TRUST: Test-Time Refinement using
Uncertainty-Guided SSM Traverses

Sahar Dastani!-?* Ali Bahri'* Gustavo Adolf Vargas Hakim?
Moslem Yazdanpanah? Mehrdad Noori! David Osowiechi! Samuel Barbeau®
Ismail Ben Ayed! Herve Lombaert?3

Christian Desrosiers!
'LIVIA, ILLS, ETS Montréal, Canada,
2Mila - Quebec Al Institute, >Polytechnique Montreal

Abstract

State Space Models (SSMs) have emerged as efficient alternatives to Vision Trans-
formers (ViTs), with VMamba standing out as a pioneering architecture designed
for vision tasks. However, their generalization performance degrades significantly
under distribution shifts. To address this limitation, we propose TRUST (Test-Time
Refinement using Uncertainty-Guided SSM Traverses), a novel test-time adaptation
(TTA) method that leverages diverse traversal permutations to generate multiple
causal perspectives of the input image. Model predictions serve as pseudo-labels to
guide updates of the Mamba-specific parameters, and the adapted weights are aver-
aged to integrate the learned information across traversal scans. Altogether, TRUST
is the first approach that explicitly leverages the unique architectural properties
of SSMs for adaptation. Experiments on seven benchmarks show that TRUST
consistently improves robustness and outperforms existing TTA methods. The code
is available at: https://github.com/Sahardastani/trust.

1 Introduction

The field of visual representation learning has advanced rapidly due to the ability of deep neural
networks to extract rich and generalizable features. Convolutional Neural Networks (CNNs) [1, 2, 3,
4, 5] excel in modeling local patterns through strong inductive biases but struggle with global context.
Vision Transformers (ViTs) [6, 7, 8, 9] address this challenge using a self-attention mechanism,
although at higher computational cost. More recently, State Space Models (SSMs) [10, 11, 12]
emerged as a scalable alternative, providing global receptive fields with linear complexity. Despite
their efficiency, the performance of SSMs degrades under distribution shift. This is mainly due
to violations of the Independently and Identically Distributed (i.i.d) assumption, which is often
disrupted in real-world settings. While generalization strategies are well developed for CNNs and
ViTs, vision-specific strategies for SSMs are still lacking.

This work focuses on VMamba [13], a vision-adapted variant of the Mamba architecture [14],
designed for sequential visual processing. VMamba introduces 2D Selective Scan (SS2D), a four-way
traversal mechanism that scans image patches along predefined spatial directions. However, this
directional processing introduces a strong inductive bias by aligning internal representations with
fixed traversal paths [15], which may hinder generalization under distribution shifts. Additionally,
the hidden states of VMamba store historical context over the traversal sequence. When exposed to
unseen domains, this context may accumulate domain-specific artifacts, leading to amplified bias
during propagation and ultimately degrading generalization [16].

*Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Sahardastani/trust

To address these challenges, we propose Test-Time Refinement using Uncertainty-Guided SSM
Traverses (TRUST), a novel Test Time Adaptation (TTA) strategy specifically designed for SSMs
that leverages VMamba’s internal traversal mechanism. As illustrated in the offline phase of Figure 1,
different traversal permutations result in varying prediction entropy levels, revealing the sensitivity of
the model to causal ordering. TRUST systematically generates multiple traversal permutations by
reordering the four directional scans, exposing the model to diverse causal perspectives of the same
input. At test time, we compute the entropy of predictions from each permutation and select the ones
with the lowest entropy, which are associated with more stable and domain-robust hidden states.

Inspired by previous work on flat minima and weight averaging [17, 18], our method aggregates
the outputs of different traversal permutations to implicitly explore a broader and flatter region of
the loss landscape. Each permutation activates a distinct computational pathway through the model,
effectively sampling different local minima. Selecting the top-k traversal permutations with the
lowest predictive entropy and computing a weighted average of their model parameters mitigates the
impact of noisy or uncertain predictions. This enhances generalization without requiring source data
or model retraining.

We outline the main contributions of our work as follows:

* We propose TRUST, the first TTA approach specifically designed for Mamba-based vision mod-
els. Unlike prior methods that depend on data augmentation or auxiliary models, our approach
takes advantage of the internal traversal dynamics of VMamba to improve generalization under
distribution shift.

» TRUST introduces a novel weighted averaging strategy to promote robustness, which permutes
traversal directions and averages model weights from the most confident paths.

* We validate our method on seven standard benchmarks, where it consistently outperforms
existing TTA methods, establishing new state-of-the-art results.

2 Related Work

Test Time Adaptation (TTA) is a paradigm of Domain Adaptation (DA) [19] that intends to enhance
model generalization during deployment. Specifically, a pre-trained model is adapted to incoming
data batches without requiring label supervision or having access to source data. As a pioneering
approach, Tent [20] minimizes prediction entropy as an adaptation objective, based on the principle
that distribution shifts in the target domain reduce the confidence of a model in its predictions.
Examples of Tent-based approaches include using confidence thresholds for sample selection before
adaptation [21, 22], minimizing the sharpness of the entropy loss [23], using class-balanced memory
queues for better adaptation sampling [24], and meta-learning the entropy loss [25], among other
alternatives [26, 27, 28]. The literature also includes several other adaptation strategies that do
not minimize entropy, such as contrastive learning [29, 30], Laplacian optimization [31, 32], and
prototype-based pseudo-labeling [33]. While flexible, these techniques do not capitalize on the unique
properties of specific architectures such as VMamba.

Architecture-specific TTA. Recent advances in TTA have introduced a variety of model-specific
strategies. Among those, FOA [34] loosely adheres to ViTs by incorporating gradient-free learning of
additional prompts in the form of token embeddings. For Vision-language Models (VLMs) [35, 36,
37, 38], recent strategies incorporate text information as an auxiliary tool for adaptation. Examples
include prompt learning via entropy minimization [35], positive and negative caching with text-
based pseudo-labels [36], transductive adaptation using conformal pseudo-captions [38], and weight
averaging across text templates [37]. SSM-oriented TTA has also been explored to a smaller extent.
In a recent work, STAD [39] uses Markov processes to learn time-varying prototypes for classifying
examples during inference and adapts the classification head of the model.

Weight Averaging for Robust Adaptation. Initially introduced in the context of Domain Gener-
alization (DG) [40, 41, 42], weight averaging has gained popularity as an effective technique for
enhancing model robustness to domain shifts [43, 18]. Notably, methods like SWAD [18] aim to
identify flat minima in the loss landscape by minimizing loss fluctuations across diverse inputs. This
is often accomplished by averaging the weights of models trained on different image augmentations.
While similar ideas have been adopted in the TTA literature [23, 37, 44, 45, 46], they typically rely
on explicit input diversification, which introduces additional computational overhead. In contrast, our

Offline Adaptation Phase Evaluation

SS2D TRUST Version h
ross Scan Reordering S6 Block (\ 8 EE
Py
N X o ‘1‘
1 Lo
m = abcd ~ v o
n, = abdc < =
=T s =
- - e
4 = acdb s
i eght
ng = adcb g w averagep(
17 = bacd 5 3 network
g = badc = b)
n = bcad uw b
mo= :);(la a
My = bdac t J
M2 = bdca _ AN Blocly W
m3 = cabd 0
ey | 7 T - () N F
e VSS Block @ Clossifier H—» [-- R x
16 = ~ . ~
T ; ~ weight space
M = cdba i, > N
Mg = dabc I -
0 = dach x L T g’ <
T VSS Block classifier 9
Ny, = dbca J N
puy » dassifier
M4 = dcba ") kel S o
[3 ;
5 IR i
7 Input Patches VSS Block @ Classiﬁer} g °
=
. 3 T
{mum,,--.,’rr,,)} S _ Tix J TRUST/\ _ J

Figure 1: An overview of the proposed method. Our network consists of three stages: offline,
adaptation, and evaluation. In the Offline stage, multiple traversal permutations are generated and
ranked by entropy. The top-K most confident permutations are selected. During adaptation, each
permutation reorders the cross-scan traversals, and the Mamba-specific state-space parameters are
updated accordingly. The resulting models are then merged via parameter-space averaging. The final
averaged model is used for inference in evaluation stage.

approach leverages the intrinsic diversity of SSM-based traversals to induce variation directly in the
weights of our model, without requiring external data augmentations.

