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Introduction 
Spinal cord (SC) imaging has become increasingly central in the diagnosis and monitoring of 
multiple sclerosis (MS) [1,2]. SC lesions bear strong prognostic significance, with evidence 
linking their spatial distribution to clinical disability [3–5]. Accurate segmentation of SC 
lesions is essential for monitoring disease progression. Moreover, despite recent initiatives 
[6–9], there remains a wide variability in MRI acquisition parameters across institutions. 
Existing SC lesion segmentation methods lack accessibility [10–12], are typically 
contrast-specific and often fail to generalise to previously unseen imaging protocols [13–16]. 
Additionally, inter- and intra-rater variability hinders the precise tracking of lesion changes. 
Our objective is to develop a robust model for MS lesion segmentation on MRI scans that 
generalises across different contrasts and imaging parameters. We explore two methods to 
improve generalizability compared to the current state-of-the-art methods. 
 
Methods 
A multi-site dataset (20 sites, 1850 people with MS, 4430 scans) was selected based on the 
heterogeneity in acquisition parameters and sequences: T1w spin echo (n=23), T2w 
(n=3061), T2*w (n=548), PSIR (n=363), STIR (n=92), MP2RAGE-UNIT1 (n=343) acquired at 
1.5T and 3T on GE, Siemens and Philips MRI systems. The field-of-view coverage varied 
across sites (brain and upper SC, or SC only), and acquisitions were either 2D (axial: 
n=2895, sagittal: n=1169) or 3D (n=366), with voxel dimensions ranging from 0.2x0.2x5 mm3 
to 0.8x0.8x9 mm3. Manual segmentations were collected from expert raters across multiple 
institutions. We explore the following strategies: (i) Weighted batch sampling: In each 
training batch, images are sampled with probabilities inversely proportional to the square 
root of the number of samples in each contrast, thereby up-weighting under-represented 
contrasts [17] ; (ii) Pretrained model fine-tuning: We fine-tuned a foundational model, 
pretrained on over 10,000 CT scans [18], on our multi-contrast dataset. Models were trained 
under equivalent hyperparameters for fair comparison. Evaluation employed both voxel-wise 
metrics (Dice coefficient) and lesion-wise metrics (lesion-wise positive predictive value 
(L-PPV), sensitivity, and F1-score). The results were benchmarked against existing SC 
lesion segmentation tools available in SpinalCordToolbox (SCT): (a) sct_deepseg_lesion for 
T2w/T2*w [13], (b) sct_deepseg for PSIR/STIR [16], and (c) sct_deepseg for 
MP2RAGE-UNIT1 [19]. 
 
Results 
Both experiments performed better than the baseline model. The average Dice score 
increased from 0.42 (baseline) to 0.44 with weighted batch sampling (i), and to 0.50 with 
CT-pretrained model fine-tuning (ii). Fine-tuning yielded the highest performance across 
most metrics, including Dice, L-PPV and L-F1. Interestingly, weighted sampling yielded 
slightly higher lesion sensitivity, indicating a trade-off between precision and recall. 
Contrast-specific analyses revealed strong improvements on under-represented modalities. 
For PSIR (8% of the dataset), Dice increased from 30.6% (baseline) to 45.8% (ii); for STIR 
(2% of the dataset), from 27.9% to 59.4% (ii). Even high-frequency contrasts (T2w and 
T2*w) showed performance gains (+8.8% and +1.3%, respectively) with (ii). Compared to 
state-of-the-art models, (ii) outperformed (a) and (c) on their respective contrasts. However, 
it did not surpass (b), which had partial access to the test data during training. 
 
Discussion 
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Both weighted batch sampling and pretrained model fine-tuning independently improved 
generalisation, particularly benefiting under-represented contrasts. Our evaluation remains 
limited as methods (a), (b) and (c) were trained on some of the data used during testing, 
limiting fair comparisons. Moreover, Dice score, while widely used, is suboptimal for small 
lesions with uncertain boundaries [20]. Although lesion-wise metrics (L-PPV, L-F1) provide 
more lesion-centric insight, they rely on binary overlap thresholds and are susceptible to 
segmentation variability. In [21], we demonstrated that expert neuro-radiologist ratings, using 
a 1-5 Likert scale, often contradicted voxel-wise metrics: predicted segmentations were 
sometimes judged to better represent lesion presence than manual annotations,  reflecting 
rater variability [11]. This highlights the need for complementary evaluation frameworks. In 
[21], we suggested that soft segmentations can improve clinical interpretability and enhance 
lesion detectability [21]. Nonetheless, expert review remains resource-intensive, 
emphasising the necessity of developing scalable surrogate evaluation metrics that better 
correlate with expert review. 
 
Conclusions 
Fine-tuning a pretrained CT-based model yielded the best segmentation performance across 
diverse MRI contrasts, demonstrating the feasibility of cross-modality transfer learning in SC 
MS lesion segmentation. The model and code will be released as part of SCT, promoting 
reproducibility and collaborative development. 
 
Figures: 
  

 
Figure 1: Sankey diagram of scans across MRI datasets. Line thickness corresponds to 
the number of scans. MRI scan distribution is displayed for acquisition type (3D, 2D sagittal 
or 2D axial) and MRI contrast. 
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Figure 2: Comparison of model performance on the test set. Model performance was 
evaluated on both voxel-wise metrics and lesion-wise metrics. Comparison with 
state-of-the-art open source models (a, b, c). 
 

 
Figure 3: Comparison of Dice scores per MRI Contrast on the test set. Both methods (i) 
and (ii) perform well globally, even on under-represented contrasts.  
 



 
Figure 4: Qualitative examples of lesion segmentation for both the (i) sampling 
method and the (ii) fine-tuning method. Despite improved segmentation metrics, the (ii) 
Fine-tuning method seems to display under-segmentation patterns, while the (i) Sampling 
method even captures lesions missed during manual segmentation.   
 
 
 
Data and Code Availability Statement: 

No data are available for this abstract. 
Code is available at https://github.com/ivadomed/ms-lesion-agnostic  
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