝑇𝑠 on the raw visual maps

We evaluate the effect of threshold values 𝑇𝑠 on the Dice score for raw visual maps from attention

maps and GradCAMs, as shown in Fig 4.6. First, the attention maps and GradCAMs from the

classification network have an almost flat Dice score of around 40% until 𝑇𝑠 = 0.4, succeeded by

a gradual decrease. The ARL and EDAM have a gradually increasing Dice score until 𝑇𝑠 = 0.4
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Table 4.6 Performance of weakly supervised segmentation. “Initial maps” and

“Refined” are Dice scores (in %) on the ISIC18 test set for different methods. Our

method yields the best results. ∗, †, and � are from ResNet50, ResNet101, and

modified ResNet50, respectively, indicating the used architecture in visual map

Method Init maps Refined
Attention ∗ 38.45 33.43

Attention † 38.52 38.38

GradCAM ∗ 41.55 40.76

GradCAM † 39.80 41.27

ARL (Zhang et al., 2019) � 56.78 57.60

EDAM (Wu et al., 2021b) � 51.99 55.50

ADSL (ours) � 69.23 72.42
Full-supervision (upperbound) - 86.15

and 𝑇𝑠 = 0.6 with a maximum score of 57.33% and 50.89%, respectively, followed by a gradual

decrease. Our method outperforms the baselines for all threshold values in Dice scores with a

maximum dice score of 69.0%, showing the robustness of the attention maps derived from our

method. This study assists in setting a threshold value 𝑇𝑠 for each method before training the

segmentation network.

4.4.3.2 Qualitative Performance Evaluation

Visual results of the different methods are shown in Fig. 4.7. In this figure, Init maps (rows 1 and

3) are raw visual salient regions from either GradCAM or attention maps shown as heatmaps,

whereas Refined (rows 2 and 4) refers to the performance of the segmentation network trained

using Init maps as proxy labels. The attention maps (rows 1 and 3) produced by the classification

network spread all over the image, capturing some discriminative regions on the target lesion.

GradCAMs spread around the target, highlighting discriminative regions of the lesion but failing

to capture the whole context. The saliency map produced by the ARL method is focused on the

target lesion. The attention maps obtained by the recent EDAM method spread around the target

lesion, including the artifact regions, and fail to capture the target object context. In contrast,
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Figure 4.6 Threshold 𝑇𝑠 selection. Each line indicates the Dice scores of

initial maps on the ISIC18 validation set for different methods. Our method

outperforms the baselines for all 𝑇𝑠 values. ∗ and † are obtained by

classification networks using ResNet50 and ResNet101, respectively

the attention maps derived from our approach better capture the attentive region, which mostly

covers the lesion regions. The results show that our proposed approach generates superior

attention maps compared to attention maps or GradCAMs from classification networks.

The results obtained by training a segmentation network on the initial salient regions (rows 1

and 3) are depicted in rows 3 and 4. These images demonstrate the feasibility of our method to

weakly generate pixel-level labels that are usable for training segmentation networks.

4.5 Discussion and Conclusion

This paper presents a novel attention-based dynamic subspace metric learning approach for

medical image analysis. The proposed algorithm leverages recent advances in deep metric
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Figure 4.7 Visual results of weakly supervised segmentation. Saliency maps (Init maps)
obtained by different methods and their segmentation results (Refined). ∗ and † are obtained

by GradCAM on classification networks using ResNet50 and ResNet101, respectively

learning using multiple metric learners. Our contribution improves the state-of-the-art method

(Sanakoyeu et al., 2019) with dynamic exploitation of subspace learners to learn the embedding

space. Specifically, our novel training strategy overcomes the empirical search of the optimal

number of subspace learners parameters while achieving competitive results in clustering and

image retrieval tasks. Performance is extensively evaluated on three publicly available benchmark

datasets: skin lesions, musculoskeletal radiography, and endoscopic images. Results demonstrate

that our dynamic learner approach achieves the best results in clustering performance across

all three datasets. Compared to the single-learner method, our method brings a maximum

of 5 and 2% improvements in clustering and image retrieval scores on the ISIC19 dataset.

Furthermore, our method significantly outperforms the classification network in all the datasets

with a maximum of 10% and 4% improvements in clustering and retrieval scores on the ISIC19

dataset. Overall, the proposed method slightly outperforms in averaged results and has a smaller

standard deviation when compared to the state-of-the-art methods in multiple metric learning.

Our experiments have shown consistency across all the datasets, demonstrating the robustness
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of our method. Qualitative results show that the proposed method produces compact clustering

and coherent image retrievals.

The addition of the attention module to our subspace learners provides the visual interpretability

of the learned embedding space in terms of attention maps and improves the clustering metrics.

Our method offers new tools in multiple metric learners approaches, notably dynamically

learning the number of learners and providing attention maps to hint at salient information

caught by the learners. Studying the clinical usability of these tools remains to be explored.

Nevertheless, A recent study (Barata & Santiago, 2021) shows that the use of a retrieval network,

in a single learner, yields an improvement of 9.2% in the decision accuracy of dermatologists.