3 Method

Section 3.1 introduces key concepts in TTA and SSM, laying the groundwork for our approach. In
Section 3.2, we propose traversal permutations to generate complementary causal perspectives of
the input, followed by a weight averaging strategy in Section 3.3 for robust and efficient inference.
Figure 1 shows an overview of our method.

3.1 Preliminaries

Test Time Adaptation (TTA) in Image Classification. Consider a classification model composed
of a feature processor fg, parameterized by 6, and a classifier hy parameterized by ¢. The model

is pre-trained on a source dataset D, = {(Xj, y])};\;1 consisting of images X; € RW >3 and
corresponding labels y; € {1,...,C}, where C is the number of classes. Formally, the model learns
amap Fs : X5 —), between the input distribution X and output distribution); from the source.
Training on D; is performed using a supervised loss L.y (typically cross-entropy). At test-time, the
model is exposed to a target dataset D, = {X,} jV: Xéﬁl, which lacks labels and follows a different
distribution, giving rise to the map F; : &3 —);. Although the source and target datasets share
the same label space (Vs =)%), their joint distribution differ, i.e., P(Xs,Ys) # P(X:, ;). Such

difference is referred to as covariate domain shift [31].

State Space Model (SSM) Formulation. SSM-based models [10, 14] map a 1D input sequence
x(t) € R to an output y(¢) € R through a learnable hidden state h(t) € R, governed by a linear
dynamical system:

h'(t) = Ah(t) + Bx(t), y(t) = Ch(t), (1

where A € RV*N B € R¥*! and C € R'™¥ are learnable parameters. To integrate this
formulation into deep learning, it is discretized using the zero-order hold (ZOH) method with step

size A € R, resulting in the discrete recurrence:
h(t) = Ah(t — 1) + Bx(t), y(t) = Ch(t), where A =exp(AA), B=~AB. (2

Unrolling this recurrence over time yields a 1D convolution with kernel K € R”, where L € N
denotes the kernel length. This form enables efficient parallel computation during training.

y=x0K, K= (CE,CE,...,CKL_lﬁ). 3)

SS2D for 2D Visual Processing. To extend 1D state-space models to visual data, VMamba

introduces the SS2D module, which reshapes an input image X € R >*W > into a sequence of T'
non-overlapping patches {x;}7_,. As shown in Fig. 1, these patches are traversed in a predefined
causal order determined by one of four canonical directions using the Cross-Scan module: left-to-
right (a), top-to-bottom (b), right-to-left (c), and bottom-to-top (d). For each direction, the patch
sequence is processed recurrently by a shared, discretized 1D SSM, ensuring causality and directional
consistency. The outputs from all four scans are then aggregated using the Cross-Merge module.

3.2 Traversal Permutation

To address the limitations of VMamba under distribution shifts, we propose a TTA strategy that lever-
ages VMamba’s intrinsic directional traversal mechanism. We define a set of traversal permutations

P:{ﬂ'l,ﬂ'g...,ﬂ'N}, (4)

where each 7; represents a unique ordering of the four canonical scan directions, with 7, = {a, b, ¢, d}
corresponding to the original ordering used in VMamba (see Fig. 1 for the definition of directions
a, b, c and d). We assess the predictive confidence of the model under each traversal permutation
m; € P by computing the Shannon entropy of its output distribution. Permutations are then ranked in
ascending order of entropy, and the top-K permutations with the lowest entropy are selected (the
offline mode of Figure 1):

7Dselec‘ted = {ﬂ-i] y Mgy -+ s Tige } (5)

During the adaptation phase, for each selected permutation 7;, , k = 1, ..., K, the input is processed
according to the corresponding traversal order. Denoting p(X; ;,) € [0,1]¢ as the output of the
model for an image X when using traversal permutation ;, , we compute a pseudo-label 7, by taking
the class with maximum predicted probability:

U = argmax [p(X; WH)} 6)

ce{1,..,.C} ¢

The Mamba-specific parameters are then updated to minimize the average cross-entropy (log loss)
between the model prediction and the corresponding pseudo-label over each target sample in batch B:

. 1
0, = argmin ~18l Z log [p(X; mk)]yk . 7
6 | | XeB

This is achieved using back-propagation as in standard methods. After optimization, the adapted
parameter set 8, is cached, allowing a subsequent ensemble-based aggregation at inference.

Our method processes the same image through multiple directional permutations, enabling VMamba
to exploit complementary causal views of the input. These distinct trajectories expose the model to
both global consistency (identical token set) and local variation (different hidden-state evolutions),
which helps find a flatter minima offering a stronger out-of-distribution (OOD) generalization [18].
Crucially, re-ordering prevents domain-specific artifacts from always entering the recurrence at the
same time step. If an artifact € is embedded in a corrupted patch x;_, then under the default traversal
71, this patch always appears at time step ¢ = t. in the processing sequence. The hidden state update
at that step becomes:

h(t,) = f (h(l)(te 1), xp, + s) . ®)

Since the hidden state h(t) is recurrent and accumulates over time, injecting € early in the sequence
allows its influence to propagate through many subsequent updates. Therefore, the impact of the
artifact depends heavily on the position of ¢, within the sequence. In our method, we apply a traversal

permutation 7;,, which changes the order in which patches are processed. Under 7;, , the corrupted
patch x;_ appears at time step ¢ = m;, (t¢), leading to the updated hidden state:

B (mi, () = £ (B (w3, (te) = 1) %0, +¢). ©)

Across different permutations, the corrupted patch enters the sequence at varying time steps. This
shifts the effect of artifact to different hidden states, breaking its consistent influence pattern. During
test-time adaptation, these variations allow the model to learn diverse responses, and the subsequent
weight averaging of adapted models helps suppress artifact-induced bias.

3.3 Leveraging Traversal Permutations Through Weight Averaging

To improve both stability and generalization under distribution shifts, we aggregate the adapted
models obtained from the top-K traversal permutations. During the evaluation phase, we utilize the
averaged weights

1 K
ezgkzzlek (10)

and evaluate the model using the default traversal path 7;. In this setting, each 6 represents an
adapted model under a distinct traversal permutation. This results in a single, consolidated model
that captures the benefits of multi-directional adaptation.

This simple yet effective averaging strategy draws inspiration from the notion of flat minima in the
loss landscape [43, 18], where parameter configurations that lie in flat regions tend to exhibit greater
generalization and robustness to perturbations. Weight averaging encourages convergence to a region
in parameter space with low curvature, thereby reducing sensitivity to input variations and improving
performance under distribution shifts.

To further illustrate this point, Figure 2 represents the I 36420
test loss surface over model parameters under Gaus- 35569
sian noise corruption from the ImageNet-C dataset.
Each triangle marks a model adapted via a different
traversal permutation, while the central cross denotes A 34735
the weight-averaged model. The axes depict linear ﬁ

interpolations between parameter sets, offering a 2D A Ta e
view of the high-dimensional landscape. This visu- 3.4427
alization demonstrates how different traversal per-
mutations lead to diverse optima, and how weight
averaging converges toward a smoother, lower-loss
region, enhancing robustness and generalization. Figure 2: Loss surface of model parameters.

3.5051

3.4356

3.4245

Unlike traditional TTA approaches that rely on data augmentation, external source data, or auxiliary
objectives to generate diverse model variants for weight averaging, our approach leverages the internal
architecture of VMamba, specifically, its canonical traversal mechanism. By permuting traversal
scans, we induce structural variability that yields diverse perspectives of the same input, enabling
effective adaptation without external augmentation.

4 Experiments

In this section, we present a comprehensive evaluation of our proposed method across seven bench-
mark datasets. We begin by describing the datasets used for evaluation, followed by implementation
details and the baselines employed. We then report our main results and conclude with a set of
ablation studies to analyze key components of our approach.

4.1 Datasets

We evaluate the performance and generalization of our method across a wide range of TTA bench-
marks, covering corruption robustness and domain generalization. For corruption-based robustness,
we use CIFAR10-C [47], CIFAR100-C [47], and ImageNet-C [47], which apply 15 corruption types
(e.g., noise, blur, weather, digital artifacts) at five severity levels. These datasets scale from 10

(CIFAR10-C) to 100 (CIFAR100-C) to 1000 (ImageNet-C) classes, enabling systematic analysis of
model degradation.

For domain generalization, we assess on PACS [48], ImageNet-S [49], ImageNet-V2 [50], and
ImageNet-R [51]. PACS includes four visual styles with seven shared classes, using leave-one-
domain-out evaluation. ImageNet-S features sketch-style abstractions; ImageNet-V2 provides a
cleaner, independently collected test set; and ImageNet-R introduces style shifts across 200 classes
with diverse artistic renditions. Together, these benchmarks test adaptability to unseen distributions,
styles, and abstractions.

4.2 Implementation Details

We perform adaptation exclusively on the Mamba-specific state space parameters within the SS2D
module of each VMamba block, while keeping the rest of the model frozen. The base VMamba model
is trained with batch normalization layers. The adaptation is guided using a pseudo-labeling strategy,
where confident model predictions are treated as supervision targets in a cross-entropy loss. This
enables self-supervised adaptation without requiring access to ground-truth labels. The adaptation
proceeds in an online manner, with model updates applied sequentially (i.e., without resetting the
weights to their pre-adaptation values). Optimization is performed using the Adam optimizer with
a learning rate of 10~* and a batch size of 128, ensuring consistent dynamics and fair comparison
across benchmarks. All experiments were conducted using a single NVIDIA A6000 GPU.

4.3 Baselines

We compare our method against several state-of-the-art TTA approaches. Source Only refers to the
performance of VMamba without any adaptation. ETA [21] minimizes an entropy loss modulated
by a sample-adaptive weighting mechanism, updating only the affine parameters of normalization
layers. LAME [31] enforces smooth decision boundaries by introducing Laplacian regularization
over the model predictions. SAR [23] promotes robustness by explicitly optimizing for flat minima
using sharpness-aware minimization. SHOT [19] aligns the classifier by minimizing entropy while
encouraging confident and diverse predictions, using a fixed feature extractor. Tent [20] adapts the
model by updating only the affine parameters of normalization layers via entropy minimization.

We evaluate two variants of our approach: TRUST naive, which adapts only the Mamba-specific SS2D
parameters, and TRUST, which further enhances robustness by averaging over multiple traversal
permutations during adaptation.

4.4 Main Results

Table 1 presents the Top-1 accuracy under the highest corruption severity (level 5) for CIFAR10-C,
CIFAR100-C, and ImageNet-C datasets. TRUST consistently outperforms all baselines across the
three datasets, demonstrating strong generalization under severe distribution shifts. It also surpasses its
naive variant, underscoring the effectiveness of permutation-based strategy in enhancing robustness.

CIFAR10-C. TRUST achieves a mean accuracy of 77.5%, outperforming both Tent and SHOT by
margins of 11.0% and 10.7%, respectively. On challenging corruptions, TRUST yields the largest
improvements over SHOT, such as elastic (7.5%), glass blur (10.8%), and motion blur (7.4%).
Compared to its naive variant, TRUST provides a further 3.3% boost. These results highlight the
benefits of traversal diversity in enhancing corruption robustness.

CIFAR100-C. On a more fine-grained benchmark, TRUST attains a mean accuracy of 54.3%, ex-
ceeding SHOT and SAR by 12.3% and 12.4%, respectively. The largest absolute improvements over
SHOT are observed under challenging corruptions such as impulse noise (23.2%), contrast (18.9%),
and shot noise (16.1%), demonstrating the robustness of our method under severe distribution shifts.
It also improves upon TRUST naive by 4.5%.

ImageNet-C. TRUST achieves a strong mean accuracy of 56.1% on the large-scale ImageNet-
C benchmark, outperforming both Tent and SHOT by 14.4%, and TRUST naive by 2.7%. On
challenging corruptions, TRUST yields the largest improvements over SHOT, such as glass blur
(14.8%), elastic (19.3%), and jpeg compression (14.4%), reflecting the advantage of our method in
mitigating both spatial distortions and digital artifacts.

g
2 9 2
3 B 5 = L
S g 22 5 2 3 i o
K] S 7] 3) = o s 2 1 S
i 2 3 2z % oz o 2 £ %3 3
Method 5 % E 3 %n g S £ g :éb E 5 T—i ;:“i .& Mean
Source only | 46.8 484 450 73.5 52.6 73.0 787 718 758 773 857 69.6 63.7 679 59.0| 65.9
o | ETA[21] 46.7 483 448 735 526 73.0 78.6 757 714 712 857 69.6 63.7 679 59.0| 658 (0.
S |LAME[31] |467 483 448 735 526 730 786 71.8 758 772 857 69.6 63.7 679 59.0| 65.9
~ | SAR[23] 477 495 462 743 534 738 79.1 725 765 780 86.1 70.8 645 689 60.0 | 66.8 (10.9)
é SHOT [19] 478 49.7 463 743 537 740 79.3 726 76.6 78.1 863 70.7 645 689 59.9 | 66.8 (10.9)
O | Tent [20] 473 492 458 742 53.1 737 79.1 722 763 719 86.1 704 643 68.7 59.6 | 66.5 (10.6)
TRUST naive | 589 61.8 62.0 79.8 609 79.1 82.6 80.5 81.8 83.6 88.8 81.8 70.3 75.1 66.0| 74.2 (183)
TRUST 63.1 67.8 70.3 81.0 64.5 814 85.0 832 854 858 90.1 85.7 72.1 79.1 68.6 77.5 (111.6)
Source only |21.0 22.1 183 50.6 27.7 51.0 562 453 50.6 524 653 432 39.0 41.7 334|412
O | ETA [21] 212 223 187 508 27.8 51.2 563 454 508 52.7 655 435 392 42.0 33.7| 41.4 (102
8 |LAME[31] |[21.0 22.1 183 50.6 27.7 51.0 56.2 453 50.6 52.5 654 432 39.0 41.7 334|412
~ | SAR[23] 219 228 193 51.1 282 515 56.7 464 514 53.1 658 442 399 428 342 | 419 (107
£ | SHOT[19] 219 229 19.1 514 283 518 56.8 463 514 533 660 442 398 427 343 | 42.0 (10.8)
O | Tent [20] 21.6 226 189 51.1 282 51.5 56.7 462 51.1 53.1 65.8 440 39.7 425 34.0| 41.8 (10.6)
TRUST naive | 32.1 32.8 34.1 569 354 572 61.6 54.6 57.8 60.1 69.6 55.6 46.6 50.8 41.0| 49.8 (18.6)
TRUST 37.8 389 423 609 36.6 60.8 654 59.0 62.2 64.5 71.7 63.1 50.3 56.6 44.9 54.3 (113.1
Source only | 24.3 26.1 25.1 222 232 354 432 493 484 569 70.0 268 45.1 437 414 387
o | ETA[21] 264 284 272 235 246 372 451 50.8 51.0 58.8 70.6 29.1 47.7 46.9 45.0 | 40.8 (t2.1)
5 | LAME[31] |243 261 251 222 232 354 432 493 484 569 700 268 45.1 437 41.4| 388 (0.1
% | SAR [23] 265 292 28.0 245 253 374 45.1 51.0 S51.7 59.1 705 31.5 482 48.6 46.3 | 41.5 (12.8)
& | SHOT [19] 28.0 30.1 288 250 26.0 38.0 457 S51.0 51.5 59.1 70.6 302 484 47.8 458 | 41.7 (13.0)
E | Tent [20] 27.8 30.0 28.8 249 259 38.0 455 51.0 513 59.1 70.6 30.0 482 47.8 45.7| 41.7 (13.0)
TRUST naive | 43.4 45.6 449 383 36.6 53.0 549 57.1 602 66.0 722 502 59.0 61.1 58.5|53.4 (147
TRUST 46.8 494 485 42.8 40.8 57.1 579 573 61.7 66.8 719 549 614 63.6 60.2 56.1 (117.4)