Our method indeed suggests that multiple learners capture a data embedding that yields a higher

accuracy in clustering and retrieval tasks over single-learner methods, while additionally offering

visual saliency from our attention mechanism.

The attention maps produced by our proposed method can serve as proxy pixel-level labels to

train a segmentation network. The segmentation results outperform a state-of-the-art method,

Attention Residual Learning (ARL) (Zhang et al., 2019), as well as the recent Embedded

Discriminative Attention Mechanism (EDAM) (Wu et al., 2021b) by a margin of 15% and 17%

in Dice scores, respectively, on the skin lesion dataset. The qualitative results demonstrate

that the produced attention maps and their segmentation masks focus on the target lesion,

demonstrating the effectiveness and robustness of our method. These attention maps produced

in our subspace learning approach could therefore be potentially beneficial to a broader range of

weakly supervised tasks, where the feature space remains challenging to represent using a single

metric model within a specific task.





CONCLUSION AND RECOMMENDATIONS

The introductory chapter of this thesis outlines the general challenge encountered in learning the

deep segmentation networks under various levels of supervision and availability of annotated

data. These challenges are tackled by exploring a set of cues associated with labels to enhance

medical image segmentation. Notably, we have presented three research objectives that leverage

uncertainty cues across different levels of annotations, such as with fully, semi, and weakly

supervised approaches. This chapter summarizes the contributions of three research objectives,

discussing their limitations and potential future recommendations.

5.1 Summary of contributions

1) Intensity-based soft labeling for image segmentation

As a first contribution, Chapter 2 presented a Geodesic label smoothing (GeoLS) technique

that incorporates intensity variation into the label smoothing process. Mainly, it leverages the

geodesic distance maps to generate intensity-based soft labels. The resulting soft labels capture

the underlying image ambiguities associated with labels. Training a network with our soft labels

has shown improved segmentation performance, especially in challenging regions. Results also

demonstrated that the proposed approach consistently outperforms the existing soft-labeling

approach across three diverse sets of segmentation datasets, including tumors in brain MRIs,

multi-organs in abdominal CTs, and multiple zones in prostatic MRIs. The ablation experiments

also highlight the effectiveness of integrating the intensity information in our geodesic soft labels

rather than solely utilizing the Euclidean distance maps. This work introduces novel soft labels

that can be incorporated into any network to enhance the segmentation, particularly impacting

applications where labels prove challenging due to ambiguities in image intensities.
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2) Anatomically-aware uncertainty for semi-supervision

In Chapter 3, a novel anatomically-aware uncertainty estimation approach is proposed for

image segmentation under semi-supervised settings. This work utilizes the anatomically-aware

representation of segmentation masks to estimate the uncertainty maps. These maps emphasize

reliable regions of the predicted masks while regularizing the model. The experiments on

left atria and multi-organ abdominal datasets reveal that the proposed approach outperforms

current semi-supervised segmentation methods. Our studies also thoroughly evaluate various

design choices made in our anatomically-aware representation module. In contrast to existing

entropy-based methods, our uncertainty estimation needs a single inference, which minimizes

the computation time. The proposed anatomically-aware approach effectively utilizes the limited

annotated data with improved segmentation performance, thereby minimizing the need for

extensive annotation efforts.

3) Attention-based representation for weak-supervision:

Chapter 4 presents an attention-based dynamic representation learners for image segmentation,

retrieval, and clustering tasks. The proposed approach integrates the attention module in the

embedding network in order to obtain direct visual maps and dynamically explores the subspace

to learn the overarching embedding space. The generated visual maps serve as proxy labels

for a segmentation network. Experiments on the skin lesion dataset show that our attention

maps yield significantly superior results compared to existing methods relying on attention and

class activation maps of classification networks. Moreover, our dynamic subspace learners

advance the recent multiple-learner method in clustering and retrieval tasks on skin lesions,

musculoskeletal radiography, and endoscopic benchmarks. In addition, our novel dynamic

training approach eliminates the need for empirical search in determining an optimal subspace

learner parameter. Our representation can be beneficial for the structural organization of the
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data while providing interpretability through attention maps. These attention maps are valuable

to a wider range of weakly supervised segmentation tasks.

5.2 Limitations and recommendations for future work

This section discusses the main limitations of our work and offers possible avenues for future

research.

Limited and interactive supervision: The proposed geodesic soft labeling requires seed points

for the geodesic distance transform. These seed points are chosen within segmentation masks

so that distance maps capture the similarity intensity values. In our study, different seeding

strategies are examined to validate their effectiveness. One can extend our idea of soft labeling to

accommodate limited supervision by generating soft labels based on pseudo or proxy labels. To

elaborate, we can derive soft labels by selecting seed points within these pseudo or proxy labels.

In addition, a recent library supports a PyTorch-based geodesic distance transform generation

(Asad, Dorent & Vercauteren, 2022), enabling end-to-end learning with limited supervision.

Furthermore, these strategies work with the assumption that the target region is homogeneous.

In this case, we can extend our soft labeling strategy to interactive supervision, where the user

can provide seed points or scribbles to capture the entire target region (Wang et al., 2018).