Table 1: Top-1 classification accuracy (%) under various corruption types on CIFAR10-C, CIFAR100-
C, and ImageNet-C datasets. Increases/decreases in mean accuracy compared to performing no
adaptation (Source only) is highlighted in green/red color.

In addition to corruption-specific robustness, our method demonstrates strong generalization to
broader distribution shifts, as summarized in Table 2. On ImageNet-S, our method achieves 41.5%
accuracy, outperforming SHOT by a substantial margin of 8.9%, and providing a modest 0.4%
improvement over the naive variant. For ImageNet-V2, TRUST attains 64.0%, exceeding SHOT by
1.6% and providing a 0.6% gain over its naive variant. The most significant boost is observed on the
ImageNet-R benchmark, which features real-world renditions of ImageNet categories. Here, our
method achieves 44.3%, surpassing both Tent and SHOT by 12.4%, and outperforming TRUST naive
by 4.6%. On the PACS dataset, our model reaches 69.9% accuracy, offering consistent improvements
over SHOT and Tent by 2.5%, and over the naive variant by 2.8%. These consistent gains across
varied benchmarks highlight the adaptability of our permutation-based strategy, which not only
improves corruption robustness but also scales effectively to domain generalization tasks.

Method | CIFAR10-C CIFAR100-C ImageNet-C ImageNet-S ImageNet-V2 ImageNet-R ~ PACS
Source only 65.9 41.2 38.7 314 62.2 31.3 66.7

ETA [21] 65.8 (10.1) 41.4 (10.2) 40.8 (12.1) 314 62.2 31.3 66.7
LAME [31] 65.9 41.2 38.8 (10.1) 314 62.2 31.3 66.7
SAR [23] 66.8 (10.9) 41.9 (10.7) 41.5 (12.8) 32.6 (11.2) 62.4 (10.2) 32.0 (10.7) 67.3 (10.6)
SHOT [19] 66.8 (10.9) 42.0 (10.8) 41.7 (13.0) 32.6 (11.2) 62.4 (10.2) 31.9 (10.6) 67.4 (10.7)
Tent [20] 66.5 (10.6) 41.8 (10.6) 41.7 (13.0) 32.5 (t1.1) 62.3 (10.1) 31.9 (10.6) 67.4 (10.7)
TRUST naive | 74.2 (18.3) 49.8 (18.6) 53.4 (114.7) 41.1 (19.7) 63.4 (11.2) 39.7 (184) 67.1 (10.4)
TRUST 77.5 (111.6) 54.3 (113.1) 56.1 (117.4) 41.5 (t10.1) 64.0 (11.8) 44.3 (113.0) 69.9 (13.2)

Table 2: Top-1 classification accuracy (%) across datasets. For CIFAR10-C, CIFAR100-C, and
ImageNet-C, values are averaged over all corruptions; for ImageNet-S, V2, R, and PACS, they
reflect test set accuracy. Increases/decreases in mean accuracy compared to performing no adaptation
(Source only) is highlighted in green/red color.

4.5 Ablation Study

In this section, we present a comprehensive ablation study on the CIFAR10-C dataset to assess
the impact of key factors on the performance of our model. Specifically, we analyze the effects of
batch size, augmentation types, number of traversal permutations, number of adaptation iterations,
aggregation strategies, effect of traversing type in evaluation and computational overhead.

Batch Size. Figure 3 demonstrates that TRUST maintains a consistent advantage over Tent across
different batch sizes. Even at smaller sizes such as 16 and 32, it delivers an accuracy improvement
of around 8%. This indicates that our approach remains reliable and effective, even when operating
with limited data per batch.

Augmentation Impact. To evaluate whether standard data augmentations can serve as effective
alternatives to our traversal permutation strategy, we compare TRUST against common augmentations
including rotation, random cropping, and color jitter. As shown in Figure 4, these traditional
augmentations yield only modest improvements over the baseline source-only model on CIFAR10-
C, with accuracies ranging from 65.9% to 68.3%. In contrast, our method achieves a substantial
performance boost, reaching 77.5%, which is significantly higher than all augmentation baselines.
This indicates that simple augmentations fail to sufficiently address distribution shifts.

78 77.5
77.5
76
—_ 75.0
X 74 —
< R 725
3 72 —— TRUST g
° —e Tent g 70.0 68.3
3 70 3 66.8 66.9 :
< g 67.5] 659 : :
68 65.0
66— 62.5
16 32 64 128 60.0
Batch Size : Source Rotation Crop Jitter TRUST

Figure 3: Accuracy comparison between TRUST ~ Figure 4: Performance comparison between stan-
and Tent across varying batch sizes on CIFAR10- ~ dard augmentations and TRUST on CIFAR10-C
C dataset. dataset.

Number of Traversal Permutations. Figure 5 shows how accuracy varies with the number of
traversal permutations across CIFAR10-C, CIFAR100-C, and ImageNet-C. Overall, increasing the
number of permutations consistently improves performance on all datasets. On CIFAR10-C, accuracy
rises from 75.6% (2 permutations) to 77.6% (8 permutations). For CIFAR100-C, the gain is from
51.7% to 54.7%, and for ImageNet-C, from 54.4% to a peak of 56.1% at six permutations before
slightly dropping to 55.5% at eight. These results confirm that incorporating multiple traversal
permutations enhances robustness under distribution shifts. Although accuracy improves with more
permutations, gains diminish after six, suggesting that six permutations strike a good balance between
performance and computational efficiency. For a breakdown of memory overhead, see Figure 9.

Number of Adaptation Iterations. Figure 6 illustrates that accuracy improves progressively with an
increasing number of iterations. Despite the potential for further improvement with more iterations,
we chose to use only a single iteration in subsequent experiments to enable faster adaptation without
compromising on competitive performance.

80 78.8
77.5 77.6
7556 R —— TRUST
75 78.6
< 70 784
g EEE CIFAR10-C < 782
2 65 = CIFAR100-C g
5 mm ImageNet-C 5 78.0
|9 |9
g 60 g
55.6 56.1 54,7555 778
55 54.4 53.7 54.3]
51.7| 77.6
50 200 40 6.0 8.0 TTA—T 7 6)

Traversal Permutation Number

Iteration

Figure 5: Effect of traversal permutation count Figure 6: Model performance across adaptation
on accuracy across three datasets. iterations on CIFAR10-C dataset.

Aggregation Strategy. We evaluate two baseline strategies for aggregation across traversal permu-
tations: (1) an ensemble approach that averages model predictions from independently processed
traversal orders, and (2) a repetition baseline, where the same traversal permutation is applied k times,

followed by weight averaging. As shown in Figure 7, both baselines yield lower performance on
CIFAR10-C, with ensemble achieving 68.1% and repetition 69.6%, compared to 75.6% with our
method.

The ensemble variant offers traversal diversity, but because its individual models are never weight-
averaged, it lacks parameter alignment. The repetition baseline, in contrast, repeats the same traversal
and updates the model sequentially; the weights, therefore, remain aligned, yet no traversal diversity
is introduced. Both baselines perform worse than our method, demonstrating that neither unaligned
traversal diversity (ensemble) nor aligned repetitions without diversity (repetition) is sufficient on its
own. By combining these two ingredients, traversal diversity and parameter alignment, our approach
achieves better generalization under distribution shift.

Effect of Traversal Permutation in Evaluation. Figure 8 illustrates how accuracy varies with
different traversal permutations during evaluation. We observe that the choice of permutation impacts
the performance. The default permutation used in the original VMamba architecture, “abed”, achieves
the highest accuracy at 77.5%, while others, such as “badc”, yield lower performance (e.g., 71.6%).
Given this sensitivity, we adopt the “abcd” traversal permutation, on which the model was trained,
for all evaluations to ensure consistency and leverage the strongest baseline.

78
80
76

78
74

72 76

70 74

Accuracy (%)
Accuracy (%)

68
72

66

Ensemble Repetition TRUST 70 bcd abdc adcb bacd badc dbca

Aggregation Methods Traversal Permutation in Evaluation

Figure 7: Accuracy comparison of different ag- Figure 8: Impact of traversal permutation during
gregation strategies on CIFAR10-C dataset. evaluation on CIFAR10-C dataset.

Computational Overhead. We evaluate GPU
memory usage as a function of the number of traver- 4
sal permutations used during parallel adaptation.
Since only the SS2D blocks are updated, we instan-

x1.7
x1.5

tiate one SS2D block per traversal while sharing the =

rest of the network. Traversals are batched and routed 2.1(68) s

to their corresponding SS2D blocks, and their outputs

are then concatenated. This design minimizes com-

putational overhead. As shown in Figure 9, memory

usage increases moderately, 1.1x, 1.3x, 1.5x%, and

1 2 4 6 8

1.7x for 2, 4, 6, and 8 traversals, respectively, relative
to the 2.1 GB baseline (measured with batch size 1).
In sequential mode, forward and backward passes are ~ Figure 9: GPU memory usage across traversals.
performed separately for each traversal. We measure a per-traversal time of approximately 135 ms
(with the batch size of 1), leading to a total cost of K x 135 ms for K traversals. As expected,
memory usage remains nearly constant, while adaptation time grows linearly. Conversely, in parallel
mode, adaptation time remains nearly constant, with moderate memory overhead, offering a practical
trade-off given the performance gains. For more details, refer to the Supplementary Material.

B)

GPU Memory (G
N

.

Number of Traversals

5 Conclusion

In this paper, we introduced TRUST, a test-time adaptation strategy specifically designed for vision-
oriented state-space models. Our method addresses two key challenges in VMamba under distribution
shift: (1) the strong inductive bias introduced by fixed traversal scans, and (2) the accumulation of
domain-specific artifacts in hidden states during sequential processing. To overcome these issues,
TRUST exploits directional traversal mechanism of VMamba to generate complementary causal
views of the input, performing adaptation based on each. The resulting models are aggregated via

weighted parameter averaging, promoting convergence toward flatter, more robust regions in the loss
landscape. Experiments on seven standard benchmarks show that TRUST consistently outperform
popular TTA models including Tent, SHOT, and SAR, in image classification tasks. Our method does
not yet generalize to the medical domain. Future work will adapt TRUST to address data scarcity,
modality differences, and privacy constraints in medical settings.

Acknowledgements

We appreciate the computational resources and support provided by Compute Canada and the Digital
Research Alliance of Canada.

References

[1] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International conference on learning representations, 2014.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

[3] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700-4708, 2017.

[4] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105-6114. PMLR, 2019.

[5] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976—11986, 2022.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012—-10022, 2021.

[8] Xiaosong Zhang, Yunjie Tian, Lingxi Xie, Wei Huang, Qi Dai, Qixiang Ye, and Qi Tian.
Hivit: A simpler and more efficient design of hierarchical vision transformer. In The Eleventh
International Conference on Learning Representations, 2023.

[9] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347-10357. PMLR, 2021.

[10] Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2024.

[11] Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry Hungry Hippos: Towards language modeling with state space models. In Proceedings
of the 11th International Conference on Learning Representations (ICLR), 2023.

[12] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers
for sequence modeling. In /CLR, 2023.

[13] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye,

Jianbin Jiao, and Yunfan Liu. VMamba: Visual state space model. Advances in neural
information processing systems, 37:103031-103063, 2024.

10

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
First Conference on Language Modeling, 2024.

Sahar Dastani, Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, David Osowiechi, Gustavo
Adolfo Vargas Hakim, Farzad Beizaee, Milad Cheraghalikhani, Arnab Kumar Mondal, Herve
Lombaert, et al. Spectral state space model for rotation-invariant visual representation learning.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 23881—
23890, 2025.

Shaocong Long, Qianyu Zhou, Xiangtai Li, Xuequan Lu, Chenhao Ying, Yuan Luo, Lizhuang
Ma, and Shuicheng Yan. DGMamba: Domain generalization via generalized state space model.
In Proceedings of the 32nd ACM International Conference on Multimedia, pages 3607-3616,
2024.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima.
In 5th International Conference on Learning Representations, ICLR 2017, 2017.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. SWAD: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405-22418, 2021.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In International conference on machine
learning, pages 6028-6039. PMLR, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully test-time adaptation by entropy minimization. In International Conference on Learning
Representations, 2021.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and
Mingkui Tan. Efficient test-time model adaptation without forgetting. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 16888—-16905. PMLR, 17-23 Jul 2022.

Jungsoo Lee, Debasmit Das, Jaegul Choo, and Sungha Choi. Towards open-set test-time
adaptation utilizing the wisdom of crowds in entropy minimization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 16380-16389, October
2023.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In Internetional
Conference on Learning Representations, 2023.

Longhui Yuan, Binhui Xie, and Shuang Li. Robust test-time adaptation in dynamic scenarios.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 15922-15932, 2023.

Sachin Goyal, Mingjie Sun, Aditi Raghunanthan, and Zico Kolter. Test-time adaptation via
conjugate pseudo-labels. Advances in Neural Information Processing Systems, 2022.

Taesik Gong, Yewon Kim, Taeckyung Lee, Sorn Chottananurak, and Sung-Ju Lee. SoTTA:
Robust test-time adaptation on noisy data streams. Advances in Neural Information Processing
Systems, 36, 2024.

Yongcan Yu, Lijun Sheng, Ran He, and Jian Liang. STAMP: Outlier-aware test-time adaptation
with stable memory replay. In European Conference on Computer Vision, pages 375-392, 2024.

Zhengqing Gao, Xu-Yao Zhang, and Cheng-Lin Liu. Unified entropy optimization for open-set

test-time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 23975-23984, June 2024.

11

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7201-7211, 2022.

Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 295-305, 2022.

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online
test-time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8344-8353, 2022.

Haopeng Sun, Lumin Xu, Sheng Jin, Ping Luo, Chen Qian, and Wentao Liu. Program: Prototype
graph model based pseudo-label learning for test-time adaptation. In The Twelfth International
Conference on Learning Representations, 2024.