Domain adaptation: In this thesis, an anatomically-aware representation is developed for

estimating uncertainty maps. Our representation is learned on available segmentation masks

in limited data settings. The learned representation subsequently provides reliable target

regions through uncertainty estimates in order to regularize the model predictions. This

representation is helpful, especially for regularizing the prediction of unlabeled images. One can

extend the benefits of our approach to domain adaptation scenarios (Bateson, Dolz, Kervadec,

Lombaert & Ayed, 2021; Karani et al., 2021; Perone, Ballester, Barros & Cohen-Adad, 2019).

Particularly, we can enhance our anatomically-aware representation by utilizing the existing
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labels from the source domain datasets. This enhanced representation is likewise utilized to

identify reliable regions of target images. This idea can help during the domain adaptation

process, as anatomically-aware representation is independent of imaging data.

Anatomically-aware foundation model: The anatomically-aware representation contributes

to uncertainty maps. These uncertainty maps require a single inference, thereby decreasing

the computational burden compared to most uncertainty-based approaches. Our representation,

however, is learned exclusively on available labels, which can be suboptimal for the clinical

use case of uncertainty estimation. We can use the existing labels from the other datasets or

modalities to enhance this representation. Another potential direction could be developing a

foundation model for anatomical labels. One can train this model on a broad spectrum of publicly

available annotations using self-supervised learning strategies. Such a model could better map

incorrect predictions into anatomically plausible segmentation, which could be subsequently

used as uncertainty estimation. Furthermore, the anatomically-aware foundation model could be

used as a post-processing tool with additional constraints to improve the segmentation prediction

(Larrazabal et al., 2020; Painchaud et al., 2020). This model could also be combined with image

information to learn a joint representation (Judge et al., 2022) to further improve the uncertainty

estimation and post-processing of segmentation.

Mixed-supervision: The visual maps using our attention-based representation serve as proxy

labels for a weakly supervised segmentation. These proxy labels are assessed for a binary

segmentation task, which substantially yields segmentation performance compared to existing

weakly supervised methods. Nevertheless, a performance gap prevails compared to fully

supervised segmentation methods. One can combine our attention maps with other weak

annotations or limited supervision to improve the segmentation. Such a hybrid method is referred

to as mixed supervised segmentation (Liu, Desrosiers, Ayed & Dolz, 2023; Papandreou et al.,

2015; Wang et al., 2019a). For instance, combining our proxy labels with a small amount of
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labeled data could significantly improve the refinement of the segmentation network. Also, it

could be combined with other weak supervision, such as bounding boxes, scribbles, or points, to

improve the downstream segmentation network.

Model calibration: This thesis presents a set of uncertainty-aware tools in deep segmentation

models under various levels of supervision. These tools tackle annotation ambiguities and noisy

pseudo labels while training segmentation models. Incorporating these tools has improved the

segmentation predictions during the inference. One can also evaluate the calibration (Mehrtash,

Wells, Tempany, Abolmaesumi & Kapur, 2020; Murugesan et al., 2023) and uncertainty

quantification (Camarasa et al., 2021; Mehta et al., 2022) of model predictions. Such validation

can be crucial for the trustworthiness of our uncertainty-aware models. Furthermore, integrating

such validated tools in clinical workflows and ensuring compliance with ethical standards will

be vital for successful deployment in healthcare settings.

Robustness of foundation models: A recent foundation model has shown significant promise

in generalizing across various tasks, including medical image segmentation (Ma et al., 2024;

Silva-Rodríguez, Dolz & Ayed, 2023). These models, trained on extensive and diverse datasets,

perform reasonably well on out-of-distribution datasets. However, ensuring their robustness

across diverse clinical scenarios is essential for their reliable application. Integrating our

uncertainty-aware tools into these models could enhance their robustness. Such reliable

and generalizable models ultimately improve clinical outcomes and foster trust in artificial

intelligence-driven medical imaging solutions.

In conclusion, this thesis introduces new uncertainty-aware tools that improve medical image

segmentation under full, semi, and weak supervision. The first objective led to new intensity-

based soft labels that enhanced segmentation algorithms in challenging regions. The following

research objective led to anatomically-aware uncertainty estimation for effectively utilizing

the limited data, thereby minimizing the annotation cost. The final research objective led to
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Figure 5.1 Summary of the key contributions and recommendations for future work.

Intensity-based soft labeling extending to segmentation under limited and interactive

supervision. Anatomically-aware uncertainty estimation expanding to domain adaptation

application and uncertainty quantification from anatomically-aware foundation model.

Attention-based representation leads to mixed-supervised segmentation.

Overall, uncertainty-aware tools aid in calibration and foundation model robustness

attention-based dynamic representation that improved segmentation using solely image-level

labels. It also enabled the structured organization of the dataset with direct visual interpretability.

These new sets of tools, along with future recommendations in this thesis, could assist clinicians

in precisely identifying target areas through an automated system under low-data and uncertainty

regimes. Such a system may be helpful for the future of artificial intelligence-based interventions,

treatments, screening, computer-aided diagnosis, and prognosis.
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