Minguk Jang, Sae-Young Chung, and Hye Won Chung. Test-time adaptation via self-training
with nearest neighbor information. In The Eleventh International Conference on Learning
Representations, 2024.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time
model adaptation with only forward passes. In International Conference on Machine Learning,
pages 38298-38315. PMLR, 2024.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.

Advances in Neural Information Processing Systems, 35:14274—14289, 2022.

Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient
test-time adaptation of vision-language models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14162-14171, 2024.

David Osowiechi, Mehrdad Noori, Gustavo Adolfo Vargas Hakim, Moslem Yazdanpanah, Ali
Bahri, Milad Cheraghalikhani, Sahar Dastani, Farzad Beizaee, Ismail Ben Ayed, and Christian
Desrosiers. WATT: Weight average test time adaptation of CLIP. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

Gustavo A Vargas Hakim, David Osowiechi, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri,
Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. CLIPArTT: Adaptation of
CLIP to new domains at test time. In Proceedings of the Winter Conference on Applications of
Computer Vision (WACV), pages 7092-7101, February 2025.

Mona Schirmer, Dan Zhang, and Eric Nalisnick. Temporal test-time adaptation with state-space
models. arXiv preprint arXiv:2407.12492, 2024.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with MixStyle.
In International Conference on Learning Representations, 2021.

Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Gustavo A Vargas Hakim, David Osowiechi,
Moslem Yazdanpanah, Ismail Ben Ayed, and Christian Desrosiers. FDS: Feedback-guided
domain synthesis with multi-source conditional diffusion models for domain generalization.
In Proceedings of the Winter Conference on Applications of Computer Vision (WACV), pages
8493-8503, February 2025.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In 34th Conference
on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 876-885. Association For
Uncertainty in Artificial Intelligence (AUAI), 2018.

12

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, Sahar Dastani, Milad Cheraghalikhani,
David Osowiechi, Farzad Beizaee, Gustavo A Vargas Hakim, Ismail Ben Ayed, and Christian
Desrosiers. Test-time adaptation in point clouds: Leveraging sampling variation with weight
averaging. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pages 266-275. IEEE, 2025.

Moslem Yazdanpanah, Ali Bahri, Mehrdad Noori, Sahar Dastani, Gustavo Adolfo Vargas Hakim,
David Osowiechi, Ismail Ben Ayed, and Christian Desrosiers. Purge-Gate: Backpropagation-
free test-time adaptation for point clouds classification via token purging. arXiv preprint
arXiv:2509.09785, 2025.

Ali Bahri, Moslem Yazdanpanah, Sahar Dastani, Mehrdad Noori, Gustavo Adolfo Vargas
Hakim, David Osowiechi, Farzad Beizaee, Ismail Ben Ayed, and Christian Desrosiers. SMART-
PC: Skeletal model adaptation for robust test-time training in point clouds. arXiv preprint
arXiv:2505.19546, 2025.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations, 2019.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier
domain generalization. In Proceedings of the IEEE international conference on computer vision,
pages 5542-5550, 2017.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global repre-
sentations by penalizing local predictive power. Advances in neural information processing
systems, 32, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet
classifiers generalize to imagenet? In International conference on machine learning, pages
5389-5400. PMLR, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness:
A critical analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 8340-8349, 2021.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (VOC) challenge. International journal of computer vision,
88(2):303-338, 2010.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic
segmentation in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 891-898, 2014.

Mehrdad Noori, David Osowiechi, Gustavo Adolfo Vargas Hakim, Ali Bahri, Moslem Yazdan-
panah, Sahar Dastani, Farzad Beizaee, Ismail Ben Ayed, and Christian Desrosiers. Test-time
adaptation of vision-language models for open-vocabulary semantic segmentation. arXiv
preprint arXiv:2505.21844, 2025.

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
fine-tuned models. In European Conference on Computer Vision, pages 207-223. Springer,
2024.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract is the summary of the content of the paper and the introduction is
clearly state the main contributions of the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last part of the conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14

Justification: No theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide details of implementation and experiments in section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: The data is available online and we will release the code with the supplementary
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Provided in section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiments were run with a single seed. We plan to include multi-seed results
in future revisions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides details on the hardware used, and reports a computational
overhead analysis in the ablation section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we do.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No relevant.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No relevant.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We followed the protocol.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The paper does not introduce any new datasets or benchmarks. All experiments
are conducted on existing public datasets using open-source baselines.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not relevant.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: This work does not use LLMs in the core methodology, scientific rigorousness,
or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

TRUST: Test-Time Refinement using
Uncertainty-Guided SSM Traverses - Appendix

A Pseudo-code

In this section, we give the pseudo-code for our proposed test-time adaptation method, TRUST.
This pseudo-code provides a concise summary of the key steps involved in our approach, offering a
high-level abstraction of the implementation. Algorithm 1 outlines the overall TRUST procedure
for test-time adaptation. For each corruption in the evaluation set, the model is first reset to its
original (pre-adaptation) weights. The input x is then processed using the FORWARD_AND_ADAPT
function (Algorithm 2), which outputs the adapted prediction and a list of model parameter sets 6,
each corresponding to a different traversal permutation used during adaptation. These parameters are
averaged to obtain the final adapted parameters, 6g,,, Which are loaded back into the model. The
final prediction is then computed by re-evaluating the model on the same input z.

Algorithm 1 TRUST
1: for each corruption do
2: MODEL.RESET
3 (out,) < MODEL.FORWARD_AND_ADAPT(z)
4 Ofinal < MEAN(0)
5: MODEL.LOAD_STATE_DICT(Hfinal)
6 out < MODEL.EVALUATE(x)
7: end for

Algorithm 2 defines the FORWARD_AND_ADAPT function. For each traversal permutation 7;, € P,
the model performs a forward pass with input and permutation 7;, . The cross-entropy loss between
the model’s prediction and the pseudo-labels is computed, and a gradient descent step is performed
to update the model parameters. Each updated parameter state is stored in the list 6. After all
permutations have been processed, the method returns the final output and the list of different model
parameters.

Algorithm 2 FORWARD_AND_ADAPT(x)
1: 0 < empty list
2: for each m;, € P do
3: out < model(x, 7;,)

4: loss < CE(out, pseudo_labels)
5: loss.backward()

6: optimizer.step()

7: optimizer.zero_grad()

8: 6.append(model.parameters)

9: end for

10: return (out, 0)

B Finetuning Process

The backbone model, VMamba, was originally trained on ImageNet-C, which contains 1,000 classes.
To enable test-time use on corrupted datasets with different label sets, we fine-tune only the classifier
layer on the clean version of each target dataset, keeping the rest of the model frozen. This procedure
is applied to CIFAR10-C, CIFAR100-C, and PACS, using a learning rate of 5e-4 for 300 epochs. For
PACS, which includes four domains (photo, art painting, cartoon, and sketch), we follow the standard
protocol: one domain is held out for evaluation while training on the remaining three. Specifically,
we use the photo domain as the held-out test set. For datasets such as ImageNet-S, ImageNet-V2,
and ImageNet-R, which share the same label space as ImageNet, no fine-tuning is required.

21

C Efficient Parallel Implementation

We mentioned in the main paper (Computational Overhead section) that our method supports an
efficient parallel adaptation strategy. Figure 10 provides a detailed diagram of this process. In parallel
mode, we handle K traversal permutations simultaneously. A batch B is first split into K subsets,
each corresponding to a different permutation ;. Each subset is then passed to an independent
SS2D TRUST Version block, where the SS2D parameters are adapted in parallel while the rest of the
model remains shared across all paths, this design significantly reduces memory usage.

After adaptation, the outputs are concatenated back into a single batch, which allows for efficient GPU
utilization. For evaluation, we perform a weight averaging step across all adapted SS2D modules,
producing a single unified SS2D TRUST Version block. This averaged block is then used for inference
on the full batch. By leveraging parallelism in both data and traversal space, our method achieves
scalable and low-overhead test-time adaptation while preserving performance across permutations.

Weight Average SS2D TRUST Version

SS2D TRUST Version

l

Concat

SS2D TRUST Version|—

SS2D TRUST Version|—
/

i

Udaptation

4 (B) Batehof data
@—> SS2D TRUST Version @ Y ¢ Weight averaged

me) Afim(:xteo(weiylojts ‘
with permu‘tat\on Ty

N

KEva[ua‘tion
Figure 10: Detailed diagram of TRUST in Parallel mode.

D Standard Mode

Table 3 reports Top-1 accuracy under various corruption types at severity level 5 for CIFAR10-
C, CIFAR100-C, and ImageNet-C in the standard setting, where the model is reset for each test
batch. On CIFARI10-C, TRUST achieves the highest mean accuracy of 66.2%, surpassing Tent
and SHOT by 0.2%. On CIFAR100-C, it reaches 41.7%, outperforming all baselines by at least
0.4%, and improving over its naive variant by 0.5%, underscoring the benefits of permutation-based
refinement. On the large-scale ImageNet-C, TRUST attains 39.9%, exceeding Tent by 1.1%, and
outperforming its naive counterpart by 1.2%. These results highlight the scalability and robustness of
permutation-aware adaptation across diverse datasets. Table 3 evaluates performance under domain-
level distribution shifts. TRUST achieves 31.6% on ImageNet-S, 62.3% on ImageNet-V2, and
31.5% on ImageNet-R. On the PACS benchmark, it obtains 71.3%, outperforming its naive variant
by 4.6%. While gains are narrower in these less corrupted settings, TRUST consistently improves
generalization, particularly under significant domain shifts.

E TRUST with Batch Norm Adaptation

In this experiment, we compare two adaptation strategies within our framework: updating only the
BN layers versus updating the SS2D parameters. As shown in Table 4, our method outperforms Tent
in both settings, by 3.1% when using BatchNorm adaptation and by 11.8% with SS2D adaptation.
We opt to proceed with SS2D adaptation, as traversal permutations directly influence Mamba-specific
parameters encoded in the SS2D blocks. Updating these parameters is therefore essential to fully
capture the effects of traversal-based modifications.

22

Method | CIFAR10-C CIFAR100-C ImageNet-C ImageNet-S ImageNet-V2 ImageNet-R ~ PACS

Source only 65.9 41.2 38.7 314 62.2 31.3 66.7
ETA 65.8 (10.1) 41.2 38.8 (10.1) 31.4 62.2 31.4 10.1) 66.7
LAME 65.9 41.2 38.8 (10.1) 314 62.2 314 66.7
SAR 66.0 (10.1) 41.3 (10.1) 38.8 (10.1) 314 62.2 31.4 (t0.1) 67.1 (10.4)
SHOT 66.0 (10.1) 41.3 (10.1) 38.9 (10.2) 31.4 62.2 31.4 10.1) 67.3 (10.6)
Tent 66.0 (10.1) 41.3 (10.1) 38.8 (10.1) 314 62.2 31.4 (10.1) 67.2 (10.5)
TRUST naive | 65.9 41.2 38.9 (10.2) 31.5 (10.1) 62.3 (10.1) 31.5(102) 66.8 (10.1)
TRUST 66.2 (10.3) 41.7 (10.5) 39.9 (11.2) 31.6 (10.2) 62.3 (10.1) 31.5 (10.2) 71.3 (14.6)

Table 3: Top-1 classification accuracy (%) across datasets in standard setting. For CIFAR10-C,
CIFAR100-C, and ImageNet-C, values are averaged over all corruptions; for ImageNet-S, V2, R, and
PACS, they reflect test set accuracy. Increases/decreases in mean accuracy compared to performing
no adaptation (Source only) is highlighted in green/red color.

2
= © -] - ©
X1 k] = = £ Z £
E oz 2 &z £ 0E z oz o, 2 £ OZG oy
Method 5§ < E 2 = £ R & 2 £ 5 5 T A & Mean
‘ Source only ‘ 243 26.1 25.1 222 232 354 432 493 484 569 70.0 26.8 45.1 43.7 414 ‘ 38.7
BN Tent 27.8 30.0 28.8 249 259 38.0 455 51.0 51.3 59.1 70.6 30.0 48.2 47.8 45.7| 41.7
TRUST 32.8 35.1 34.0 26.8 285 40.8 47.7 529 538 61.1 713 34.1 50.7 51.8 50.2 | 44.8 (13.1)
SS2D Tent 29.6 31.7 347 25.1 22.0 457 448 460 558 622 69.8 32.5 52.8 56.8 543 | 443
TRUST 46.8 494 485 428 40.8 57.1 579 573 61.7 66.8 719 549 614 63.6 60.2|56.1 (t11.8)

Table 4: Comparison of adaptation strategies using BN and SS2D parameters on ImageNet-C dataset.
Increases/decreases in mean accuracy compared to Tent is highlighted in green/red color.

F Mean Entropy of Different Traversal Permutations

As illustrated in Figure 11, varying the order of spatial traversals in VMamba leads to substantial
differences in mean entropy across datasets, revealing the sensitivity of the model’s internal rep-
resentations to traversal patterns. Higher entropy values indicate less confident predictions, often
aligning with reduced robustness under distributional shifts. This highlights the critical role of
traversal selection in ensuring reliable adaptation. To offer a comprehensive analysis, we report
entropy values for all permutations across CIFAR10-C, CIFAR100-C, ImageNet-C, ImageNet-S,
ImageNet-V2, ImageNet-R, and PACS. Notably, the top-2, top-4, and top-6 traversal permutations
with the lowest entropy, highlighted with green cross-hatching (i.e., diagonal lines overlaid on the
heatmap cells), consistently reappear across datasets. This pattern suggests that certain traversal
orders inherently yield more stable and confident model outputs, providing a principled foundation
for selecting effective traversal subsets in our approach.

CIFAR10-C o.ssmo.ss %%% 1.50)1.30 1.53)1.38 1.36 1.56 1.36 1.44 1.44 151|132 1.32 1.35%1.33 0.93
CIFAR100-C @M 1.68 m 201155
e 3555 EERREE 555 KRCCRCCNCEg 3 A

ImageNet-v2 W156w3.67 z/ J

ImageNet-R %% 5.41 6.20 PR3)

PACS :ss m 0.83 %% .
S & &P

F PP F O S
I R S P SN

"‘253259263289258256258269266284267267249%281

Entropy

6.11 6.07 6.10 6.06 EXLAENERECRLY 5.32 5.16 6.33 3.50‘3.63‘3.643.71‘3.06

1.12 1.09 1.13 1.06 0.85‘0.91‘0.85 1.01 0.94 1.09 0.87@0.900.85

‘0(’ (;0 ’OL (4® N (‘40/0

< ? o 0 >] <l
< & O 2 & 9 ' >
S R N S SN SR

Permutation of Traverses

N

&
S B

Figure 11: Mean entropy of different traversal permutation across seven benchmarks.

G Combination of TRUST with Augmentation

According to Figure 4 in the main paper, Jitter augmentation yields the highest performance among
the augmentation strategies evaluated. Building on this, we examine the effectiveness of combining
Jitter with our proposed method, TRUST, under two augmentation settings: (1) applying different
Jitter augmentations for each traversal permutation, and (2) applying different Jitter augmentations
per batch. The former setting achieves a modest improvement of 0.3% over the source-only baseline,
while the latter results in a slightly higher gain of 1.8%. However, both improvements are substantially

23

lower than the performance boost achieved by the original TRUST, which yields an 11.6% increase.
These results highlights that although augmentation contributes to performance, the core strength of
TRUST lies in its ability to adapt representations based on traversal-specific dynamics rather than
augmentation diversity alone.

g % é @ g =] = % % 2 ::;

E 3 s < Z 3 15} Z 3 T = Z [o0
Method 5§ £ E B % & g & g & 5 s < & & Mean
Source only 46.8 484 45.0 735 526 73.0 787 718 758 773 857 69.6 63.7 67.9 59.0| 659
TRUST + Jitter per permutation | 53.6 54.2 54.0 63.8 48.0 693 77.1 754 752 772 858 76.6 59.1 66.5 57.8| 66.2(10.3)
TRUST + Jitter per batch 57.0 534 572 70.0 489 656 79.6 775 779 773 882 793 579 654 60.6| 67.7 (1.8
TRUST 63.1 67.8 703 81.0 645 814 850 832 854 858 90.1 857 72.1 79.1 68.6|77.5(t11.6)

Table 5: Comparison of augmentation impact on CIFAR10-C dataset. Increases/decreases in mean
accuracy compared to performing no adaptation (Source only) is highlighted in green/red color.

H High Entropy Traversal Permutations

We have also tested the performance of TRUST using the top-k high-entropy (i.e., less confident)
traversal permutations. As shown in Table 6, this setting leads to a significant performance drop of
12.5% compared to the source-only baseline. This highlights the critical role of traversal selection in
our method. High-entropy permutations, which correspond to uncertain and unstable model predic-
tions, introduce noise into the adaptation process and hinder effective generalization. These findings
further support our strategy of entropy-based traversal filtering, where low-entropy permutations are
prioritized to ensure reliable and robust adaptation.

g PR £ 4 3

? e § « E £ o 2 § g 2 = 0

El] a2 B 5 S 2 <] w0 Z 2]
Method 5 = g 3 =) g 2 £ Z £ g S 5 B é Mean
Source only 46.8 484 450 73.5 52.6 73.0 78.7 71.8 758 773 857 69.6 63.7 679 59.0| 659

TRUST (top-k high entropy) | 38.5 322 36.4 579 37.7 615 649 525 640 703 74.1 493 579 562 482|534 (l125)
TRUST (top-k low entropy) | 63.1 67.8 70.3 81.0 64.5 81.4 850 832 854 858 90.1 857 72.1 79.1 68.6 77.5(11L6)

Table 6: Comparison of TRUST performance with low and high entropy traversal permutations on
CIFAR10-C dataset.

I TRUST Application beyond Classification Settings

We conducted additional experiments on segmentation tasks using various datasets, including Pascal
VOC?21 [52] and Pascal Context 59 [53], applying corruptions following the protocol of [54]. The
results demonstrate that TRUST performs well in segmentation, outperforming methods like Tent.
This further supports the generalizability and effectiveness of our approach beyond classification
settings.

o
B
2 g 5 5 ” g
_ c 2 = = 5 = 5 g . o £
3 3 s 2 Z B = 0 E K] Q = S
i I : 2 7 2 0E 33 , % f %3 @
< o o & » (9]
& | Method 5 £ E 3 % £ § & 5 & E 8§ 5 A& &| Mem
_ |Sourceonly [29.1 33.1 283 210 82 33.1 254 509 503 707 765 63.9 255 222 59.2]39.8
§ | Tent 330 357 320 223 147 382 253 465 49.0 602 639 662 385 28.8 439399
TRUST 38.8 42.0 387 29.8 22.6 451 29.8 50.5 535 634 664 68.5 45.1 37.7 48.6 | 454 (156
Sourceonly | 17.1 19.6 17.4 274 149 292 195 302 285 42.1 508 41.0 239 304 384 |28.7
2 | Tent 176 189 17.8 222 159 27.5 179 269 300 367 41.9 429 258 282 283266
TRUST 244 274 254 24.6 212 30.1 198 298 328 392 424 432 315 36.1 31.6|30.6 (119

Table 7: Segmentation performance under different corruptions of V21 and P59 datasets.

J Performance Comparison with ViT-based Method

To provide a fair evaluation, we adapted the ViT-based method from [34] by replacing its backbone
with VMamba and modifying it to be compatible with VMamba backbone. Specifically, we replaced

24

the CLS token (absent in VMamba) with the mean of all tokens and adjusted the number of learnable
tokens to match VMamba’s dimensionality. This ensures that both methods operate under the same
architectural constraints. Our experimental results demonstrate that TRUST, which is specifically
designed to exploit VMamba’s traversal mechanism, significantly outperforms the adapted baseline,
highlighting its robustness under distribution shift.

= o g . ©

8] 3 = g &) 5

2 = 2 P .8 g - 3 = g = 5

E < 2 g Z 3 5 z 3 o 22 2z 2 ¥
Method 5 % E g 3 g < £ g & B 3 5 & & Mean
Source only | 24.3 26.1 25.1 22.2 232 354 432 493 484 569 70.0 26.8 45.1 43.7 414|387
Tent 27.8 30.0 28.8 249 259 38.0 455 51.0 51.3 59.1 70.6 30.0 482 47.8 457 |41.7
FOA 17.8 194 185 15.1 182 227 28.6 38.7 339 443 574 227 382 409 41.7| 30.5 (82

TRUST 46.8 494 485 428 40.8 57.1 579 573 61.7 66.8 719 549 614 63.6 60.2|56.1 (1174)

Table 8: Performance comparison across corruption types with the ViT-based Method.
K Weight Diversity Across Traversals

To analyze the consistency of the SS2D block parameters under different traversal permutations,
we compute statistics based on the L2 norms of each parameter tensor across six traversal-adapted
models. We extract each weight or bias tensor from each model, flatten it, and compute its L2 norm.
We then calculate the mean of these norms to reflect the overall magnitude across traversals. To
quantify variability, we also compute the standard deviation across the corresponding elements of
these tensors and report the average of these deviations.

Mean and Std for Biases

Mean L2 Norm
= =
. N o N
o w o v
1
1
1
1
1
1
1

N
U
'
'
'

'
'
]
'
'
'
V

0.0

0 31 61
Layer Number

Figure 12: Mean and standard deviation of the L2 norm for the bias parameters

Figure 12 shows the mean and standard deviation of the L2 norm for the bias parameters, while
Figure 13 shows the same for the weight parameters. These visualizations indicate that although the
magnitude of parameters varies across layers, the variation across traversals remains relatively low.
This suggests that SS2D block parameters adapted with different traversal orders remain geometrically
close in parameter space. Such consistency is conceptually aligned with the findings in the Model
Stock method [55], which emphasizes the benefits of maintaining proximity in the weight space
across fine-tuned or adapted models, such as enabling effective weight averaging and improving
generalization. This experiment is conducted using the CIFAR-10C dataset.

Mean and Std for Weights

v
o

N w S
o o o

Mean L2 Norm

i
o

0 59 117
Layer Number

Figure 13: Mean and standard deviation of the L2 norm for the weight parameters

25

	Introduction
	Related Work
	Method
	Preliminaries
	Traversal Permutation
	Leveraging Traversal Permutations Through Weight Averaging

	Experiments
	Datasets
	Implementation Details
	Baselines
	Main Results
	Ablation Study

	Conclusion
	Pseudo-code
	Finetuning Process
	Efficient Parallel Implementation
	Standard Mode
	TRUST with Batch Norm Adaptation
	Mean Entropy of Different Traversal Permutations
	Combination of TRUST with Augmentation
	High Entropy Traversal Permutations
	trust Application beyond Classification Settings
	Performance Comparison with ViT-based Method
	Weight Diversity Across Traversals

